THE DESIGN, IMPLEMENTATION,
AND EVALUATION OF SMART:
A SCHEDULER FOR MULTIM EDIA
APPLICATIONS

A DISSERTATION SUBMITTED TO
THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Jason Nieh

June 1999

[0 Copyright by Jason Nieh 1999
All Rights Reserved

| certify that | have read this dissertation and that in my opinionit is fully adequate,
in scope and quality, as adissertation for the degreeof Doctor of Phil osophy.

Monica S. Lam (Principal Adviser)

| certify that | have read this dissertation and that in my opinionit is fully adequate,
in scope and quality, as adissertation for the degreeof Doctor of Philosophy.

Menda Rosenblum

| certify that | have read this dissertation and that in my opinionit is fully adequate,
in scope and quality, as adissertation for the degreeof Doctor of Philosophy.

JohnL. Hennessy

| certify that | have read this dissertation and that in my opinionit is fully adequate,
in scope and quality, as adissertation for the degreeof Doctor of Philosophy.

S. Simon Wong

Approved for the University Committeeon Graduate Studies:

Abstract

Multimedia gplicaions are becoming ubquitous. Unlike conventional interactive and
batch applicaions, these applications often have red-time requirements. As multimedia
applicaions are integrated with conventional nonred-time gplicaions in the general-
purpose computing environment, the problem arises of how to suppat the resulting mix of
adivities. A key question is how does the operating system schedule procesor cycles to
enable applications with and withou red-time requirements to co-exist and run
effedively?

To addressthis question, we have created SMART, a Scheduler for Multimedia And Real -
Time gplications. SMART explicitly suppats the time onstraints of real-time
applicaions, and provides dynamic feedback to these applicaions to al ow them to adapt
their performance based onthe avail abili ty of processor cycles. It isuniquein itsability to
make dficient use of procesr cycles in meding rea-time requirements under a
dynamicdly varying system load, even in the absence of admisgon control palicies when
the system is overloaded. SMART integrates suppat for red-time and nonrea-time
applicaions. This alows it to provide uniform controls that allow users to prioritize or
propartionally all ocate processor cycles across al applications, regardiess of whether or

not they have real-time requirements.

SMART adieves this behavior by reducing this complex resource management problem
into two dedsions. One based onimportance determines the overall resource al ocationfor
each activity. The other based on ugency determines when each activity is given its
alocaion. SMART provides a cmmon importance dtribute for both real-time and
conventional activities based onpriorities and weighted fair queueing. SMART then uses

an earliest-deadline urgency mechanism to order when activities are serviced, alowing

real-time adivitiesto make the most efficient use of their resourceallocations to meet their
time @nstraints. A bias on batch adivities accourtsfor their ability to tolerate more varied
service latencies. Thisimproves performance for interactive and real-time adivities during

periods of transient overload.

We have implemented SMART in a wmmercial operating system and measured its
performance against other schedulers in executing appli caions with and withou real-time
requirements, including continuous media, interactive, and betch appli cations. Our results
demonstrate SMART's ability to provide superior performance for multimedia
applicaions.

To my parents

Hsi-Sheng and Loretta Nieh

Vi

Acknowledgments

| would like to thank my advisor Monica Lam for her encouragement and urwavering sup-
port throughou this work. Her enthusiasm, boundessenergy, and demand for excellence
made much of thiswork possble. JohnHennessy and Mendel Rosenblum served as mem-
bers of my orals and reading committees and provided helpful comments on bdh the dis-
sertation itself and life after dissertation as well. Simon Wong gadously agreed to serve

as my orals chairman.

| would also like to thank Duane Northcutt, my supervisor at Sun Microsystems Laborato-
ries. Duane provided an invaluable industry perspective and focused my efforts during the
formative stages of thiswork. Thanks are due to Jim Hanko, Jerry Wall, and Alan Ruberg,
for many enlightening dscussions during my time & Sun Labs. | owe particular thanks to
Jm for answering nunerous questions abou kernel internals, and for providing many of

the applicaions used in this research.

| have been privil eged to work with talented graduate students at Stanford. Brian Schmidt
created toadlsthat greatly simplified the processng d the experimental data, and condwcted
media synchronization experiments that served as a preaursor to some of our audio/video
synchronizationwork. He was a great officemate and a pleasure to work with. Amy Lim is
adea friend who read many drafts of the refereed papers drawn from the material in this

dissertation.

| wasfortunateto make goodfriendsduringmy time & Stanford, who enriched my graduate
yeas. Thanksto David Chen, Jolly and Liz Chen, Birk Leg and Alice Yu for being a part
of this journey. Special thanks to my best friend and wife Belinda, who God krough into

vii

my life during these years. Her constant companionship and suppat when it was most

needed were atremendots blessng.

Thisdissertationisdedicated to my parents. | am grateful for their sacrificesthat have made
this education passible. And thanks be to Jesus, whase saaifice gives life meaning, and

whose grace has been abundant inspite of my shortcomings.

Thiswork was sippated in part by an NSF Y oungInvestigator Award and Sun Microsys-

tems Laboratories.

viii

Table of Contents

YN o1 = (o TP W8

ACKNOWIEAGMENTS ... e e e e e e e e e e e e V..
TabIE Of CONTENES.....ciiiiiiiiie it iX.
LISt Of TADIES. .. e e e e e Xii..
LISt Of FIQUIES... . e e e e e e e e e e e aeeeeees Xiil..

CHAPTER 1. INtrOQUCEION ... et 1.

1.1. What isMultimedia? ..
12 RequwementsofMuItlmedlaon Processor Schedulmg
121, Timing Chara@eriStiCScueiueeiimeriiiee ettt e
12.2. System Load Chara@eristiCS........uueueeemreeeiriiiiieniiecse e e
123, Adaptive CharaderistiCScoeiiveveiieee et
1.24. Mixed Mode CharaderistiCS..........emreemreeemninimreemreeeneesmeessmsnmeeene 10
125, User Chara@eristiCs.......cueiiueeiimerrrmeeeneeesmessmreesreesseesseessmsnsnmeneane 10
126, SUMIMAIY ooovvvimeeiinee st e eeie s s s s e s snesiesssme s s smnsssnsssssesssresssmmensssessnne L1
1.3. Current Pradice aid RESEACN.......coiveeeice et e 12
1.4, The SMART APPrOauooeiiueiiiiees st e e ettt sevev e ees 1
1.5, DiSSertation OVEIVIEWurmeeeeueeimeesserremneeemneee s s ssrsssersesse s s e e s smnssmessene 1D

© 00 ~N O Ww

CHAPTER 2. Limitationsof Commodity Operating Systems...........ccccceeenen 16

2.1, Overview Of EXPEMENTS. ..c.covevviiieeieee e siiricieriee e s vvinee s eree e s e snmeneses L7
2.2, Experimental DESIONocouieiiiiieiiie ettt e ee 1O
2.3. Measurements... PP PPVl
2.4. Interpretation of Results e e s e s e s s se s s ennnnemnneemeeenes 2
241 SVR4T|mesI1ar|ng Class e e e e e 2D
24.2. SVR4 Time-sharing and Red time Clm cevmerrennennns 20
24.3. ModlfledTlme-sharmgClass.. 28
2.5, SUMIMEBIY ...ttt ern et mre e sen e r e s mee 20

CHAPTER 3. TheSMART Interfaceand UsageModdcccoeevveieeiennnnnne. 31

3.1. Applicaion DevelOper SUPPOITc..cuwieeuriiirieiriee e s st D2
3.2, ENAUSEr SUPPOIM ...ttt ettt sea b een e s nee S
3.3. SMART Use Of INfOrMation......ccoueeiiriiie e e eeeeee et e e e a3
34. SMART ReA-TIME AP ...cocoe oottt re ittt s s eee 3O
341 TiME CONSIIAINT. ..co..tticetvrireetieee it e s s e e sre e e eree e e mreeeemreeeees 3O
4.2 NOUFICAION.....oeiiieiitiititireete et ere e e e mree e e OO

CHAPTER

CHAPTER

CHAPTER

3.5.

3.6.

41.
4.2,
4.3.
44,
4.5.
4.6.
47.

438.

51.
52
53.
54.
55.

6.1.
6.2.

6.3.

34.3.

35.1
352

AVAHBDITIEY .ot
Programming EXaMPIE..........eueiiiuiieie ettt
ViIAEO PlaYEN ..ottt ettt
AUAIO PLayer ... e
SUIMIMIBIY ¢ttt ettt r et s e et e e s sra st e e et e orn et e e s

39
40
41
44
46

The SMART Scheduling Algorithm ..., a7

PrinCipleS Of OPEratioNSeueieiuiriiieee ittt
RatioNale @10 OVEIVIBWc..evueieiirirsieee e snr et
Biased Virtual Finishing TIMeccooviiiiiiiiiie e
Best-effort Real-time SCheduliNg........ooveeeii e
.. 56

Example....
Compl exrty v
Analysis of the Behavror of the Algonthm

4.7.1.
4.7.2.
4.7.3.
4.7.4.

I mplementation in a Commercial Operating System

Solaris Scheduling FrameWOrK..........ueeee i e
Implementation MethodolOgYc.uooevmeieiiee i
Dispatcher IMplementation..............oveeiiieeieie e e
Class IMPIEMENEELION ..o ittt sttt ire e e
SUMIMBIY .ttt et e e sttt ern e mrn e mrn e

Prlorlty
Proportional Sharing........coooueee e s
Conventional ACHIVITIES.oouumrreeire e s e
ReE-tiME ACHVILIES. ...o.vveiee et
Comparison With Related WOrKoeiiiuiiiiiiiiie s
48.1.
4.8.2.
4.8.3.

Red-time Scheduling....
Fair Queueing...

Hierarchicd Schedul i ng

47
48
51
55

weews D7
.. 58

58
59
59
59
61

weew. 61
v 62
.. 63

66
69
71
74
75

Measurement and Performance........ccccoveeveeveeeeenieeeeaeeeneen 7

Experimental Testbed ..
Microbenchmarks...

6.2.1.
6.2.2.

6.2.3.

6.2.4.

6.3.1.
6.3.2.
6.3.3.
6.3.4.
6.3.5.

Conventlonal Appllcalons
Red-time Applicaions....

6.2.2.1. Optimal Performancem Underload

6.2.2.2. Proportional Sharing in Overload...
Conventional and Red-time Applications...

6.2.3.1. Red-time Requests Using Lessthan Proportronal Share

6.2.3.2. Latency Tolerance..

6.2.3.3. Proportional Sharrng wrth Latency Tolerancern Overload
Summary of Microbenchmark RESUILS........eiiueeiiiiin e
Commercial MultimediaVideo AppliCRIONS..........cuvieiuriiiiieeiieecse e
Application Description and Quality MEtriC........cuvveiueeiveeiimiiiieen,
e A
.. 95

Baseli ne Performance...

Scheduler Experiments and Measurements
UNIX SVR4 Time-sharing Performance
UNIX SVR4 Red-time Performance.............evueeiueesimeeieiiieees e

X

e 17
oo 18
e 19
w80
w80
v 83

.. 86

.. 86

.88

89
91
91
92

97
99

6.4.

CHAPTER 7. CONCIUSION «.te et

6.3.6. Managing Timein UNIX SVR4 Time-sharing...........eueeuevemeeeemen.
6.3.7. SMART UNIX SVR4 Performance...........eeeevueevveeevies e

Multimedia, Interadive, and Batch Applicaions
6.4.1. Applicaion Charaderistics and Quality Metrics
6.4.2. Scheduler Charaderistics...............

102
104
105
107

6.4.3. Comparison of Default Scheduler Behaviorccuviimiiimieeennee.
6.4.4. Adjusting the Allocation of RESOUICES........cccoomeviiiimeeineeee e
B.4.5. SUMMEIY ..oeeeiireeeieeiiteetee ettt ettt ere s mrn e

% T 1 (0 1 (YA (o)

Bibliography

Xi

110
117
120

List of Tables

Table2-2. Individual experiment results for UNIX SVR4 scheduling classes. 23

Table2-1. Application basaline values...........coovviiiiviiiiiiiiee e 23
Table4-1. Categories of appliCatioNnsS............cooveiiiiiiiiiiiiiie e 49
Table6-1. Baseline goplication performance.............ccceeevvvvveveeiiiiiccccee e 94
Table6-2. Standalone execution times of applications.............cceeevviiiiiiiiiens 108
Table6-3. Standalone goplication quality metric performance..................... 109

Xii

List of Figures

Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 3-2.

Figure 4-1.
Figure 6-1.

Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.

Figure 6-8.

Figure 6-9.

Figure 6-10.

Figure 6-11.

Figure 6-12.

Figure 6-13.

Sample appliCalioN SCrEENcccvvveeeeeieiiieeee e e e e e e e e e eeeeaaeees 19
AppPlication VAlUE CONTOUNS........uuuueiiiieee e e 24
Actua vs. estimated frame exeaution times for JPEG network news
1Y/ L= o TR UURPPPPPPPRPPPPR 44
Actua vs. estimated frame exeaution times for JPEG entertainment
1Y/ L= o TR UURPPPPPPPRPPPPR 45
Exampleillustrating the behavior of the SMART agorithm.......... 56
Execution times for conventional applications when propartional
sharingwith SMART shares 3:2:1.......coooviiiiiiiiiiiee e 79
Execution times for real-time gopli cations when using SMART in
System uNAEToadoovviiiiiii e s 81
Execution times for real-time gopli cations when using SMART ona
nealy 100% loaded SyStemooovviiiiiiiiiiii e 83

Execution times for real-time gopli cations when propartional sharing
with SMART shares 3:2:1 in system overload and uncbrload........ 84
Deadlines met by red-time gopli cations when propartional sharing
with SMART shares 3:2:1 in system overload and uncbrload........ 85
Execution times for real-time and conventional applications when

propationa sharingwith equal SMART shares..........cccooeeevvvvven. 87
Execution times for real-time and conventional applications when
propationa sharingwith SMART shares3:1.......ccoovvvviiiieeeinnnn, 88

Execution times for real-time and conventional applications

when propartional sharing with equal SMART shares in system
OVENOBO ... 89
Deadlines met by red-time gopli cations when propartional sharing
with conventional applicationswith equal SMART sharesin system

OVENOBA ... 90
CPU dll ocations obtained by video payersV1,V2,andV3 on
different schedulers during three different time intervals............... 97

Percentage of frames displayed by video playersV1,V2,andV3
when running on dfferent schedulers during three different time

INEEIVAIS. ..o e 98
Average frame delay for video payersV1, V2, and V3 when runnng
on dfferent schedulers during three different timeintervals.......... 99

Standard deviationin the frame delay for video payersV1, V2, and
V3 when runnng on dfferent schedulers during three different time
INEEIVAIS. ..ot 100

Xiii

Figure 6-14.

Figure 6-15.

Figure 6-16.
Figure 6-17.
Figure 6-18.
Figure 6-19.
Figure 6-20.
Figure 6-21.
Figure 6-22.
Figure 6-23.
Figure 6-24.
Figure 6-25.
Figure 6-26.

Figure 6-27.

Average time delta between frames for video payersV1,V2,andV3
when running on dfferent schedulers during three different time
INEEIVAIS. ... 101

Standard deviation in the time delta between frames for video payers
V1,V2,and V3 when runnng on dfferent schedulers during three

different time iNterValS. ... 102
CPU dll ocations obtained by applications when run with default
behavior on dfferent SchedUlers........oovevveeviiii e 111

News application performanceon dfferent schedulers as measured by
percentage of audio and video samples delivered ontime............ 112

Entertain appli cation performanceon dfferent schedulers as measured
by percentage of video frames delivered ontime........................ 113

Typing application performance on dfferent schedulers as measured

Dy charader 1atenCycoooeeiiiiiiiiiee e 114
Distributions of frame display times for the News application on
different SChedulers..........ooeuviiiiiii s 115
Distributions of frame display times for the Entertain application on
different SChedulers..........ooeuviiiiiii s 115
Distributions of character latency for the Typing application on
different SChedulers..........ooeuviiiiiii s 116
Cumulative exeaution time for the Dhrystone application on dfferent
SCNEAUIEIS. ... e 117
CPU dl ocations for different appli cations under a dhanging load when
using SMART end UBer COMIOIS.uuiiiiiieeeeiieiieeeeieiiii s 119
News application performanceunder achangingload when using
SMART end User CONIOIS......cuvveiiiiiiieeie e 119
Entertain appli cation performance under a changingload when using
SMART end User CONMIOIS.......ccvviiiiiiiiiiiie e 120
Typing application performance under a changing load when using
SMART end User CONMIOIS......ccovviiiiiiiiiiiieeeee e 120

Xiv

1 | ntroduction

The workload oncomputersis rapidly changing. In the past, computers were used in auto-
mating tasks aroundthe work place, such as word and accourts processngin offices, and
design automation in engineering environments. The human-computer interface has been
primarily textual, with some limited amourt of graphicd inpu and dsplay. With the phe-
nomenal improvement in hardware techndogy in recent years, even highly affordable per-
sonal computers are @pable of suppating much richer interfaces. Images, video, audio,
and interactive graphics have become mmmon dace. A growing number of multimedia
applicaions are available, ranging from video games and movie players, to sophisticated
distributed simulation and Mrtual reality environments. In anticipation d awider adogtion
of multimediain applications in the future, there has been much research and development
adivity in computer architecture for multimedia gplications. Not only is there a prolifer-
ation d procesorsthat are built for accelerating the execution d multimedia gopli caions,
even general-purpose microprocesors haveincorporated special instructions to speed their

execution[29].

While hardware techndogy haes advanced to suppat the spedal demands of multimedia
applicaions, software environments have naot. In particular, multimedia gplicaions sich
asthose that manipulate digital audio and video data often have gpli cation-specific timing
requirements asociated with their execution. For instance, to provide smooth playback of
avideo sequence & a standard 30frames/sec rate, successve video frames need to be dis-
played within 33ms of each ather. However, today’s general-purpose operating systems
are not effedive in suppating these red-time requirements. These multiprogrammed sys-
temswere designed with an emphasis onfairnessand throughput withou regard to meding

speafic timing requirements. With the growing number of multimedia applicationsin the

general-purpose computing environment that do in fact have red-time requirements that
need to be met to function corredly, we are now faced with a growing resource manage-
ment problem. Addressng this resource management problem isthe topic of this disserta-

tion.

A fundamental task of any operating system is the eff ective management of the system’s
resources. Resources that must be properly managed include procesor cycles, virtual and
physical memory, and I/O bandwidth. Althoughmismanagement of any of these resources
can lead to poa system function[70], we have focused on procesor schedulingin thisdis-
sertation. The question that we addressis: given today’ s multitasking multimedia environ-
ments in which users may run severa competing applications at once, how does the
processor scheduler decide which application shoud runandwhen it shoud runto deliver
the best performance? Procesor cycles are often highly oversubscribed, with many appli-
caions being able to consume much more processng paver than can be provided. In such
an environment, the degree of effectivenessof processor schedulingisadominant factor in

overall system performance.

Our interest in this problem began when we naoticed severe performance problems when
users executed a mix of interadive, batch, and multimedia appli cations on a popuar com-
mercial desktop computer system. We observed pathological behaviorsin which the video
would freeze and the system would even stop aacepting wser input. Throughcareful mea-
surement of actual application and operating system performance, we were ale to isolate
the performance problems and attribute them in large part due to poa processor scheduling
by the operating system. Some improvements were made to the scheduler and incorporated
into the next commercial release of the operating system to help al eviate the problems, bu
we realized that this gop-gap measure would na be enough.As aresult, we started work
onanovel approach to schedulingto addressthe problemsthat we were seeingin commod-
ity operating systems. This gave birth to SMART, a Scheduler for Multimedia And Real-
Time. The design, implementation, and evaluation & SMART are presented in this disser-
tation.

1.1 What is Multimedia?

Before gaing into further detail abou the problems we encourtered with existing systems

in suppating multimedia appli cations and how SMART addresses them, let us take a step

badk to consider the nature of multimedia. For many people, multimedia is smply being

ableto watch amovie or play an audio CD onthe computer at the touch of a button. How-

ever, multimediaisfar more than just being ableto dsplay astream of video or a stream of

audio. Multimediaisabou being able to docomputing with media. Much more interesting
multimedia gpli cations already exist today:

ShavMeTV [67]. Technical discussons often revolve around awhiteboard, which lim-
its guch interactions to usersin the same geographic proximity. ShowMeTV from Sun
Microsystems, Inc. employs audio, video, and interactive graphics to create avirtual
whiteboard. Each user is sated in front of a desktop computer equipped with audio
and video input devices and the ShowMeTV application. Users can then join a virtual
discusson, at which pant video and audio inpu from the user is available to aher
users participating in the discusson. In addition, a shared whiteboard appears on the
computer screen of each participant, onwhich participants can scribble and share ideas
in much the same way they would doaround a physical whiteboard. Such an applica-
tion facilitates coll aborative discussions in ways that were not previously passble,
providing participants separated by dstance with a rich communicaion medium

accesgble from the convenience of their desktops.

Joke Browser [2]. David Bacher developed the Joke Browser while at MIT as a
demonstration d the benefits of using closed-captions for content-based media
processng. It records late-night talk show mondogues, including audio, video, and
closed-captioned text. The Joke Browser analyzes the dosed-captioned text to
segment the mondogues into jokes. A client applicaion can be used to find jokeson a
certain topic that have been made in the last week, with seaching being dore using the
closed-captioned information. Jokes are recalled in their origina multimedia format,
with audio and video presentation, displaying all the quirks and mannerisms expected
of aDavid Letterman show. Similar content-based media processng techndogy can be
used to index sports highlights or search through retwork news programming.
3

NetCam [49]. The job of a security guard is often fill ed with the tedium and monaony
of monitoring a set of small monitors that display video input from video cameras
located at the entrances to a property being monitored. Much o the time, such video
footage consists of scenes of till li fe background. Only once in a while is there any
human activity that would warrant a doser look. It would be much better if there were
some way to eliminate the need to monitor till li fe backgroundand ory focus on the
scenes where there is sme human adivity worth monitoring. Sun Microsystems, Inc.
has created a product called NetCam which can be used exactly for this purpose. Net-
Cam isasmall network attached device that takes analog audio and video input, com-
presses it, and sends it over an existing local area network to be viewed on any
computer console. In conjunction with a dient application, NetCam can filter out
audio and video footage of till li fe backgroundso that only significant changesin the
footage are displayed to the end wser. The audio and video foatage can be viewed from
any networked computer console, subject to appropriate permissons. It can also be
stored for later listening and viewing, which would allow a user at a later time to
quickly browse through any interesting human activity. A video camera in the
employee breakroom being processed by a NetCam might allow other employees to
find ou who always leaves the coffee pot empty, or who barows the business £dion

of the shared newspaper withou returning it.

AV Photo Finder. With the explosion of the World Wide Web, a slew of companies
have created search engines that all ow users to enter atext phrase and find web pages
that contain information matching the respedive text. This indexing and seaching
capability for text is being extended to images by AV Photo Finder, developed by
Compag's AltaVista and Virage, Inc. Given a text phrase, AV Phato Finder finds
images from a database of images that pertain to the subject matter of the phrase. The
database uses textual annatations assigned to each image to perform this content-based
retrieval. In addition, image processng techndogy all ows users to click onany of the
images returned by AV Photo Finder to find aher similar images in the database. That
is, AV Photo Finder allows usersto find images based on visual appearance or content.

These examples dhare a set of common attributes which are characteristic of the kinds of
multimedia applications we see ®ming onthe horizon. First, all of these examples employ
severa media together, na just audio o video. ShowMeTV aone makes use of audio,
video, text, aswell as graphicsto facilitate distance collaboration. It is plain to see that the
“multi” in multimedia cnndes the use of many media, including audio and video as well
as more traditional media such astext, graphics, and images. In fact, the term multi media,
asfirst used in 1962 simply meant the use or involvement of several media[48]. Second,
these examples do more than just al ow several mediato co-exist independently. Instead,
they use several mediatogether in an integrated and coordinated fashion. For instance, the
Joke Browser uses closed-captioned text to segment the audio and video from mondogues,
and then attempts to display the various media streams in a coordinated and synchronized
manner. Third, these examples marry computing and media to enable the processng o
multimedia, na just the display of multimedia. For instance, NetCam analyzes the video
input for significant scene changes to determine whether or nat the video shoud be dis-
played. The computer is used to perform analysis on the media and take adions based on
that analysis. Instead of beingjust a display device the computer is an adive participant
that can be programmed to manipulate and control mediaitself.

1.2 Requirements of Multimedia on Processor Scheduling
Toredlizethefull patential of multimedia, we beli eve that the abilit y to use softwareto pro-

cessmediaisof key importance. All of the previous appli cationexamplesrely onthe ability
to program computers to manipulate and control media. This ftware-oriented perspective
of multimedia necesstates that the procesr play a central role. Afterall, if the processor
is not manipulating the media bits, how is an application gangto doany red media pro-

cessng?

Some may nate thoughthat there are anumber of commercial products which deliver some
amourt of audio or video functionality to a desktop computer without using the processor
to manipulate the media streams. For instance, a number of vendars manufadure a dedi-
caed hardware device to allow a user to watch video on hs computer by taking analog

video input, bypassngthe procesor, and dsplayingthe video drectly to the screen. While

such devices provide some video hardware accderation, they do nat provide true multime-
diafunctionality. Such devicestypicaly takejust asinglemediainpu, providing ony “uni-
media” functiondity. Just trying to suppat a NetCam-like seaurity application would
require more devices than there are slots avail able in many desktop computers. Typicdly
with such hardwired devices, the only integration d their media stream inpu with cther
media is limited to sharing the same computer screen. Perhaps more importantly, these
devicesdlow littleif any interesting processing d the mediabeforeit isdisplayed because
they completely bypassthe processor. Reducing you desktop computer to avideo display
deviceisafar cry from the innowative gplications possble by taking full advantage of a

general-purpose programmable computing environment.

If it were the case that users were satisfied with running ore multimedia application at a
time, the need for processor scheduling would be grealy reduced. However, users have
come to exped that their multiprogrammed computers doud be @pable of runnng
multi ple applications at once, often being run bymultiple users. We expect noless of this
multit asking functiondlity in runnng multimedia gopli cations. We want to be &leto have
NetCam runningin the backgroundwhile we ae participatingin a ShowMeTV discusson
abou some recent monologue from the Joke Browser. We want to be aleto have network
news programming running in the backgroundwhil e being able to compile aprogram and
surf the World Wide Web. When multiple applications need to be run onthe same
processor, scheduling dedsions nead to made regarding haw the procesor is shared and
when each applicaion gets to run. With the processor playing a central role in the
processing d multimedia, dang an effective job d processor scheduling is crucial for

delivering goodsystem performance.

To uncerstand the requirements imposed by multimedia gpplications on processor sched-
uling, we first describe the sali ent features of multimedia gpli cations and the cmputing
environment in which they execute. We contrast these dharacteristics with those of tradi-
tional appli cations that current operating systems are designed for. In particular, we focus
on the tempora charaderistics of multimedia gplications and their impact on scheduler

design.

To aid ou discusson, we define some terms here that are used in this dissertation. We use
the term activity to denote aschedulable entity. An application may consists of one or more
adivities. An adivity has a set of attributes associated with it that may change over time.
In particular, an activity iscalled areal-time activity if the activity has smetimingrequire-
ment asociated with it. An activity that does not have such a timing requirement is non
real-time and is called a conventiond activity. As it executes, an activity may change
between being real-time or conventional in nature. We will | oosely refer to an applicaion
asbeingreal-timeif it consists of one or morereal-time activities. We will refer to an appli-

cdion as being conventional if it consists of no activities with real-time requirements.

1.2.1.Timing Char acteristics

Whil e there ae many forms of media, they can be divided into two classes that have very
different timing charaderistics: continuows anddiscrete. Continuous mediaare time depen-
dent. Discrete media are time independent. Examples of continuows mediaare digital audio

and video. Examples of discrete media are text, still images, and gaphics.

Unlike discrete media, continuows media have inherent timing requirements. A continuots
mediastream consists of atime sequence of media samples, such asaudio samplesor video
frames. The distingushing characteristic of such data is that information is expressed na
only by theindividual samples of the stream, but by the temporal ai gnment of the samples
as well. For example, consider a captured video stream showing a ball bourcing upand
down. Therate of motion d the bourting kall i sencoded in the time spadng between video
frames. To accurately reproduce the motion d the bourting kall when the video stream is
displayed, the elapsed time between displayed frames sould be the same as the dapsed

time between the respective frames when they were captured.

Not only are there timing requirements within a continuows media stream, bu there may
also be timing requirements among multiple media streams as well. These timing
requirements are often due to the need to synchronizemultiple media streams. For instance,
in playing a movie, the audio stream and the video stream neel to be synchronized so that
the desired audio is heard when a given video frame is displayed. Moreover, multimedia

can require synchronization acrosscontinuows and dscrete media, asin the case of closed-

7

captioned television programming in which text, audio, and video are displayed together.
Note that when atime independent mediais synchronized with atime dependent media, the
result istime dependent aswell. Thistime dependent nature that arises from synchronizing

media streamsis akey charaderistic of multimedia gpli cations.

When an application processes and dsplays continuows media streams, it must typicdly
meet two kinds of timing requirements to preserve the temporal alignment of the media
streams being processed. One requirement is that any delay due to processing between the
inpu media stream and the processed ouput media stream shoud be & constant as poss-
ble. Variance in the delay introduces undesirable jitter in the output stream. The other
requirement isthat the goplication must processmedia samplesfast enough.If media sam-
plesarenot processed at the rate at which they arrive, then they will belate being displayed
and it will not be possible to maintain the exact temporal alignment of the media samples.
Note that these timing requirements are typicall y soft red-timein nature a oppased to hard
real-time. While the inabili ty to process a media sample within its time constraints is often
objectionable, beinglate only diminishesthe quality of the results. It does not lead to a cat-

astrophic failure, as would characterize a hard real-time requirement.

The timing requirements in processng continuows media are commonly cyclic in nature,
thoughthey may also be geriodic. For many continuous media streams, the desired per-
formanceisto have the respective media samples displayed at evenly spaced intervals. For
instance, the video framesin avideo stream aretypically displayed at 30frames/sec, or one
frame every 1/30th of a second. On the other hand, there ae dso times when the timing
requirements are aperiodic in nature. For instance, the timing requirements in processng
thevideo framesin avideo stream may nat be evenly spaced becausethere aeframesmiss
ing from the video stream. Alternatively, aperiodic timing requirements can arise when an
applicaionis attempting to synchronize the display of a media stream with some form of

user interaction, which is commonly aperiodic.

1.2.2.System Load Characteristics
When exeauting multimedia gopli cations, the resultingload onthe system is often highand

very dynamic. Multimedia gplications present practically an insatiable demand for

8

resources. Even with the rapid advancesin hardware techndogy, today’ sworkstation-class
computersarejust beginningto be able to use software techniquesto dsplay full resolution
(640x480 jxels) video at full frame rate (30 frames per second). Emerging HDTV video
standards will require much more computational power. Doinginteresting processngwith
video will require even more computational power. The multimedia goplications that we
see on the horizon will only further consume arealy insufficient processor cycles. As
applicaions such as real-time video are highly resource intensive and can consume the
resources of an entire machine, resources are wmmonly overloaded, with resource demand

exceeding its avail ability.

Much o the work that has been done to suppat real-time requirements has been in the
context of embedded real-time systems in which the application timing requirements and
the execution environment are static and strictly periodicin nature. In contrast, the general-
purpose mmputing environment in which multimedia applications execute is highly
dynamic in nature. Users may start or terminate gopli cations at any time, changing the load

onthe system.

The processing requirements of multimedia gplications themselves are often highly
dynamic a well. Whil e the media samples in continuous media streams typically occur in
time in aperiodic manner, the processing requirements for the media samples are often far
from being periodic. For instance, the processngtimeto uncompressor compress JPEG or
MPEG encoded video can vary substantialy for different video frames. Alternatively, the
processing requirements of a multimedia gplication may vary depending onhow it is
being wsed. For example, in the ase of a movie player application, the processng time
requirements of the applicationwhen it isfast forwarding throughamovie will be quite dif-

ferent from when it isdoing namal playbadk.

1.2.3.Adaptive Characteristics

As multimedia appli cations are highly resource intensive, even a single full-motion full -
resolution video application can often consume the resources of an entire machine. Recog-
nizing that the system may lack sufficient resources to meet the timing requirements of all

multimedia gplications, these gplications are often able to adapt by dffering dfferent

9

qualities of service depending onresource aailability. They can tradeoff the quality of
their results versus the consumption d processngtime. In the case of video for instance, if
avideo frame canna be displayed within its timeliness requirements, the appli cation might
simply discard the video frame and proceed to the next one. If many o the frames canna
be displayed ontime, the gplication might chocse to discard every other frame so that the
remaining frames can be displayed ontime. Alternatively, avideo applicationmay be ale
to reduce the picture quality of each frame to reduce its processng requirements so that

each frame can be displayed ontime.

1.2.4.Mixed Mode Characteristics

While there is a need to suppat real-time attivities such as those foundin multimedia
applicaions, it isimportant for the system to continue to be ale to run existing conven-
tional applications effectively. In particular, real-time adivities shoud na aways be
allowed to run in preference to all other activities because they may starve out important

conventional activities, such as those required to keep the system running.

Not only aretherereal-time and conventional appli cationsthat must be ale to runtogether
on the same system, but multimedia appli cations may mix continuows and dscrete media
processing within a given application. For instance, part of the goal of multimediaisto be
able to crede interesting multimedia documents that mix time independent media such as
text and gaphics with time dependent media such as audio and video. This results in the

execution d both real-time and conventional adivities.

Real-time and conventional activities must be able to co-exist and share resources. In no
way shoud the cgpabiliti es of amulti programmed general-purpose computer be reduced to
a single function system, be it a commodity television set or other embedded system, in

order to meet the demands of multimedia applications.

1.2.5.User Characteristics
Different users may have different preferences for how a mix of applications $oud
behave. For instance, when a system is overloaded duwe to the Joke Browser and Show-

MeTV runnng simultaneously, one user may want to reduce the quality of the Joke

10

Browser video to freeup resources that can be used to improve the display quality of the
ShowMeTV. Another user may desire the oppasite behavior. The desired behavior may
depend onwhether the user is actively engaged in a ShowMeTV collaborative sesson, a
if the user is bored and would prefer to be entertained for the moment. Alternatively, how
asystem partitionsresourcesto trade of f the speed of acompil ation versusthe display qual-
ity of avideo dependsonwhich o the two applicationsis moreimportant to auser. It may
depend onwhether the video is part of an important teleconferencing session a just atele-
vision show being watched while waiting for an important computational application to
complete. Not only may applications be of varyingimportanceto auser, but different users
may be considered to be of differing importance for a shared computer system. For
instance, the owner of a given workstationwould typicaly have priority for the computing
resources of that workstation ower other users. Alternatively, a mmputing service provider
might give higher priority for computing resources to customers that paid a higher service
fee. It is desirable for a system to be flexible enoughand have a wide enoughrange of
behavior to all ow different usersto oltain dfferent appli cation mix behavior based ontheir

preferences.

1.2.6.Summary

Historically, real-time computing systems have focused on meeting the requirements of
adivitieswith time anstraints, while general-purpose mmputing systems have focused on
meetingthe requirements of conventional activitiesin the context of ahighly dynamic com-
puting environment. The advent of multimedia has brought these ativities together in a
new way, alongwith dverse requirements that arise from mixing two very different kinds
of activities. Unlike traditional real-time or general-purpose computing systems, systems
that suppat multimedia must suppat the mix of red-time and conventional activitiesin a
manner that allows red-time activities to meet their timing requirements withou causing
the starvation d important conventional activities. Moreover, such systems will be
expected to provide this suppat in the context of auser-centric, highly dynamic, frequently

overloaded, genera-purpose computing environment.

11

1.3 Current Practiceand Research

Intoday’ s general-purpose computing environment, thereislittle operating system suppat
for the requirements of multimedia gopli cations. Multimedia appli cations that are written
today havelittle choice but to rely ontraditional timesharing operating systemswhich dam-
inate the general-purpose computing infrastructure. As a result, these appli cations must
provide their own internal framework for deding with timing requirements. To run effec-
tively, they often rely on being able to monapoli ze the system, or require that the system
being wsed have excessresources. Inthisway, poa schedulingislesslikely toresultin fre-
guently missed deadlines. However, these workarounds fly in the face of user expedations
to beableto use multimediaeffedively inafully functional multitaskingenvironment. Fur-
thermore, the fad that many multimedia goplications are highly dynamic and hghly
resource intensive meansthat relying onexcessresources can require much more expensive
hardware than would atherwise be necessary with more dfective resource management.
With commercial computer vendars primarily concerned with the price-performance of

their systems, there needs to be a better way.

Anticipating that procesor scheduling based ontraditional timesharing would na be suit-
ablefor the suppat of multimedia gplications, commercial computer vendars have incor-
porated into their operating systems feaures designed to suppat applications with real-
time requirements. In particular, UNIX System V Release 4 (SVR4) [68] provides areal-
time static priority scheduler, in addition to a standard UNIX timesharing scheduler. By
scheduling real-time adivities at a higher priority than any ather classof activities, UNIX
SVR4 allows real-time adivities to oldain processor resources when needed in arder to
meet their timelinessrequirements. This lution claims to provide robust system suppat
for multimedia applications by allowing applications guch as those that manipulate audio
and video to serviced by the real-time scheduler. Not only is UNIX SVR4 the most
common hesis of UNIX operating systems, bu a similar priority-based scheduling frame-
work isused in many aher operating systems, includingWindows NT [11]. Throughcare-
ful measurements of appli cation performance, we have quantitatively demonstrated that the
UNIX SV R4 scheduler manages s/stem resources poarly, resultingin urecceptable system

performance for multimedia gplicaions. Not only are the gplication latencies much

12

worse than desired, but pathologies occur with the scheduler such that the system no longer
aacepts user input [50].

Because of the importance of effective procesor scheduling for multimedia, a number of
different scheduling approadhes have been proposed to attempt to address this resource
management problem. One common approach isresourcereservations. The basic ideawith
reservations is that each real-time activity is allowed to reserve afixed percentage of the
processor for meeting its timing requirements. For each real-time adivity that has been
assgned areservationfor processor cycles, the scheduler then uses some form of real-time
scheduling to meet the timing requirements of the adivities. Conventional adivities are
typically al owed to share any urreserved processor cyclesin atime-sharingfashion. A pri-
mary limitation o thisapproach isthat assgningthe reservationsto activitiesin any mean-
ingful way remains an open problem that is currently at best atrial-and-error procedure. In
addition, kecause mnventional activities are given leftover procesor cycles, their starva-

tionisareal posshility.

Another common approach is fair queuing. The basic idea with fair queuing is that each
adivity is assgned some number of shares. The scheduler then all ocaes procesor cycles
amongthe activitiesin propationto their shares. Asthe system load and the number of run-
ning adivities change over time, there is no reed to adjust the assgnment of shares to
ensure that each activity is given its propartional allocation d procesor cycles, sinceit is
theratio o the shares that matters. Whil e fair queuing provides a flexible resource dloca-
tion abstraction, it does not at the same time schedule real-time activities effectively in

meeting their timing requirements.

Because of the difficulty of scheduling acrossboth real-time and conventional activities,
many researchers have turned to hierarchical scheduling. This is a divide-and-conquer
approach in which each classof adivity can be assigned its own scheduling pdicy. There
can be areal-time scheduling pdicy tail ored to the needs of real-time adivities and a con-
ventional scheduling pdicy tail ored to the needs of conventional activiti es. However, there
still needs to be some way of merging these palicy dedsions together and the manner in

which thisisdoneis amajor factor in the overall effediveness of the scheduler. Typicdly,

13

the palicies are merged together using priorities or propational sharing. The problem is
that using prioritiesresultsin the problems encountered with UNIX SVR4,whileusing pro-

portional sharing results in the problems encourntered with fair queuing.

1.4 The SMART Approach
To addressthese problems, this dissertation proposes SMART (Scheduler for Multimedia

And Red-Time applicaions), a procesr scheduler that fully supparts the requirements
of multimedia applicaions. SMART consists of asimple applicationinterface and a sched-
uling algorithm that tries to deli ver the best overall value to the user. For appli cations with
real-time requirements, SMART explicitly accounts for appli cation-specific timing infor-
mation in making scheduling decisions and employs a deadline-based scheduling algo-
rithm. SMART isable to make efficient use of resources in meeting real-time requirements
even under dynamicdly changing system loads, including when the system is overloaded.
It can provide fealback to applications regarding the availability of resources to allow
applications to adapt based onthe system load. In addition, the suppat for red-time gpli-
cdionsisintegrated with the suppat for conventional applications. This all ows the user to
prioritize the sharing d resources acrossreal-time and conventional applications, or pro-
portionally share resources across both kinds of applications, irrespective of their timing
requirements. As the system load changes, SMART adjusts the dlocaion d resources

dynamicaly and seamlessly in accordancewith user preferences.

SMART adieves this behavior by reducing this complex resource management problem
to two decisions, one based onimportance to determine the overall resource dlocation for
each activity, and the other based onurgency to determine when each adivity is given its
alocaion. SMART provides a @mmon importance dtribute for both real-time and
conventional activities based on piorities and weighted fair queueing (WFQ) [12].
SMART then uses an urgency mecdhanism based on earliest-deadline scheduling [45] to
optimize the order in which activities are serviced to all ow real-time activities to make the
most efficient use of their resource dl ocaionsto med their time @nstraints. In addition, a

bias on conventional batch adivities that accourts for their ability to tolerate more varied

14

service latencies is used to gve interactive and real-time activities better performance

during periods of transient overload.

We haveimplemented SMART in the Solaris operating system, aUNIX SVR4 commercial
operating system developed by Sun Microsystems. To evaluate this g/stem, we have mea-
sured its performance in a full -function system environment onred applications. We have
also quantitatively compared SMART’ s performance against other schedulers commonly
used in bah research and pradice. We believe that measuring real applicationsin ared
system is the best way to understand and evaluate scheduling performance, espedally in
view of the complex requirements of multimedia gplicaions. While most multimedia
applicaion studies focus exclusively onaudio and video applications, ou studies include
experimental results for red-time audio and video, interadive, and betch applications. We
believeitisimportant to understand the interactions of different classes of appli cationsand
provide good performancefor all classes of appli cations. Our results show that SMART (1)
delivers optimal performance for rea-time activities when the system is underloaded, (2)
can deliver amost afador of two better performance than schedulers used in practice and
research in meeting red-time requirements when the system is overloaded, (3) delivers
good interactive resporsiveness and katch computational performance while effectively
meeting real-time requirements, (4) provides flexible propartional and prioritized resource
sharing acrossboth real-time and conventional activities, (5) and provides predictable con

trolsthat are well correlated with experimentally measured application behavior.

1.5. Dissertation Overview

This dissertation is organized as follows. Chapter 2 describes the quantitative measure-
ments that demonstrate the limitations of commodity operating systemsin suppating mul-
timedia gplications. Chapter 3 begins our discusson d SMART, starting with the
SMART interface. Chapter 4 presents the SMART scheduling agorithm. Chapter 5
describes isaues in the implementation d SMART in a commercial operating system.
Chapter 6 presents experimental results that quantify the performance benefits of SMART
as compared with aher approaches. Finally, we present some conclusions and dredions

for future work.

15

Limitations of Commodity Operating
Systems

Commodity multi programmed operating systems, typified bythe UNIX operating system,
evolved from the much dfferent environment of large-scale, multi-user, time-sharing sys-
tems. These time-sharing systems attempt to be fair to all appli cations while maximizing
total system throughpu. Withou explicit information from the goplications, the best that
can bedoreisto use heuristicsthat intuit some properties of applicationsfrom their behav-
ior and adjust the allocation d resources in a way that provides the desired results. For
example, some schedulers attempt to approximate a shortest-processng-time-first algo-
rithm by olserving the accumulated run-time of processes and gving fewer processng
cyclesto those tasks which run for longer periods of time [39]. Such heuristics may result
in lessthan desirable behavior when users want to run long-runnng multimedia appli ca-
tions that are both compute-intensive and have tight timing requirements that need to be
met.

In an attempt to suppat applications with real-time requirements in the context of a gen-
eral-purpose aomputing environment, AT&T's UNIX System V Release 4 (SVR4) was
designed to include a real-time static priority scheduler, in addition to a standard UNIX
time-sharing scheduler [68]. A user can indicate to the operating system that an applicaion
has timing requirementsthat need to be met by classifyingthe gplicationasarea-timejob
and assigning it a priority value. UNIX SVR4 ensures that all real-time adivities are
assgned strictly higher priorities than that of any other classof activities. By running all
adivities in priority order, UNIX SVR4 allows rea-time activities to oltain procesor
cycles when needed to meet their timing requirements. This lution claims to provide

robust system suppat for multimedia appli caions by allowing applications sich as those

16

that manipulate audio and video to be serviced by the red-time scheduler. Since UNIX
SVR4 is a common hesis of commercia operating systems, it isimportant to investigate
these assertions. Therefore, we have used a UNIX SVR4 based system to examine ectual

performance of real multimedia appli cations runnng in a workstation environment.

Throughcareful measurements of appli cation and system software performance, we quan-
titatively demonstrate that the UNIX SV R4 scheduler manages g/stem resources poarly for
both so-called real-time and conventional activities, resulting in unacceptable system per-
formance for multimedia gplications. Not only are the gpli cation latencies much worse
than desired, bu pathologies occur with the scheduler such that the system no longer
aacepts user input. To aleviate some of these problems, a number of modifications were
made to the UNIX SV R4 time-sharing scheduler. While the modified time-sharing sched-
uler is not very effective, these modifications do result in a noticeable performance
improvement for multimedia gplications. The time-sharing scheduler in Sun's Solaris
operating system, version 2.3and later, is based onthe modifications described in this

work.

This chapter describes experiments and measurements we performed to identify the limita-
tions of commodity operating systems in suppating multimedia applications. It is orga-
nized as follows. Section 2.1 povides an owerview of the experiments. Section 2.2
describes the experimental setup and applications that we used for our measurements. Sec-
tion 2.3 pesents our measurements. Section 2.4d scusestheresults. Wethen present some
summary remarks regarding the limitations of commodity operating systemsin suppating

multimedia gpli cations.

2.1 Overview of Experiments

To examine the abilit y of the procesor scheduling pdicies of UNIX SVR4 to suppat mul-
timedia applications, we identified three dasses of computational adivities that character-
ize the main types of programs executed onworkstations: interactive, continuows media,
and ketch. Interactive activities are dharaderistic of applications (e.g., text editors or pro-
grams with graphical user interfaces) in which computations must be completed within a

short, uniform amourt of time in order not to disrupt the exchange of inpu and ouput

17

between the user and application. Continuous media activities are dharacteristic of applica-
tions that manipulate sampled digital media (e.g., television a teleconferencing) within
application-specific timing requirements. Smple @ntinuows media activities are often
cyclic computationsthat processandtransport media samplesat adefined rate. Batch activ-
ities are characteristic of applicaions (e.g., long compil ations or scientific programs) in
which the required processngtimeis aufficiently longto allow usersto dvert their atten-
tionto ather taskswhile waitingfor the computationto complete. By selecting appli caions
from each of these dasses, arepresentative workload can be @nstructed that characterizes
typical multimedia workstation usage. To simplify the experiments and the task of inter-
preting the resulting data, only one program from each classis used in the foll owing exper-

iments.

To ohtain valid results, the experimentation was dore with a standard, productionworksta-
tion and ogperating system. However, measurements of adual system behavior are quite
complex as compared to simulation-based experimentation. As a result, as we discussin
Section 2.2,a number of measures were taken to permit repeatability of experimental
results and all ow the identification and isolation d processor scheduli ng eff ects. Since the
purpcse of the experimentsisto explore the dfedivenessof various procesor scheduling
padlicies, an attempt was made to minimize the effects of other resource management deci-
sions. Results were mllected from the execution d a series of trial runs of the representa-
tive programs on the testbed hardware. The parameters of the trials were chosen so as to
permit the exploration o awide range of diff erent condti ons with the minimum number of

experiments.

2.2 Experimental Design

To characterize typical workstation wsage, three gplications were chosen to represent
interactive, continuows media, and katch activities. A sample screen shot of these goplica-
tionsis srownin Figure 2-1. Eadh of these programs was implemented in the most obvious,

and straight-forward fashion. The gpli cations were:

18

typing (interadive clasg — This application emulates a user typing to a text editor by
receiving a series of charaders from aseria inpu line and wsing the X window server

[60] to dsplay them to the frame buffer.

video (continuows media dasg — Thisis areal-time video player application (e.g. as
used for television, teleconferencing) that attempts to show frames of video at a con-
stant rate. Video captures data from a digitizer board, dthersto 8-bit pseudo-color, and
reliesonthe X window server to render the pixelsto the frame buffer. Video frames are

640x480 xels,

compute (batch clasg — This applicationisintended to represent programs guch asthe
UNIX make utility. make execution is characterized by repeated spawning and waiting
for various programs such as compiler passes, asemblers, and linkers. To reduce vari-
ability induced by the system’s virtual memory, file system, and dsk 1/O handing, a
simple shell script was used that repeatedly forks and waitsfor small processes to com-

plete (in this case, the UNIX expr command).

el slvtool 0.2 K = shelltool - /bin/csh
[| | TOTTH.0 cFbteablt.o crbbstore.0 CPbpolynnt,o cFbbres.n CFbline.o cfohrzvert.o
(W 7)) (009 Orees) (Dlemler) (@ulie) cfbbresd.o cfbinage.o cfbsen.o cfbalineco.o cfbBlinel.o cFbe1ineG.o cfbalinech.

0 cfbBsegCS.o cfbBsegH.o crbisegl.n cFbsegt.o cfbbithlt.n cfbbltC.o cfbblti.o
cfbbI 0.0 <FbILG. o "cPbplyiretc.o cfoplyiretd.o

saw [Color - 77 g Second: 5.3 o -f Tibcfhie
=] | LTS/ e nu Dbl so! 1 Hocrbrs. 0.1

(@eh) ‘E T -F TibcFhi
In -5 hbcﬂﬂs su 1 Tibcfbig.s
| Color preview | /hm/sh Jadidl /utl'\fs(rwtsfbsdwst sh —c -m 0644 11bCTBIB.50.1 o f'ud o dol,
- 136 -1 120000 -g Anj /.. [proto-sund-syrazerver/1ib
xl slvtool: Video ngw owner is root
Tibcfbig.so.1 installed as fexuurt/uuenww/xw‘t%/h\n/)(sun/mt/server/ddx/cﬂﬂB/
/ f Jodfedf e d proto-sund-svrd/server /1ib/1ibefb16. s

] s / prato-cund-surgserver/11b/11b s
{| 5 it ot oo cimé-ser4/seraor 111041 1bcfb16. 50
| dnstanl dn /server/ddx/cfms dune

naking all in . server/ddu/cfbaz.
ri -F 11bcfb32. 50,1~
(e ; 1d o -711befb32. 50,1~ -G -2 text M napfile -h 1bcfb32.so.1 cfhgc,a cfb
Tropso cFowindor.q cFhaatap.o cfbr{l1rct.o cPhealidc.o cfbsolia.0 cfhaolidc.o
cfbtiTeoddc.o cfbtilenddG.o cfbtile32C.o cfbrileaz.o cfbfillsp,o cfbsetsp.o
cfbscrinit.o cfballpriv.o cfbpntwin.o cibnskbits.o cfbpixnap.o cfbenap.o cfbze
rarct.o cfbzerarck.o cfbzerarcG.o cfbfillarcC.o cfbfillarcG.o cfbighltB.o cfbg
Tblt8.0 cfbtesblt.o cfbbstore.o cfbpolvant.o cfbbres.o cfbline.o <fbhravert.o
cfbbresd.o cfbinage.o cfbses.o cfbelineco.o cfbelineX.n cfbelineG.o cfbalinecp.
o0 cfbBseqCs.n cFhEsegH.D Crbeseql.o cFb8seqC.o cfbbithlt.n cFbbtC.o cFbbItN.o
cFbb1t0.0 cfhhTtG.o cfbplylrctf.o cfbplyfrctG.o stipsparci2.o stipsparcted2.o

rm -f 1ibcfh32. s

nv 1ibefh3z. so. 1 “Hocrbaz. s0.1

ru —F 1ibcfb32

In -s hbcfb32 su 1 Tibcfb3z.s

sh oufoids //umfscrwtsfhsdwst sh -c -m 0844 1ibcfba2.so.1 ../fuudfufs
7..Jproto-sund-svrd/server/1ib

" - Base Window =

nunber of display options available
controlled by Register 1, or external
pns in stand-alone node.

DISPLAY GENERATOR
General Description

The displayed characthers are

defined on a 5 by 12 matrix within a

7 by 13 window, allowing one blank pixel
either side of the character and

a blank pixel row above. There are a
number of display options available
controlled by Register 1, or external
pns in stand-alone node.

| Size: 640480, Depth: 8

DISPLAY GENERATOR

General Description

The displayed characthers are
defined on a 5 by 12 natrix within a
7 by 13 window, a,

Figure 2-1. Sample application screen

19

A number of software tools were added to the testbed to permit the loggng of significant
eventsinto files, and the post-processng d these filesfor the generation d tracingreports.
Modifications were made to the application programs and comporents of the system soft-
ware to generate the neaessary tracing events, but these modifications did na measurably

change the performance of the software.

While nat strictly an applicaion program, the X window server represents a fourth major
comporent that contributes to the overall performance of the system in these experiments.
It was necessary to instrument the window server to dotain the desired measurements of
user-level system performance In particular, thetyping appli cation d splaysthe typed char-
aders to the computer display via the X window server. To oltain measurements of the
time between when a character was typed and when it was displayed, it is important to
include measurements of the time taken bythe X window server to dsplay the character on
behalf of the goplication. Similarly, the video application dsplays video to the computer
display via the X window server. To oltain measurements of the time between when a
video frame arivesand when it isdisplayed, it isimportant to include measurements of the
time taken bythe X window server to dsplay the video frame on kehalf of the gplication.
Note that the window system’ s behavior per seisnat of interest here, orly its contribution

to the user-visible performance of the application programs in the example mix.

The experiments were performed in a representative workstation environment; it consisted
of a SparcStation10with a single 50MHz procesor and 64MB of primary memory. The
testbed system included a standard 8kt (pseudo-color) frame buffer controller (i.e., GX),
and a 1GB locd (SCSI) disk drive. In addition, the testbed workstation kegan with the
release of Sun's operating system that was in distribution prior to thiswork — Solaris 2.2
[18], which isbased onUNIX SVRA4.

UNIX SVR4 suppats multiple aoncurrent scheduling pdicies, cdled scheduling classes.
In particular, a real-time dass (RT) classand a time-sharing (TS) classare included in
UNIX SVR4. The scheduling classes are unified into a single priority scheduler by map-
ping each of them onto arange of global priorities, with time-sharing processes mapped to
the low priority range and red-time processes to the highest priority range. UNIX SVR4

20

also provides a set of commands for assgning processes to a dass and controlling each
class These were used to assgn processes for each experiment to the RT class the TS
class or to a new scheduling classwe developed as described later. In addition, for some
experiments, controls ecific to the scheduling classwere used to modify their default

behaviors.

To suppat the video continuows media goplication, an SBus /O adaptor was constructed
and added to the system. The adaptor permitsthe decoding and dgiti zation d analog video
streams into a sequence of video frames. Thisvideo digitizing urt appeas as a memory-
mapped device in an application's address space and allows a user-level applicdion to
aquire video frames, whase pixels can be mlor-spaceconverted into RGB values, dithered

to 8-bit depth, and dsplayed viathe window system.

An effort was made to eliminate variationsin the test environment to make the experiments
repeatable. To this end, the testbed was disconneded from the network and restarted prior
to each experimental run. In additi on,to enable arealistic and repeatabl e sequence of typed
keystrokes for programs of the interactive class a keyboard/mouse simulator was con
structed and attached to the testbed workstation. This device is capable of recording a
sequence of keyboard and mouse inpus, and then replaying the sequence with the same

timing characteristics.

2.3. Measurements

To evauate a system’s performance, a means of measuring the system’s operation is
needed that encompasses al of the activities in al of the applications. However, the
measure of quality of an application’ s performanceisdifferent for each classof applicaion.
To deliver the desired performance on interactive activiti es, the system shoud minimize
the average and variance of time between user input and system resporse to alevel that is
faster than that which ahuman can readily detect. This meansthat for simple tasks such as
typing, cursor motion, a mouse seledion, system resporse time shoud belessthan 50150
milli seconds [62]. To deliver peak performance on simple display-oriented continuous
media activities, the system shoud minimize the diff erence between the average display

rate and the desired display rate, whil e also minimizing the variance of the display rate. In

21

particular, uncertainty is worse than latency; users would rather have a 10 frames per
second (fps) constant frame rate as oppased to a frame rate that varied ndiceably from 2
fpsto 30fpswith amean of 15fps[71]. To deliver good prformance on ketch activities,
the system shoud strive to minimizethe difference between the adual time of completion
and the minimum time required for completion as defined by the case when the whale
machine is dedicated to the given activity. In aher words, if a make takes 10 minutes to
complete on an unoaded system, the user would li ke the make to take 10x(1+d) minutes,
where disas snall aspaossble, to complete even when there ae other adivitiesrunnng on

the system.

Because therelative value of each applicationto auser is subjedive and application perfor-
mance is measured in many dfferent ways (i.e. interactive dharacter latency verses video
frame rate), nosingle figure-of-merit can be derived to compare test results. That is, any
cdculationresultingin asingle value would require an assgnment of weights and conver-
sion factors to each measurement to accourt for the relative values of the applications and
the different units of measurement. Since any such arbitrary assignment is suspect andis
likely to obscure significant information, the outcome of each test is presented as a value
contour. In avalue contour, the achieved performance on each measurement is charted rel -
ative to a normative baseline value. If asinge figure-of-merit is desired, it can be derived
by assigning weights appropriate to the relative value of each application to the cwontour
data.

Using value contours based onthe mean and standard deviation d charaderistic exeaution
times, we capture the esential quality metric for each application class The measured
charaderistic and baseline values are shown in Table 2-1 for each of the applications. To
obtain these baseline values, each application was runin isolation onan atherwise quies-
cent workstation. Note, therefore, that when multi ple gplications are run simultaneously,
it isnat generally possible for al of them to reach 100/ of the baseline value. The data
from the experiments described in this paper, oltained from running these gplicaions

simultaneously, isshown in Table 2-2.

22

Application Measurement Mean Std. Dev.
Typing Latency between charader arrival and render- 38,5 msec 15.7 msec
ing to frame buffer
Video Time between display of succesgve frames 112.0 msec 9.75 msec
Compute Time to exeaute one loopiteration 149.0 msec 6.79 msec
Table 2-1. Application baseline values
Applicaion/ Scheduling Class Typing Video Compute
X T \% C X (msec) | O (msec) | X(msec) | O (msed | X (msec) | O (msec)
TS TS TS TS 42900.0 | 23800.0| 2780.0| 9300.0 150.0 16.0
TS+20 | TS TS TS20 49.6 26.4 117.0 17.9| 39100 699.0
TS+20 | TS TS5 |TS20 41.8 17.9 529.0| 1430.0 189.0 279.0
TS+20 | TS TS10 | TS20 44.0 185 174.0 619.0 412.0 896.0
TS TS RT TS — — | 1100.0| 48100 2430 415.0
RT TS TS TS 26400.0 | 14400.0| 4230.0| 9350.0 150.0 229
RT- TS RT+ TS — — 142.0 260.0 — —
RT+ TS RT- TS 42000.0 | 32900.0 112.0 81| 80400| 2870.0
TSM |[TSM |TSM |TSM 46.0 19.1 177.0 48.3 496.0 114.0
Legend

X The X Window System server TS SVR4 TS (time-sharing clas9

T The typing appli cation TStn SVR4 TS with niceof +n

\Y, The video application RT SVRA RT (red-time dass)

C The compute application RT+ SVR4 RT with higher priority

X Mean RT- SVR4 RT with lower priority

a Standard Deviation TSM Modified TS scheduling class

— : Application did not complete measured operation

Table 2-2. Individual experiment results for UNIX SV R4 scheduling classes

Thedatain Table 2-2 showsthat the choice of scheduler has atremendous impact on appli -

caion performance. The quality metricsfor all of the applications differ by more than two

orders of magnitude acrossdifferent schedulers. There ae even a number of instancesin

which an application dd na even complete the measured operation.

Figure 2-2 presents a set of value contours derived from this data. In each contour, the first

two bers, labeled *T," and ‘T, represent the mean and standard deviation, respectively,

for typing character latency. These values are normali zed to the baseline values sich that a

full size bar represents amean or standard deviation d latency as snall asonan atherwise

23

idle system (i.e. atall er bar represents better performance). Similarly, the barslabeled *V,/’
and 'V, represent the normalized mean and standard deviation d the time between ds-
play of successve frames for video. Finally, the bars labeled ‘C," and *C,’, represent the
normalized mean and standard deviation d the time taken by oreiteration o compute. The

following section provides a description d the scenarios represented by each and an anal-
ysis of these results.

4 N

Ty To Vy Vg Cy Co Ty To Vy Vs C Co Ty T Vy Vg Cy Co
a)AllinSVRATS b.) SVR4 TS, Nice c.) SVRA TS, Nice
(X+20,C-20) (X+20,V-5,C-20)

Ty To Vy Vo Cy Co Ty T Vy Vo Cy Co Ty To Vy Vs C Co
d.) SVR4ATS, Nice e.) Video in RT f.) X-server in RT

(X+20,V-10,C-20)

Ty Tg Vy Vg Cy Co Ty To Vy Vo Cy Co Ty T Vy Vg Cy Co
g.) Video and X-server h.) Video and X-server i.)AllinTSM
K in RT, P(V)>P(X) in RT, P(X)>P(V) j

Figure 2-2. Application value contours

2.4. Interpretation of Results

It isexpected that, in awell -behaved system, concurrent applications roud all make some
progress in their computation. That is, the running d an application by a user indicates

24

some residual value for it. Therefore, no ore gplication shoud be ale to prevent others
from runningin absence of overt action by auser indicating thisisthe desired behavior. In
addition, there shoud be no cases in which the system fail s to respondto operator inpu;
otherwise, control over the system islost. Finally, users shoud be able to exercise awide
range of influenceover the system’ s behaviors using astable and predictable control mech-

anism.

The results of these experimentsindicate that the standard UNIX SVR4 scheduling system
often violates these objedives. The straightforward approach to adding multimedia gpli-
caions to an SVR4-based workstation results, at best, in alow degree of value being pro-
vided to the users, and serious pathoogical behavior in the worst case. The following
sedions describe the test results for the SVR4 time-sharing classalone, the SVR4 time-

sharingandred-time dassestogether, and anew implementation d the time-sharing class

2.4.1.SVR4 Time-sharing Class

Thefirst thing atypical user would dois simply run the chosen set of applications, which,
by default, associates all applicaions with the time-sharing (TS) scheduling class. Doing
this results in a pathologicd condtion where the window system no longer accepts input
events from the mouse or keyboard, causing the interactive gplicaion to freeze and the
continuaus media appli cation to stop dsplaying frames of video. In fad, this pathdogyis
so complete that attempts to stop the processes by typing commands in a shell (i.e. com-

mand interpreter) window prove futil e, because the shell itself is not permitted to run.

The value @ntour for this senario is shown in Figure 2-2a, and il lustrates that all of the
applicaions, with the exception d the batch job, contribute arelatively small amourt to the
total delivered value. Thisisdueto the fact that the batch applicationforks many small pro-
grams to perform work, and then waits for them to finish. Because the batch applicaion
sleeps to wait for each child processto complete, the TS scheduling classidentifiesit asan
I/O-intensive “interactive” joband providesit with repeated priority bocstsfor sleeping.As
aresult, the batch application quickly moves to the highest time-sharing griority value and

remains there for the remainder of the experimental run.

25

An added eff ect occurs when the window server develops abacklog of outstanding service
requests. As it works down this queue of outstanding commands, the TS scheduling class
identifies the window server as CPU-intensive and lowers its priority. At the same time,
because it deepsin the process of obtaining rew video frames, video is assgned a higher
priority, allowingit to runandthereby generate alditional traffic for thewindow server. As
aresult, the quality of the video being dsplayed is poa because the window system is nat
able to exeaute to process the frames fast enough Worse yet, typing exhibits an average
delay of morethan 42secondsfrom receiving acharacter to havingit displayed, as oppased
to the baseline value of 39 milliseconds. The interactive application suffers a degradation
of three orders of magnitude because the window server, which must execute to render the
charader’ s pixelsto the frame buffer, isnot scheduled to runfrequently enoughto work its
way throughitsgrowing badklog o commands. Moreover, dueto thedesign d the standard
SVR4 TS class it can dften take tens of seconds for the priority of a penalized processto
recover to the paint at which it can actually run. This augments the dfect of the improper
processor scheduling decisions and contributes to the poa overall performance of the sys-

tem.

In an attempt to ded with this problem, the system’s administrative controls were used to
change the TS priorities of the window system and the gopli cations. These user priorities
are used by the TS scheduler to modify the adual scheduling piorities. These controls cor-
respond rougHy to traditional UNIX nice values. In ore cae, the user priority of the
window system was elevated to the maximum possble level (+20), whil e the user priority
of compute was depressed to the minimum passble level (-20), as hown in Figure 2-2b.
This had the effect of improving the performance of video and typing, bu compute barely
ran. In an attempt to fix this, the user priority of video was degraded modestly (-5), result-
inginthe cntour in Figure 2-2c. This rows how very small changesin these controls can
lead to large and unpedictable dfeds. Finally, Figure 2-2d illustrates the result of video
receiving a medium amourt of degradation (—10). The achieved mean values of all appli-
cdions are relatively high, but the variance in frame rate for video is unaaceptably high.
Note dso the counterintuitive result that video performs better in this <enario than in

Figure 2-2c, even thoughthe scheduler controls indicated alower importance for video.

26

Althoughthe use of user priority adjustments could alleviate the pathoogicd condtion
inherent in the SVR4 TS scheduling class this approach is not effective in general (e.g.,
with multiple, independent applications). That is, it can take agreat deal of experimentation
to findaset of control valuesthat work well, andthe settings might only work for that exact
applicaion mix. In addition, this approach severely degrades the performance of video,
resultingin highly variable display rates.

2.4.2.SVR4 Time-sharing and Real-time Classes

AlthoughUNIX SVR4 aso provides -called “real-time” fadlities, the assgnment of dif-
ferent tasks to the real-time (RT) scheduling classyielded equally unsatisfactory results.
Since video best fitsthe notion d what areal-time gplicationis, the obvious first step for
using the RT class is to assgn video to it. However, when this is dore, the system again
ceases to accept input events from the mouse or keyboard and the video again degrades
severely. Thisis due to the fact that any realy task in the RT classtakes precedence over
any TS task. Since video is aimost always active, tasks in the TS classare hardly ever
allowed to execute— in fact, shell programsare not even permitted to run, so auser canna
even attempt to stop such a “real-time” application. Once again, the quality of the video
being dsplayed is poa because the window system is nat able to exeaute to processthe
frames @nt to it by the continuows media appli cation. Again, the system deli vers low over-

al value for any choice of value assgnments, as shown in Figure 2-2e.

Alternatively, the window system could be associated with the RT class with al of the
applicaionsremaininginthe TS class Althoughin such a cae, the window system related
adivities (e.g., mouse tracking) perform well, the basic TS scheduling system pathology
alowsthe batch job to monopdi ze the procesor. Asaresult, nore of the other appli caions

can achieve even asmall fraction d their possble value, asillustrated in Figure 2-2f.

Another attempt to provide a high degree of value to the user invalves placing bdh video
andthe window system in the RT class and having all applicationsremaininthe TS class
In this case, the system executes video to the mmplete exclusion d all other processng.
That is, neither typing nar compute are permitted to run at al, andit isnot possble to type

commands into the system’s dhell windows. In fact, basic kernel services such as the

27

process swapping, flushing drty pages to disk, and releasing freed kernel memory are
inhibited. The reason for this behavior is that video and the window server consume
esentialy al of the system’s processor cycles, and real-time processes take preadence
over al “system” andtime-sharing processes. Thisis becausethe RT scheduler uses astrict
priority pdicy, and noprocesss from other scheduling classes are permitted to run while

there are ready processs in the RT class.

Figure 2-2f and Figure 2-2g show the results that are derived from placing the window
system at a lower and at a higher RT priority than video, respedively. While neither case
delivers acceptable results, the first case (i.e., with the window server’s priority below
video) was particularly bad because video did na leave sufficient time for the window
server to processitsrequests. Note also, that in Figure 2-2h, video had lessvariance thanin
the baseline measurements. Thisisdueto the strict priority scheduling dscipline; processes

in the RT classrunin preference to all other processes, including system daemons.

Finally, we note that placing interadive applications in the RT classto improve their per-
formance would also be ineffective unlessthe window server were placed in the RT class
Even then, proper operationis not assured because basic system services can be prevented
from functioning dte to resource demands in the higher priority real-time class. For exam-
ple, when the X window server, typing, and video are runin the RT class with priorities
P(X)>P(typing)>P(video), typing unexpectedly performs more than three times worse than
its baseline becuse it relies on streams /O services [68] for charader inpu processng.
Because the streams processng is not dore in the RT class, it is deferred in favor of the

applicaionsin RT, which consume virtualy al of the CPU cycles.

2.4.3.Modified Time-sharing Class

A modified time-sharing (TS-M) scheduling classwas developed to correct the problems
demonstrated in these experimental runs. In particular, the modified version removes the
anomali es of identifying batch jobs asinteractive, and viceversa. In addition, it attemptsto
ensure that each processthat can runisgiven the oppatunity to make steady progressinits
computation, whileretainingabiasin favor of interadive processs. Finally, it reducesthe

feedbadk interval over which CPU behavior is monitored and penalties and rewards given.

28

The time-sharing scheduling class contained in Sun’s Solaris operating system, version 2.3
and later, is based onthis work.

Theresultsof the default use of thisclassfor al applicationsandthe window server process
are given by Figure 2-2i. As can be seen, this delivers sgnificantly better results for the
continuaus media and interactive appli caions than any combination d the standard SVR4
scheduling classes. It shoud also be noted that this sheduling pdicy achievesthislevel of
performance withou significantly starving the batch applicaion, which still receives
approximately 30% of the avail able CPU time.

Additional tests were performed by adjusting user priorities and by combining this new
scheduling classwith the SVYR4 RT class (as was dore with SVR4 TS clasg. However,
with the exception of the cases where there was aufficient load in the RT classto consume
al CPU cycles and starve the TS-M scheduling class this resulted in no pathologies and
showed a more predictable relationship between user priorities and application perfor-
mance than the standard SVR4 TS scheduling class

2.5 Summary

Throughtrial and error, it may be passble to find aparticular combination o priorities and
scheduling class assgnments to make the SVR4 scheduling pethologies go away. How-
ever, such a solution would be extremely fragile and would require discovering rew set-
tings for any change in the mix of applications. In fact, these problems have been induced
in many instances with dfferent appli catlions and condtions than thase described here. For
example, the amntinuows media gplication by itself can freeze the system when a user
simply uses a popup menu. The modified time-sharing scheduling class eliminates these
pathoogies and provides default resource management behavior that favors interactive

applicaions while not overly penalizing ahers.

Commodity operating systems, typified by UNIX SVR4, evolved from the much dfferent
environment of large-scale, multi-user, time-sharing systems. These systems attempt to be

fair to al applications while maximizing total system throughpu. As aresult, a user (or

29

system administrator) has only limited control over UNIX operating System resource man-

agement decisions.

Withou such control it is not posshble to provide the full range of behaviors that might be
desired of multimedia gplicaions. For example, providing uriform rates of audio and
video presentation, where variance in the delivery rate is minimized, may be more impor-
tant to some gpli cations than athers. Knowledge of the “dack” available in such compu-
tations can lead to more dfective resource utilization. In addition, when the system is
overloaded with continuous media goplications, away of identifying applications of lesser
or greaer importance to the users can all ow the system to automatically perform service
trade-off s rather than forcing it to degrade all applications equally at best, or randamly at
worst. Armed with such information, the system can manage its resourcesin such away as

to maximize the total value delivered to the end user.

Finally, nae that the existence of the strict-priority red-time scheduling classin standard
UNIX SVR4 in noway allows a user to effedively deal with these types of problems. In
addition, it opens the very real possbility of runaway applications that consume all CPU
resources and effedively prevent a user or system administrator from regaining control

withou reboding the system.

30

3 The SMART Interface and Usage Model

A fundamental task of an operating system isto manage the resources of a mmputer system
in a predictable and reli able way that satisfies the needs of users. However, different users
may have diff erent preferencesfor the behavior of amix of appli cations. For any gven mix
of applications, there are often awide range of passible behaviors. In this context, an oper-
ating system canna be expected to determine apriori asingle set of application kehaviors
that works best for all users. There may be many application behaviors that work well for

different users under different circumstances for different applicaions.

It isnat the job d the operating system to tell users what is the best way for their applica-
tions to behave. We believe that users know best how they want their applications to
behave. Instead, the operating system shoud provide mechanisms that allow users to
choose from awide range of selectable behaviorsfor amix of applications. If awiderange
of behaviors is posdble, the operating system can accommodate whatever applicaion

behaviors a user desires for amix of applications.

To provide awide range of selectable goplicaionmix behaviors, the interface between the
operating system and applicaions and wsersiscrucial. After al, the operating system onits
own hasnoway of knowing the behavior desired byappli cations and users. It also daes not
know the resource requirements of the goplicaions. Such information is important for
making well-informed scheduling deasions, such aswhen ared-time gplication reedsto
run to med its timing requirements. For users and appli cations, the interface determines
how easy or how hard it is to control the system behavior for a mix of applications. For
instance, in the asence of any higher-level programming abstractions for dealing with
timing requirements, a reaurring development cost is impased on each programmer who

creates areal-time application.

31

Toreducetheburden dof real-time programmingand provide eff ective performance for mul-
timedia applicaions, SMART provides a simple interface for applications and users that
allows access to its underlying resource management mechanisms. This interface (1)
enables the operating system to manage resources more dfedively by using knavledge of
applicaion-specific timing requirements, (2) provides dynamic feedbad to real-time
applicaionsto inform them if their time constraints canna be met so that they can adapt to
the current loading condtion, (3) gives end wsers smple predictable controls that can be

used to hiasthe allocaion d resources according to their preferences.

This chapter presents the design o the SMART interface and its usage model, with partic-
ular emphasis on the red-time gplicaion programming interface The interface provides
two kinds of suppat for multimedia gplicaions. Oneisto suppat the developers of mul-
timedia appli cations that are faced with writing appli cations that have dynamic and adap-
tive real-time requirements. The other is to suppat the end wers of multimedia
applicaions, each of whom may have different preferences for how a given mix of appli-
cdions $oud run. The SMART combination d application-level real-time suppat with
predictable controlsfor expressng wser preferences aff ords awide range of rich predictable

behaviors for mixes of multimedia appli cations and their users.

3.1 Application Developer Support

Multimedia gpplication devel opers are faced with the problem of writing appli cations with
real-time requirements. They know the time constraints that shoud be met in these
applicaions and knav how to allow these gplications to adapt and degrade gracefully
when na al time anstraints can be met. The problem is that current operating system
practice, as typified by UNIX, daces not provide an adequate anourt of functionality for
supporting these appli cations. For example, in dealingwith timein UNIX time-sharing, an
applicaion can obtain simple timing information such as elapsed wall clock time and
accumulated execution time during its computations. An application can also tell the
scheduler to delay the start of acomputation by*“sleguing’ for aduration d time. But it is
nat possble for an application to ask the scheduler to complete a omputation within

catain time @nstraints, na can it obtain feedback from the scheduler on whether or nat it

32

is posdble for a computation to complete within the desired time onstraints. The
applicaionendsupfinding ou only after thefad that its eff orts were wasted onresultsthat
could na be delivered ontime. The lack of system suppat exacerbates the difficulty of
writing applications with red-time requirements and results in poa applicaion

performance.

To addressthese limitations, SMART provides to the gplication developer three kinds of
programming constructs: atime constraint to allow an appli caion to expressto the sched-
uler the timing requirements of a given block of application code, a natification to alow
the scheduler to inform the gplication via an upcdl when its timing requirements canna
be met, and an avail ahility to indicate the availability of processng time. In particular,
applicaions can have blocks of code that have time cnstraints and docks of code that do
nat, thereby allowing application developers to fredy mix real-time and nonrea-time
computations. The SMART application programming constructs are described in further
detail i n Section 3.4.

By allowingapplicationsto inform the scheduler of their time constraints, the scheduler can
optimize how it sequences the resource requests of diff erent applications to meet as many
time ocnstraints as possble. It can delay those computations with less stringent timing
requirements to allow those with more stringent requirements to execute. It can use this
knowledge of the timing requirements of all appli cationsto estimate the load onthe system
and determine which time constraints can and canna be met. By providing ndificdions,
the scheduler frees applications from the burden of second giessng the system to deter-
mine if their time constraints can be met. By having the scheduler provide information on
the avail ability of resources to applications, an adaptive real-time application can deter-

mine how best to adjust its execution rate when its timing requirements cannot be met.

The model of interaction provided by SMART is one of propagating information between
applicationsandthe scheduler to facilitate their cooperationin managing resources. Neither
can do the job effectively on its own. Only the scheduler can take resporsibility for
arbitrating resources among competing applications, bu it needs applications to inform it
of their requirements to do that job effectively. Different applications have different

33

adaptation pdicies, but they need suppat from the scheduler to estimate the load and

determine when and what time constraints canna: be met.

Note that time constraints, notifications, and avail abili ties are intended to be used by appli-
cadionwriters to suppat their development of real-time applications; the end user of such
applicaions nead na know anything abou these constructs or anything abou the timing
requirements of the gopli cations.

3.2 End User Support

Diff erent users may have different preferencesfor how processngtime shoud be dl ocated
amonga set of applications. Not al applications are dways of equal importance to a user.
For example, a user may want to ensure that an important video telecnference be played
at the highest image and sound quality possble, at the sacrifice if need be of the quality of
atelevison pogram that the user was just watching to passthe time. However, current
practice, astypified by UNIX, provides little in the way of predictable controlsto hias the
allocaion d resources in accordance with user preferences. For instance, in UNIX time-
sharing, all that auser isgivenisa “nice” knob[1] whase settingispoarly correlated to user
observable behavior [50].

SMART provides two parameters to predictably control processor allocation: priority and
share. These parameters can be used to hias the dlocation d resourcesto provide the best

performance for thase applications which are more important to the user.

The user can specify that applications have different priorities. The application with the
higher priority is favored whenever there is contention for resources. The system will not
degrade the performance of a higher priority application to execute a lower priority
applicaion. For instance, suppose we have two red-time gplications, one with higher
priority than the other, and the lower priority appli cation having a computationwith amore
stringent time constraint. If the lower priority application reals to execute first in order to
meet itstime wnstraint, the system will allow it to doso aslongasits exeaution dces not
cause the higher priority application to missits time constraint. Among applications with

the same priority, the user can specify the share of each application. This will allow each

34

applicaion to receive an adlocdion d resources in propation to its respective share

whenever thereis contention for resources.

Our expectation isthat most userswill runthe gplicaionsin the default priority level with
equal shares. Thisisthe system default andrequires no wser parameters. The user may wish
to adjust the propartion d shares between the gplicationsoccasionally. A ssmple graphical

interface can be provided to make the adjustment as smple and intuitive as adjusting the
volume of atelevision a the balance of a stereo ouput. The user may want to use the pri-

ority to hand e specific circumstances. Suppcse we wish to ensure that an audio telephony
applicaion always can execute; this can be achieved by running the gplication with high
priority.

3.3 SMART Useof Information
Fundamental to the design & SMART is the separation d importance information as

expressed by wser preferences from the urgency information as expressed by the time con
straints of the gplications. Prematurely collapsing ugency and importance information
into asingle priority value, asisthe case with standard UNIX SV R4 real-time scheduling,
results in a significant lossof information and cenies the scheduler the necessary knowl-
edge to perform its job effectively. By providing bdah dmensions of information, the
scheduler can doa better job d sequencing the resource requests in meeting the time con-
straints, whil e ensuring that even if not all time cnstraints can be met, the more important

applicaions will at least meet their time constraints.

While SMART aacourts for bath application and wser information in managing resources,
it in noway imposes draconian demands on either application developers or end users for
informationthey canna or choase not the provide. The design rovides reasonable default
behavior as well as incrementally better results for incrementally more information. By
default, an end wser can just run an application as he would today and oldain fair behavior.
If he desires that more resources shoud be dl ocated to a given application, SMART pro-
vides smple controls that can be used to expressthat to the scheduler. Similarly, an appli-
caion developer need na use any of SMART’s real-time programming constructs unless

he desires such functionality. Alternatively, he might choose to use only time constraints,

35

inwhich case he need na know abou natificaions or availabilities. When the functionality
isnot needed, the information reed na be provided. However, urlike other systems, when
the real-time programming suppat is desired, asis often the case with multimedia appli ca-
tions, SMART has the ability to provideit.

3.4 SMART Real-time API

Having described the basic usage model for SMART and presented an owerview of the
SMART interface, we now provide amore detail ed description d the real-time gplicaion
programming constructs and their use. An example that shows how these constructs are
used in areal-time video applicationis described in Section 3.5.

3.4.1.Time Constraint
The time constraint is used to al ow an applicationto inform the scheduler of the real-time
charaderistics of a computation, as defined by a block of applicaion code. A time con

straint consists of two parameters.

» deadine: The deadline is the time by which the gopli cation requests that the block of
code be compl eted.

* cpuestimate: The questimate is an estimate of the anount of processng time
required for the block of code.

Because the qu-estimate is an estimate of the amount of processng time required to pro-
cessatime constraint, it may differ from the acual amourt of time required. The cpu-esti-
mate may be greder than or lessthan the actual processing time required. We define how
SMART behaves in each of these cases. SMART uses the cpu-estimates in conjunction
with the deadlines to determine if an adivity will be ale to med itstime wnstraint given
the current systemload. If the cpu-estimate of an adivity islarger than the actual processng
timerequired, SMART will end upbeing more mnservative in decidingwhether the activ-
ity can meet its deadline. If the cpu-estimate of an activity is snaller than the actual pro-
cessngtimerequired, SMART may na all ocate enough pocessng time for the activity to

completeitstime constraint.

36

Note that SMART leaves the dedsion upto the programmer regarding hav aggressive or
how conservative to be with the use of the cpu-estimate. This is a programmer-dependent
and application-dependent decision. It isnat the job d the operating system to dictate how
this decision is made. This is smething that a programmer shoud know best and is not
something that can be aitomated. As aresult, SMART provides the programmer with the
ability to provide any cpu-estimate and thereby choase from awide range of possible gopli-
caionmix behaviors. To provide a better understanding d how these cpu-estimates can be

determined, we discussone estimation methodin Sedion 3.5.

SMART treats the qou-estimate & only an estimate of processing time. An activity is not
necessxrily limited to oy using as much processng time & is indicated by its cpu-esti-
mate. If an activity needs more processingtimethanindicated byits cpu-estimate, the activ-
ity can oltain additional processng time in accordance with its priority and share. The
adivity will be alowed to runfor more than its cpu-estimate only if doingso daesnat con
flict with the resource requirements of any more important adivities, where importanceis
determined based on piorities and shares. For instance, if areal-time activity isthe highest
priority activity, that activity will be given any extra processngtimeit requires. However,
if area-time activity is alow priority activity and the system is overloaded, the activity
may not be given the extra processng time required to meet its deadline because doing so
would cause other higher priority activitiesto misstheir deadlines. The use of prioritiesand
sharesfor determiningif an activity can excedl its cpu-estimate is consistent with their use

in determining if an activity can meet its time constraint when the system is overloaded.

If the system is overloaded, there will typically be somelow importance real-time activities
that are not able to med their time @nstraints. A question arises as to what is dore with
such activities. One posshility is for the operating system to abort the execution d the
block of code assciated with the given time @nstraint. Thiswould require gplicationsto
be written in such away to deal with such abort events, which would make many real-time
programs more difficult to write. Another posshility is to treat a rea-time adivity as a
conventional activity once itstime constraint has been missed, but we have already panted
out that real-time and conventional activitiestypically have very diff erent requirementsthat
need to be met. SMART allows real-time adivities that are not able to med their time

37

constraintsto runfor some portion d their requested processngtime before their deadline.
The portion d the requested processng time that is given is assigned in aacordance with
an activity’s priority and share, such that the execution d the given activity does not
conflict with the requirements of any more important activities. This processng time may
be used by the application in whatever manner the applicaion deems appropriate for
dedingwith amissed time constraint, such as handinganatification a gracefully adapting
and degrading bysettingamore relaxed time anstraint for its computation. Note that when
the system is heavily overloaded, the less important activities may na receive any
processing time before their respective deadlines. Oncethe dealline of areal-time activity
has passed, the real-time adivity is all owed to execute in accordance with its priority and

share, much in the same way as an activity that has exceeled its cpu-estimate.

By default, if the deadlineisnot specified, thetime constraint is Smply ignored. By defauilt,
if the u-estimate is not specified, the system conservatively assumes that the gplicaion

requires whatever processng timeis avail able until the deadline.

3.4.2.Notification
Thenatificationis used to allow an applicationto request that the scheduler inform it when-

ever its deadline canna be met. A natification consists of two parameters:

* natify-time: The natify-time is the time after which the scheduler shoud inform the
respective applicationiif it isunlikely to complete its computation before its deadline.

» natify-hander: The natify-handler is a function that the application registers with the
scheduler. It isinvoked via an upcdl mechanism from the scheduler when the sched-

uler natifies the appli cation that its deadline cannot be met.

The natify-time is used bythe gplication to control when the natification upcall i s deliv-
ered. For instance, if the natify-timeis set equal to zero, then the goplicationwill be natified
immediately if early estimates by the scheduler indicate that its deadline will not be met.
On the other hand, if the natify-time is set equal to the deadline, then the application will
not be natified urtil after the deadline has passed if its deadline was nat met.

38

The mmbination d the natificalion ugcal with the natify-handler frees applications from
the burden o second guessing the system to determineif their time constraints can be met,
and all ows appli cations to choacse their own pdiciesfor deciding what to dowhen a dead-
line is missed. For example, uponndtification, the appli cation may choose to dscard the
current computation, perform only aportion d the computation, a perhaps change thetime
constraints. This feedback from the system enables adaptive red-time gplications to
degrade gracefully.

The processng d anatification byan applicationrequires smeamourt of processngtime.
A questionthat arisesiswhen shoud anatification ke processed and hav much processng
time shoud an applicaion be dlowed to use in processng a natification? One solution
would beto treat natifications as high priority events which are processed immediately. A
problem with this approach is that alow priority applicaion could take over the system by
doing al its required computing in a natification hander. The system could limit the
amount of processng that can occur in andatification hander and preempt the goplicaion
oncethat limit is reached. However, the choice of such alimit could arbitrarily limit the
functionality of some gplications which really needed the extra processng time for their
notification handlers. Moreover, high pmiority applications could still be alversely
impacted by ndification processng bylow priority applications if there ae many low pri-
ority appli cationsthat need to be natified. In SMART, anatificaionisinstead processed as
part of the normal alocation o processng time that is given to an applicaion. Asaresullt,
ahigh piority application will have its natification processed at a high priority and alow
priority application will have its natification processed at alow priority. In thisway, ndi-
fication processng bylower priority applications will not disrupt the execution d higher
priority applications.

By default, if the natify-time is not spedfied, the gplicationis nat natified if its deadline

canna be met. In addition, if no ndify-hander isregistered, the natify-timeisignared.

3.4.3.Avail ability
When it isnot possbleto meet thetime wnstraints of an application dueto the loading con-

dition d the system, the gplication may adapt to the loading condtion byreducing the

39

quality of itsresultsto reduceits resource mnsumption. When the load onthe system even-
tually reduces, the application would like to return to providing a higher quality of service.
To enable applications to oltain this kind d system load information, the scheduler pro-
vides availabilitiesto applications at their request. An availability is an estimate of the pro-
cesr time consumption d an application relative to its processor time allocation. It

consists of two parameters:

e consumption-rate: The consumptionrate is the percentage of the processor that is

being consumed by the applicaion.

« allocationrate: The dlocaion-rate is the percentage of the processor that the gplica-
tion can use as determined by the scheduler based on the priority and share of the
application.

If the dlocation-rate is larger than the cnsumption-rate, the gplicationis using lessthan
its al ocation d the processor. If the alocation-rate is lessthan the wnsumption-rate, the
applicaionisusingmorethanitsall ocation d the processor. For example, suppcsewe have
two appli cations with equal priority and equal share, ore of which oy needs 25% of the
processor while the other one needs 55% of the procesor. Then the respedive (consump-
tion-rate, allocation-rate) of each appli cationwould be (25, 50 and (55, 50, respectively.
By comparing its consumption-rate with its al ocation-rate, an appli cation can determine if
it can consume alarger portion d processng time and thereby deliver a higher quality of

service.

3.5. Programming Example

To illustrate how the SMART appli cation interface makes it easier to develop areal-time
appli caion, we describe the development of an application which pays multimediaaudio
and video. The applicaion described is the Integrated Media Streams (IMS) Player from
Sun Microsystems Laboratories. This application dsplays s/nchronized audio and video
streamsfrom locd storage. Each media stream flows under the direction o an independent
thread of control, which we refer to as a media player. The audio and video players com-

municate througha shared memory region and wse timestamps to synchronize the display

40

of the media streams. The gplication adapts to its g/stem environment by adjusting the
quality of playbadk based onthe system load.

We note that the timing and processing requirements of the media player are not strictly
periodic in nature. Most of the timestamps of the media streams occur in a cyclic fashion,
but some media samples are spaced further apart in time because intermediate samples
were lost when the media streams were first recorded; the media player was designed to be
ableto accurately playback mediastreams even if they have aperiodic timestamps. In addi-
tion, the video player processes PEG compressed video, which results in a significant

amourt of variationin frame processng times.

The gplication was developed and tuned for the UNIX SVR4 time-sharing scheduler in
the Solaris operating system. We describewhat it tookto developthe IMS Player for UNIX
SVRA4, then discusshow we modified it for SMART.

3.5.1.Video Player

The video player reads a timestamped JPEG video input stream from local storage,
uncompressesit, dithersit to 8-bit pseudo-color, and rendersit directly to the frame buffer.
When the video payer is not used in synchrony with an audio player, the player uses the
timestamps onthevideo inpu stream to determine when to dsplay each frame and whether
agiven frameis early or late. When used in conjunction with the audio payer, the video
player attempts to synchronize its output with that of the audio device by matching the
timestamps of the video frames with the timestamps of the audio samples being dayed. In
particular, since humans are more sensitive to intra-stream audio asynchronies (i.e. audio
delaysand drop-outs) than to asynchroniesinvalving video, the thread controlli ngthe audio
strean free-runs as the master time reference and the video “slave” thread uses the
information the audio player posts into the shared memory region to determine when to

display itsframes.

If thevideo player isready to display itsframe exrly, it delaysthe display of the frame until
the appropriatetime; but if itislate, it discardsits current frame onthe assumption that con-

tinued processingwill causefurther delayslater inthe stream. The gpli cation cefinesearly

41

and late & more than 20ms early or late with respect to the audio. For UNIX SVR4, the
video player must determine entirely onits own whether or not each video frame aan be
displayed ontime. This is done by measuring the amourt of wall clock time that elapses
duringthe processing d eac video frame. An exporential average[20] of the dapsed wall
clock time of previously displayed frames is then used as an estimate for how longit will
take to processthe aurrent frame. If the estimate indicates that the frame will complete too
ealy (morethan 20msealy), the video player sleeps an amount of time necessary to delay
processingto allow theframeto be completed at theright time. If the estimate indicates that

the frame will be completed too late (more than 20ms late), the frameis discarded.

The gplicaion adapted to run on SMART uses the same medhanism as the original to
delay the framesthat would atherwise be completed tooearly. We simply replace the gopli-
cdion's discard mechanism with a time cnstraint system call to inform SMART of the
time constraintsfor agiven block of appli cationcode, dongwith asignal hander to process
natifications of time constraints that canna be met. The time constraint informs SMART
of the deadline for the execution of the block of code that processs the video frame. The
deallineis st to thetimetheframeis considered late, which is 20 ms after theideal display
time. It also provides an estimate of the amourt of exeaution time for the code caculated
in a similar manner as the original program. In particular, an exporential average of the
executiontimes of previoudy displayed frames scaled by 1®%6 isused asthe estimate. Upon
setting the given time constraint, the goplication requests that SMART provide a natifica-
tionto the gplicationright away if early estimates predict that the time constraint cannat
be met. When andatificationis sent to the gpli cation, the gplicaionsignal handler smply
records the fact that the natification has been received. If the natificationisrecaved bythe
time the application begins the computation to processand dsplay the respedive video
frame, the frame is discarded; otherwise, the gplication smply allows the frame be dis-

played late.

Figures 3-1 and 32 indicate that simple exporential averaging based on previous frame
executiontimes can be used to provide reasonable estimates of frame executiontimes even
for JPEG compressed video in which frame times vary from one frame to ancther. The data

in Figure 3-1 wasfor anetwork news programming video sequencewhil ethe datain Figure

42

3-2 was for a television entertainment video sequence. The data in each figure was col-
lected over a300semndtimeinterval of the respective video sequence. Each figure shows
the actual exeaution time for each video frame and the estimate eror, which is the differ-
ence between the estimated and actual exeaution time for each frame. Note that the slight
pasitive biasin the estimate aror isdue to the 10% scalingin the estimate versus the actual

executiontime.

Asexpected, the executiontimefor processng JPEG video framesvaries considerably over
the course of the video sequence. Different framestake different amournts of timeto decom-
press depending onthe amourt of scene mmplexity in the respective frame. However, the
processing time required by successive video frames in the sequence is often similar
becuse typically nat that much content changes from one video frame to the next. Expo-
nential averaging is able to take alvantage of this characteristic to doa reasonable job o
predictingthe executiontime of agiven frame by usingthe executiontimes of immediately
preceding video frames. At the same time, since the average is dynamicadly adjusted and
gives most weight to recent frame exeautiontimes, it isableto provide reasonabl e estimates
even with substantial variation in frame execution times over the course of a video
sequence. Theresultsa soill ustrate the difficulty of usingamore static resourcereservation
scheme based ona single processing time estimate for all video frames. Using the upper
bound orthe processingtime a an estimate may yield alow utilization d resources; using

the average processing time may cause too many deadlines to be missed.

There ae @ses when the scene in a video sequence may change quite suddenly between
two succesgve frames. For instance an adionpacked entertainment programming
sequence would typically have a number of sudden scene changes. In these caes, the pro-
cessng time can vary considerably between two successve frames. As a result, the esti-
mate error from exporential averaging will be higher during such scene changes. In fact,
the estimate error shown in Figure 3-2 which isfrom entertainment programmingis higher
than the estimate aror shown in Figure 3-1 which isfrom network news programming. The
reason is that there ae many more sudden scene dhanges in the entertainment program-
ming.In contrast, the network news programming has more talking head video cli ps which

vary little from frame to frame.

43

While it is more difficult to provide an accurate estimate of video frame processing time
during sudden scene changes from one frame to the next, it is also more difficult for users
to seemany o the detailsin thevideo duing such rapid scene dhanges. Asaresult, if larger
estimate errors during sudden scene changes caused the correspondng video frames to be
scheduled less accurately, the visual effect of the inaacuracy is often nd very naticeable to

the user.

While we have used JPEG video for these measurements, reasonable estimates of frame
execution times can also be provided for other video formats such as MPEG video [5]. In
the case of MPEG video, averagingwould be required for each type of frame. By allowing
time @nstraintsto be specified onaframe-by-frame basis, SMART provides enoughflex-

ibility to hand e real-time requirements that may be quite dynamic and aperiodic in nature.

50 T T T T T

40 + :

Actual
30 e

20 a

10 _ ‘ §
Estimate error \ | |

! L L ‘ i ¥ .
‘wWWWWw“mwwwWWWWW*"’f*w"*‘*"*%ﬁ"%’mw*“ﬁ et
w M, rt

Execution time per frame (ms)

_10 1 1 1 1 1
0 50 100 150 200 250 300
Elapsed wall clock time (s)

Figure 3-1. Actual vs. estimated frame exeaution times for JPEG network news video

3.5.2.Audio Player
Theaudio player reads atimestamped 8-bit p-law audio input stream fromlocal storage and
outputs the audio samplesto the audio device. The processng d the 8-bit p-law monaural

samples is done in 512 bye segments. To avoid audio dropous, the audio player takes

44

advantage of buffering avail able on the audio device to work ahea in the audio stream
when procesor cycles are available. Up to 1 second d workaheal is allowed. For each
block of code that processes an audio segment, the audio player aimsto complete the seg-
ment before the audio devicerunsout of audio samplesto dsplay. The dealline communi-
caed to SMART istherefore set to the display time of the last audio sample in the buffer.
The estimate of the execution time is again computed by wsing an exporential average of
the measured exeaution times for processng previous audio segments. It turns out that the
processing time for all the audio segmentsisrelatively constant, so that there isvery little
error in the executiontime estimates. Audio segmentsthat canna be processed before their
deallines are smply displayed late. Note that because of the workahead feature and the
audio device buffering, the resulting deadli nes can be highly aperiodic.

50 T T T T T
Actual

30

Estimate error

W’ wlmwwm u{w JWW MMW"T' TM %“!w’“”"mmf” fob

_10 1 1 1 1 1
0 50 100 150 200 250 300
Elapsed wall clock time (s)

10 v

Execution time per frame (ms)
N
o
1

o

Figure 3-2. Actual vs. estimated frame execution times for JPEG entertainment video

We see from this example that the SMART interface can be used to reduce the burden of
developing real-time gplications. It fadlitates the communication d applicaion timing
requirements between the gplication and the operating system. Because the interface

alowstime constraintsto be specified onaper instance basis, it can be used to suppat real -

45

time goplications that are highly adaptive, dynamic, and aperiodic in nature. As we show
in Chapter 6, when couded with an uncderlying scheduling algorithm, the SMART inter-
face helpsto provide significant improvements in the performance of multimedia gopli ca-

tions over other scheduling approaches.

3.6. Summary

We have described a new schedulinginterfacethat provides effective suppat for multime-
dia applicaions in a general-purpose computing environment. The SMART interface
accourts for user preferences and allows applications to cooperate with the scheduler in
supportingtheir red-timerequirements. In particular, theinterface allowsusersto prioritize
and popationaly share resources amongappli cations according to their preferences. Fur-
thermore, the scheduler cooperates with applications © that the scheduler can employ
appli cation-specific timing information it needs to manage resources effectively, and real-
time gplications can oltain the necessary dynamic feedbad to enable them to adapt to
changesin the system load to provide the best possble quality of service.

46

4 The SMART Scheduling Algorithm

A well-designed interface between the operating system andits applications and users pro-
vides users with the ability to select from a wide range of passble behaviors for a given
mix of applicaions. However, an interface alonre is ineffective withou an underlying
scheduling algorithm that can actually make good e of hardware resources in suppating

such passble gplication kehaviors.

In this chapter, we describe the underlying scheduling algorithm in SMART. This algo-
rithm effedively suppats a wide range of application behaviors, as expressed using the
SMART interface. We first describe the principles of operations used in the design d the
SMART scheduler. Wethen gve an overview of the rationale behind the design, followed
by an overview of the algorithm and then the detail s.

4.1 Principlesof Operations

It isthe scheduler’ s objective to deliver the behavior expeded bythe user in amanner that
maximizes the overall value of the system to its users. We have reduced this objedive to

the foll owing six principles of operations:

e Priority. The system shoud na degrade the performance of ahigh giority applicaion

in the presence of alow priority application.

* Propationd sharing anongreal-time and conventional apgdications in the same pri-
ority dass Propational sharing applies only if the scheduler canna satisfy all the
requests in the system. The system will fully satisfy the requests of al applicaions
requesting lessthan their proportional share. The resources left over after satisfying
these requests are distributed propartionally among activities that can use the excess

47

While it is relatively easy to control the execution rate of conventional applicaions,
the execution rate of ared-time applicationis controll ed by selectively shedding com-

putations in as even arate as possble.

Graceful transitions between fluctuations in load. The system load varies dynamically,
new applications come and go,and the resource demand d each application may also

fluctuate. The system must be able to adapt to the changes gracefully.

Saisfying real-time @nstraints andfast interactiveresporsetimein undeload.If real-
time and interactive activities request lessthan their propartional share, their time con-
straints froud be honaed when passible, and the interactive resporse time shoud be
short.

Trading df instantaneous fairnessfor better real-time and interactive resporse time.
While it is necessary that the dlocation is fair on average, insisting on being fair
instantaneoudly at all times would cause many more deadlinesto be missed and celiver
poa resporse time to short running activities. We will tolerate some instantaneous
unfairnessso longas the extent of the unfairnessis bounded. Thisis the same motiva-
tion kehind the design of multi-level feedback schedulers [39] to improve the resporse

time of interactive activities.

Notification d resource availability. SMART alows applications to specify if and
when they wish to be natified if it is unlikely that their computations will be le to
complete before their given deadlines.

4.2 Rationale and Overview

Real-time and conventional appli caionshave very diverse characteristics. Real-time gpli -

caions have some well-defined computation which must be wmpleted before an associ-

ated deadline. The goal of a real-time application is typically to complete & many

computations before their respective deadlines as possble. In contrast, conventional appli-

cdions have no explicit deadlines and their computations are often harder to predict.

Instead, the goal istypically to deliver goodresporse time for interactive applications and

fast program completiontime for batch applications. These dharacteristics are summarized

48

in Table4-1. It isthisdiversity that makes devising an integrated scheduli ng algorithm dif-
ficult. A red-time scheduler usesreal-time constraintsto determinethe exeaution ader, but
conventional adivitiesdo nd havereal-time constraints. Adding periodic dealinesto con
ventional activities is atempting design choice, bu it introduces artificial constraints that
reduce the dfediveness of the system. On the other hand, aconventional activity scheduler
has no ndion d real-time wnstraints; the notion d time-dicing the gplications to opti-

mize system throughpu does nat serve real-time gopli cations well.

Real-Time Applications Conventional Applications

Interactive Batch
Deadlines Yes No No
Quantum of Exeaution || Servicetime: novalueif the Arbitrary choice Arbitrary choice

entire adivity is not exeauted

Resour ce Requirement

A slack isusually present

Relinquishes madine while
waiting for human response

Can consume dl processor
cycles until it completes

Quality of ServiceMetric

Number of deadli nes met

Response time

Program completion time

Table 4-1. Categories of applications

The crux o the solution is not to confuse urgency with importance. An urgent activity is
one which has an immediate real-time constraint. An important activity isone with ahigh
priority, or onethat has been the least serviced propartionally amongappli cations with the
same priority. An urgent activity may nat bethe oneto executeif it requests more resources
than its fair share. Conversely, an important activity need na be run immediately. For
example, areal-time activity that has a higher priority but alater deadline may be able to
tolerate the execution d a lower priority activity with an ealier deadline. Our algorithm
separates the processor scheduling decisions into two steps; the first identifies al the can-
didates that are considered important enoughto execute, and the second chocses the activ-

ity to execute based on ugency considerations.

A key characteristic of this two-step scheduling algorithm is that it avoids the tyranny o
the urgent. That is, there are often many urgent adivities that need to get dore, bu not
enoughtimeto doall of them completely within their time constraints. However, trying to
focus on getting the urgent activities dore whil e neglecting the lesstime cnstrained bu
more important activities that need to get dore is typically a path to long term disaster.
Instead, what our algorithm effectively does is it gets things that are more urgent done

49

sooner, but defers lessimportant activities as needed to ensure that the more important
adivities can meet their requirements. In particular, what candidates are considered impor-
tant enoughto execute depends on the load onthe system. If the system is lightly loaded
such that all activities can run and meet their requirements, then all activities will be con
sidered important enoughto execute. The dgorithm will then order al adivities based on
urgency to dothe best job d meeting the deadlines of all real-time adivities. If the system
is heavily loaded such that not al activities can run and meet their requirements, then the
algorithm will only consider as candidates the most important activities that can meet their

requirements with the avail able processng time.

Whil e urgency is gecific to real-time applications, importance iscommonto all the appli-
caions. We measure the importance of an application by a value-tuple, which is atuple
with two comporents: priority and the biased virtual finishing time (BVFT). Priority is a
static quantity either supdied bythe user or assgned the default value; BVFT isadynamic
guantity the system uses to measure the degree to which each activity has been allotted its
propational share of resources. The formal definition o the BVFT isgivenin Sedion 4.3.
We say that activity A has a higher value-tuple than activity B if A has a higher static pri-
ority or if both A and B have the same priority and A has an earlier BVFT. The value-tuple
effedively provides away to express what would atherwise be anonrobvious utili ty func-

tionfor capturing bah the notions of prioritized and proportional sharing.

The SMART scheduling algorithm used to determine the next adivity to runis asfoll ows:

1. If the activity with the highest value-tuple is a mnventional activity (an activity with-
out adeadline), schedule that activity.

2. Otherwise, create a @ndidate set consisting of al real-time adivities with higher
value-tuple than that of the highest value-tuple conventional activity. (If no conven-

tional activities are present, all the real-time activities are placed in the andidate set.)

3. Apply the best-effort red-time scheduling algorithm [46] on the candidate set, using
the value-tuple athe priority in the original algorithm. By using the given deadlines

and service-time estimates, find the adivity with the earliest deadline whose

50

exeaution dees not cause any activities with higher value-tuples to miss their
deadlines. This is achieved by considering each candidate in turn, starting with the
one with the highest value-tuple. The agorithm attempts to schedule the candidate
into a working schedule which is initially empty. The andidate is inserted in
deadline order in this schedule provided its exeaution daes not cause avy of the
activitiesin the schedule to missits deadline. The scheduler simply picksthe activity

with the earliest deadline in the working schedule.

4. If an activity canna complete its computation kefore its dealline, send a natificaion

to inform the respedive application that its deadline canna be met.

Thefollowingsections provide amore detailed description d the BVFT, andthe best-effort

real-time scheduling technique.

4.3 Biased Virtual Finishing Time

Thenation d avirtua finishingtime (VFT), which measures the degree to which the activ-
ity has been alotted its propational share of resources, has been previoudy used in
describing fair queueing algorithms [6, 12, 57, 65, 69]. These propational sharing algo-
rithms associate aVFT with each activity asaway to measure the degree to which an activ-
ity has received its propartional allocation d resources. We augment this basic notion of a
VFT in the following ways. First, our use of virtual finishing times incorporates activities
with dfferent priorities. Second, we ald to the virtual finishing time a bias, which is a
boundd dffset used to measure the aility of conventional adivitiesto tolerate longer and
more varied service delays. The biased virtual finishing time allows us to provide better
interactive and real -time response withou compromisingfairness Finaly and most impor-
tantly, fair queueing algorithms such as weighted fair queueing (WFQ) execute the activity
with the earliest virtua finishing time to provide propational sharing. SMART only uses
the biased virtual finishing time in the selection d the candidates for scheduling, and real-
time constraints are dso considered in the dhoice of the gplication to run. This modifica-
tionenables SMART to hande gplicationswith aperiodic constraintsand owerloaded con

ditions.

51

Our agorithm organizes al the activities into queues, ore for each priority. The activities
in each queue areordered inincreasing BV FT values. Each activity hasavirtual timewhich
advances at arate propartional to the amourt of processngtime it consumes divided byits
share. Suppase the arrent activity being executed has dare Sand was initiated at time T.
Let v(1) denote the adivity’ svirtual time at time 1. Then the virtual time v(t) of the activity

at current timetis

V) = v+)
Correspondngly, each queue has a queue \irtua time which advances only if any o its
member activities is executing. The rate of advance is propartional to the amount of pro-
cessng time spent onthe activity divided by total number of shares of al activities onthe
gueue. To be more precise, suppce the aurrent adivity being executed has priority P and
was initiated at time 1. Let Vp(T) denote the queue virtual time of the queue with priority P

at time t. Then the queue virtual time Vp(t) of the queue with priority P at current timetis

t—T1

2 S
allAp
where S, represents the share of applicationa, and Ap isthe set of applicationswith priority

P.

Vp(t) = Vp(T) + @)

Previous work in the domain of packet switching provides atheoretical basis for using the
difference between the virtual time of an activity and the queue virtual time as a measure
of whether the respective activity has consumeditspropartional all ocation d resources[12,
57]. If an adivity’svirtual time is equal to the queue virtual time, it is considered to have
received its propational alocation d resources. An earlier virtual time indicaes that the
adivity haslessthan its propartional share, and, similarly, alater virtual timeindicates that
it has more than its propartional share. Since the queue virtual time advances at the same
ratefor al activities onthe queue, the relative magnitudes of the virtual times provide arel-
ative measure of the degree to which each activity has received its propational share of

resources.

52

The virtual finishing time refers to the virtual time of the application, hed the gplicaion
been gventhe arrently requested quantum. The quantum for a conventional activity isthe
unit of time the scheduler gives to the activity to run kefore being rescheduled. The quan-
tum for areal-time activity isthe gplication-suppied estimate of its servicetime. A useful
property of the virtual finishingtime, whichisnot shared bythe virtual time, isthat it does
not change as an adivity executes and uses up itstime quantum, but only changes when the

adivity is rescheduled with a new time quantum.

In the following, we step throughall the events that lea to the adjustment of the biased
virtual finishingtime of an activity. Let the adivity in question have priority P and share S.
Let 3(t) denote the BVFT of the adivity at timet.

activity areation time. When an activity is creged at time 1, it aauires asits virtual time
the queue virtual time of the its correspondng queue. Suppcse the activity has time quan-
tum Q, thenitsBVFT is

B(To) = Vplto) + 3. ©
Completing aQuantum. Once an adivity iscreated, its BVFT isupdated as foll ows. When
an activity finishes executing for its time quantum, it is assgned a new time quantum Q.
As a conventional adivity accumulates executiontime, a bias is added to its BVFT when
it getsanew quantum. That is, let b represent the increased bias and t be the time an activ-
ity’sBVFT was last changed. Then, the adivity’sBVFT is

B(t) = B(D) + S+ 2. @

The biasis used to defer longrunning betch computations during transient loads to all ow
real-time and interadive adivities to oltain better immediate resporse time. The bias is
increased in a manner similar to the way priorities and time quanta are aljusted in UNIX
SVR4 to implement time-sharing [68]. The total bias added to an application's BVFT is
boundd. Thus, the bias does not change either the rate at which the BVFT is advanced or
the overal propationa allocation d resources. It only affeds the instantaneous propar-
tional allocation. User interaction causes the bias to be reset to itsinitial value. Real-time

adivities have zero hias.

53

Theideaof adynamicaly adjusted hias based onexecutiontimeis smewhat analogows to
the idea of a decaying priority based on execution time which is used in multilevel-
feedbadk schedulers. However, while multilevel-feedback affects the actual average
amount of resources al ocated to each activity, bias only affeds the response time of an
adivity and daes nat affed its overall ability to oltain its proportional share of resources.
By combining virtual finishing times with hias, the BVFT can be used to provide bath
propational sharing and better system resporsivenessin a systematic fashion.

Blocking for 1/0 or events. A blocked adivity shoud na be dlowed to accumulate credit
to afair share indefinitely whileit is deeping; however, it isfair and desirable to gve the
adivity alimited amourt of credit for not using the procesor cycles and to improve the
resporsiveness of these activities. Therefore, SMART allows the adivity to remain onits
given priority queuefor alimited duationwhich isequal to the lesser of the deadline of the
adivity (if one exists), or a system default. At the end d this duration, a sleeping activity
must leave the queue, and SMART records the difference between the activity’s and the
gueue s virtual time. This difference is then restored when the activity rejoins the queue
once it becomes runreble. Let E be the execution time the activity has already received
toward completing its time quantum Q, B be its current bias, and v(t) dencte the activity’s

virtual time. Then, the difference A is

A = v(t) = Vp(t),)
where

v(t) = B() - 5. ©)
Uponregoining the queue, its bias isreset to zero andthe BVFT is

B = Vp() +A+ 3. ™

Reasdgned user parameters. If an adivity is given a new priority, it is reassgned to the
(ueue correspondngto its new priority, andits BVFT is smply calculated as in Equation
(3). If the activity isgiven anew share, the BVFT iscalculated by havingthe adivity leave
the queue with the old parameters used in Equation (6) to calculate A, and then join the
gueue again with the new parameters used in Equation (7) to cdculate its BVFT.

54

4.4. Best-effort Real-time scheduling
SMART iteratively selects activitiesfrom the andidate set in decreasing value-tuple order

andinsertsthem into an initially empty working schedulein increasing deadline order. The
working schedule defines an execution ader for servicing the red-time resource requests.
Itis said to befeasibleif the set of activity resource requirements in the working schedule,
when serviced in the order defined bythe working schedule, can be completed before their
respective deadlines. It shoud be noted that the resource requirement of a periodic real-
time activity includes an estimate of the processng time required for its future resource

requests.

To determine if aworking schedule is feasible, let Q; be the processing time required by
adivity j to meet its deadline, and let E; be the executiontime activity j has already spent
runring toward meeting its deadline. Let F; be the fraction d the processor required by a
periodic real-time adivity; Fjis sSmply theratio of an activity’s srvicetimeto its period if
it isaperiodic real-time adivity, and zero atherwise. Let D; be the deadline of the activity.
Then, the estimated resource requirement of activity j at atimet such that t > D; is:

R(t) = Q—E +F x(t-D)), t=D;. (8)
A working schedule W is then feasible if for each adivity i in the schedule with deadline
D;, thefollowinginequality hads:

D, >t+ Z R(Dy), O OW. 9)
j OW|D; <D
On each activity insertion into the working schedule, the resulting working schedule that

includes the newly inserted activity is tested for feasibility. If the resulting working sched-
uleisfeasible andthe newly inserted activity isaperiodic rea-time activity, its estimate of
future procesgng time requirements is accourted for in subsequent feasibility tests. At the
same time, lower value-tuple activities are only inserted into the working schedule if they
do nd cause any o the current and estimated future resource requests of higher value-tuple
adivities to miss their deadlines. The iterative selection processis repeaed urtil SMART
runsout of activities or until it determines that no further activities can be inserted into the
schedule feasibly. Once the iterative selection process has been terminated, SMART then

executes the earli est-deadline runnable activity in the schedule.

55

If there aenorunrable conventional activitiesand there are norunnablereal-time activities
that can compl ete before their deadlines, the scheduler runs the highest value-tuple runre-
ble real-time activity, even thoughit canna complete before its deadline. The rationale for
thisisthat it is better to use the procesor cycles than allow the procesor to be idle. The
agorithm is therefore work conserving, meaning that the resources are never left idle if
thereisarunrable activity, eveniif it canna satisfy its deadline.

4.5 Example

We now present asimple exampleto illustrate how the SMART algorithm works. Consider
aworkload invaving two real-time applications, A and B, and a conventional applicaion
C. Suppase dl the gplications belong to the same priority class and their propational
shares are in the ratio of 1:1:2, respectively. Both real-time appli cations request 40 ms of
computation time every 80 ms, with their deadlines being completely out of phase, as
shown in Figure 4-1(a). The goplicaions request to be natified if the deadlines canna be
met; upon naification, the goplication dops the aurrent computation and proceeds to the
computationfor the next deadline. The scheduling guantum of the conventional applicaion
Cisaso 40msandwe assumethat it has accumulated abias of 100msat thispoint. Figure
4-1(b) and (c) show thefinal schedule aeated by SMART for this <enario, andthe BVFT

values of the different applications at different time instants.

(a) Deadlines of real-time applications

| | | | | | | | | | | | | | -

(b) Schedule

Figure 4-1. Example illustrating the behavior of the SMART algorithm

Theinitial BVFTs of applications A and B are the same; since C has twice as many shares
as A and B, the initial BVFT of C is half of the sum of the bias and the quantum length.

56

Because of the bias, application C has alater BVFT and is therefore not runimmediately.
The @andidate set considered for execution consists of both applications, A and B; A is
seleded to runbecause it has an earlier dealline. (In this case, the deadlineisused asatie-
breaker between real-time activities with the same BVFT; in general, an activity with an
ealy deadline may get to run ower an activity with an earlier BVFT but a later deadline.)
When an adivity finishesits quantum, itsBVFT isincremented. Theincrement for Cishalf
of that for A and B because the increment is the result of dividing the time quantum by its
share. Figure 4-1(c) shows how the activiti es are scheduled such that their BVFT are kept

close together.

This example illustrates several important charaderistics of SMART. First, SMART
implements propartional sharing poperly. In the steady state, C is given twice & much
resources as A or B, which reflects the ratio of shares given to the gpplications. Second,the
bias allows better response in temporary overload, bu it does not reduce the propartional
share given to the biased activity. Because of C’'s bias, A and B get to run immediately at
the beginning; eventualy their BVFTs cach upwith the bias, and C isgiven itsfair share.
Third, the scheduler is able to meet many real-time constraints, while skipping tardy com-
putations. For example, at time 0, SMART schedules appli cation A before B so asto satisfy
bath deadlines. On the other hand, at time 120 msinto the exeaution, realizingthat it canna
meet the A, deadline, it executes applicaion B instead and ndifies A of the missed dead-

line.

4.6. Complexity

The st of scheduling with SMART consists of the cost of managing the value-tuple list
and the st of managing the working schedule. The cost of managing the value-tuple list
in SMART is O(N) , where N isthe number of active adivities. Thisassumesalinear inser-
tion value-tuplelist. The complexity can bereduced to O(logN) usingatreedata structure.
For small N, asimplelinear list islikely to be most efficient in practice The cost of man-

aging the value-tuple list isthe same & WFQ.

The worst case mmplexity of managing the working schedule is O(NRZ) , where NR isthe

number of adive real-time adivities of higher value than the highest value cmnventional

57

adivity. Thisworst case occursif each red-time adivity needsto be selected andfeasibility
tested against all other activities when rebuilding the working schedule. It is unlikely for
the worst case to occur in practice for any reasonably large Ng. Red-time adivities typi-
cdly have short deadlines that if there ae alarge number of real-time activities, the
scheduler will determine that there is no more slack in the schedule before dl of the activ-
ities need to be individually tested for insertion feasibility. The presence of conventional
adivities in the workstation environment also prevents Ng from growing large. For large
N, the cost of schedulingwith SMART in practice is expected to be similar to WFQ.

A more complicated algorithm can be used to reduce the cmplexity of managingthe work-
ing schedule. In this case, a new working schedule an be incrementally built from the
existing working schedule a new activities arrive. By using information contained in the
existing working schedule, the mmplexity of building the new working schedule an be
reduced to O(Ng) . When orly deletions are made to the working schedule, the eisting
working schedule can simply be used, reducing the cost to O(1) .

4.7. Analysis of the Behavior of the Algorithm

In the following, we describe how the scheduling algorithm follows the principles of oper-
ationsaslaid ou in Sedion 4.1.

4.7.1.Priority

Our principle of operation regarding priority isthat the performance of high griority activ-
ities fodd na be dfeded by the presence of low priority activities. As the performance
of a mnventional activity isdetermined byitscompletiontime, ahigh griority conventional
adivity shoud berun kefore any lower priority activity. Step 1 d the dgorithm guarantees
thisbehavior because ahigh priority activity awayshasahigher value-tuple than any lower
priority adivity.

On the other hand, the performance metric of a real-time application is the number of
deallines stisfied, not how ealy the execution takes place. The best-effort scheduling
algorithm in Step 3will runalower priority activity with an earlier deadlinefirst, only if it

can determine that doing so daes not cause the high priority activity to missitsdeadline. In

58

thisway, the system delivers a better overall value to the user. Note that the scheduler uses
the timing information supdied by the applications to determine if a higher priority
dealline is to be satisfied. It is pasgble for a higher priority deadline to be missed if its

correspondng time estimate is inaccurate.

4.7.2.Proportional sharing

Having described how time is appationed aaoss different priority classes, we now
describe how time allocated to each priority class is appationed between applicdions in
the dass. If the system is popuated with only conventional activities, we simply divide the
cyclesin propartion to the shares acrossthe diff erent applications. As noted in Table 4-1,
interactive and real-time appli cations may not use up al the resources that they are entitled
to. Any unused cyclesare propational y distributed amongthaose gpli cationsthat can con-

sume the cycles.

4.7.3.Conventional Activities

Let us first consider conventional activities whose virtual finishing time has not been
biased. We observe that even thoughreal-time activities may na exeaute in the order dic-
tated by WFQ, the scheduler will runareal-time activity only if it has an earlier VFT than
any of the conventional adivities. Thus, by considering all the red-time activities with an
ealier VFT as one single gplicaion with a correspondngy higher share, we see the
SMART treatment of the conventional adivitiesis identical to that of a WFQ algorithm.
From the analysis of the WFQ agorithm, it is clear that conventional activities are given

their fair shares.

A biasisadded to an adivity’ sVFT only after it has accumul ated asignificant computation
time. Asafixed constant, the bias does not change the relative propartion between the dlo-
cdion d resources. It only servesto alow agreaer variance in instantaneous fairness thus

allowing a better interadive and real-time resporse in transient overloads.

4.7.4.Real-time Activities
We say that a system isunderloaded if there are sufficient cyclesto gve afair shareto the

conventional activities in the system whil e satisfying all the red-time wnstraints. When a

59

system is underloaded, the conventional activities will be serviced dften enoughwith the
left-over processor cycles that they will have later BVFTSs than red-time gplications.
The conventiona appli cations will therefore only run when there ae nored-time gplica-
tions in the system. The real-time activities are thus <heduled with a strict best-effort
schedulingagorithm. It has been proven that in underload, the best-eff ort scheduling algo-
rithm degenerates to an earli est-deadline scheduling algorithm [45], which has been shown
to satisfy al scheduling constraints, periodic or aperiodic, optimally [13].

In an uncerloaded system, the scheduler satisfies all the real-time applications’ requests.
CPU timeisgiven ou accordingto the anourtsrequested, which may have avery different
propartion from the shares assgned to the gplications. The asgned propartional shares

are used in the management of red-time goplications only if the system is oversubscribed.

A readl-time application whose request exceeds its fair share for the current loading cond-
tionwill eventually accumulate aBVFT later than ather applications' BVFTs. Evenif it has
the erliest deadline, it will nat be run immediately if there is a cmnwventiona applicaion
with ahigher value, or if runningthisappli cationwill cause ahigher valued real-time appli -
cdion to missits deadline. If the gplication accepts natification, the system will inform
the gplicationwhen it determinesthat the constraint will not be met. Thisinterface dl ows
applicaions to implement their own degradation pdicies. For instance, avideo applicaion
can dedde whether to skip the aurrent frame, skip afutureframe, or display alower quality
image when the frame cannat befully processed in atimely fashion. The gpli cationadjusts
the timing constraint accordingly andinforms the system. If the appli cation daes not accept
natification, havever, eventualy all the other applications will catch upwith their BVFT,

and the scheduler will alow the now late applicationto run.

Just asthe use of BVFT regulatesthefair all ocation o resourcesfor conventional activities,
it scales down the red-time activities propationally. In addition, the bias introduced in the
algorithm, as well as the use of abest-effort scheduler anongred-time activities with suf-

ficiently high values, al ows more real-time @nstraintsto be met.

60

4.8. Comparison with Related Work

Recognizing the need to provide better scheduling to suppat the needs of modern applica-
tions such as multimedia, a number of resource management approaches have been pro-
posed. These approaches can be loosely clasdfied as real-time scheduling, fair queueing,

and herarchical scheduling.

4.8.1.Real-time Scheduling

Real-time schedulers such as rate-monaonic scheduling [41, 45 and earliest-deadline
scheduling[13, 43 are designed to make better use of hardware resourcesin meeting real-
timerequirements. In particular, earli est-deadline schedulingisoptimal in underload. How-
ever, they dona perform well when the system isoverloaded, nar are they designed to sup-

port conventional applications.

Resource reservations are commonly combined with real-time scheduling in an attempt to
runreal-time activities with conventional adivities[10, 34, 42, 4] Reservations are used
to alow each application to request a percentage of the processor. These approadies are
used with admission control to allow real-time adivities to reserve afixed percentage of
the resource in accordance with their resource requirement. Any leftover processng time
is al ocated to conventional activities using a standard timesharing a roundrobin sched-

uler.

Several differences in these reservation approaches are gparent. Whil e the gpproachesin
[10, 43 take advantage of earli est-deadline schedulingto provide optimal red-time perfor-
mancein underload, the rate monaonic utilization boundused in [47] and thetimeinterval
assgnment used in Rialto [34] arenat optimal, resultingin lower performance than earliest-
dedline gproaches. In contrast with SMART, these approaches are more restrictive, espe-
cialy in the level of control provided for conventional adivities. They do nd provide a
common mechanism for sharing resources acrossreal-time and conventional activities. In
particular, with conventional activities being gven leftover processngtime, their potential
starvation is a problem. This problem is exacerbated in Riato [34] in which even in the
absence of reservations, applications with time constraints buried in their source code ae

given priority over conventional applications [33].

61

Note that the use of reservations relies on inflexible admisson control padlicies to avoid
overload. Thisis usually dore on afirst-come-first-serve basis, resulting in later arriving
applicaions being denied resources even if they are more important. To be &le to execute
later arriving applications, an as yet undetermined higher-level resource planning pdicy,
or worse yet, the user, must renegatiate the resource reservations viawhat is at best atrial-

and-error process

Unlike reservation mechanisms, best-eff ort real -time scheduling[46] provides optimal per-
formance in underload whil e ensuring that activities of higher priority can meet their dead-
lines in overload. However, it provides no way of scheduling conventional activities and

does nat suppat common resource sharing pdicies sich as propartional sharing.

By introducing admisson control, SMART can aso provide resource reservations with
optimal real-time performance. In addition, SMART subsumes best-eff ort red-time sched-
ulingto provide optimal performance in meeting time @nstraintsin underload even in the
absence of reservations. This is espedally important for common applications such as
MPEG video whose dynamic requirements match poaly with static reservation abstrac-
tions[3, 24.

4.8.2.Fair Queueing

Fair queueing provides a mechanism which allocates resources to activities in propartion
to their shares. It was first proposed for network packet schedulingin [12], with a more
extensive analysis provided in [57], and later applied to processor scheduling in [69] as
stride scheduling. Recent variants [6, 65 provide more accurate propartional sharing at the
expense of additional scheduling owerhead. The share used with fair queueing can be
assgned in accordance with user desired allocations [69], or it can be assgned based onthe
adivity’s resource requirement to provide resource reservations [57, 6. When used to

provide reservations, an admisson control palicy isalso used.

When shares are assgned based on ser desired allocations, fair queueing provides more
accurate propartional sharing for conventional activiti es than previous fair-share schedul -

ers[27, 28]. However, it performspoarly for real-time activiti es becauseit does not account

62

for their time @nstraints. In underload, time cnstraints are unnecessarily missed. In over-

load, all adivities are propationaly late, paentially missngall time constraints.

When shares are assgned based onactivity resource requirementsto provide reservations,
fair queueing can be dfective in underload at meeting real-time requirements that are
strictly periodic in their computationand ceadli ne. However, its performanceisnot optimal
in uncerload and suffers especialy in the case of aperiodic red-time requirements. To

avoid making al adivities propationally late in overload, admisgon control is used.

Unlike real-time reservation schedulers, fair queueing can integrate reservation suppat for
real-time activities with propational sharing for conventional adivities [66]. However,
shares for real-time applications must then be assigned based ontheir resource require-
ments; they cannat be assigned based on ser desired all ocations.

By providingtime cnstraints and shares, SMART nat only subsumes fair queueing, bu it
can a'so more effedively med real-timerequirements, with or withou reservations. Unlike
fair queueing, it can provide optimal real-time performance while dlowing propartional
sharing based onuser desired all ocations acrosshboth red-time and conventional applica-
tions. Furthermore, SMART aso suppats smultaneous prioritized and propational

resource allocation.

4.8.3.Hierarchical Scheduling

Because aeating a single scheduler to service baoth real-time and conventional resource
requirements has proven dfficult, anumber of hybrid schemes[7, 11,23,24,68] have been
propacsed. These goproaches attempt to avoid the problem by having statically separate
scheduling pdicies for real-time and conventional applications, respedively. The pdlicies
are combined using either priorities[11, 23, 63 or propational sharing [7, 24,27] as the

base level scheduling mechanism.

With priorities, all activities sheduled by the real-time scheduling pdicy are assgned
higher priority than activities scheduled bythe conventional scheduling pdicy. This causes
al real-time activities, regardlessof whether or not they are important, to be run ahead of

any conwventional activity. The lack of control results in experimentally demonstrated

63

pathoogical behaviors in which runaway real-time computations prevent the user from

even being able to regain control of the system [50].

With propattional sharing, a real-time scheduling pdicy and a conventional scheduling
palicy are each gven apropartional share of the machine to manage by the underlying pro-
portional share mechanism, which then time-dli ces between them. Real-time applications
will not take over the machine, bu they also canna med their time constraints eff ectively
as aresult of the underlying propartional share mechanism taking the resource avay from

thereal-time scheduler at an inoppatune and urexpected timein the name of fairness[25].

The problem with previous mechanisms that have been used for combining these schedul-
ing pdiciesisthat they do nd explicitly acoourt for real-time requirements. These sched-
ulersrely ondifferent paliciesfor different classes of computations, bu they encourter the
same difficulty as other approadies in being ureble to propagate these dedsions to the
lowest-level of resource management where the actual schedulingof processor cyclestakes

place.

SMART behaves like a red-time scheduler when scheduling orly real-time requests and
behaves like a conventional scheduler when scheduling only conventional requests. How-
ever, it combinesthese two dmensionsin adynamically integrated way that fully accounts
for real-time requirements. SMART ensures that more important activities obtain their
resource requirements, whether they be real-time or conventional. In addition to allowing
awiderange of behavior nat posshblewith static schemes, SMART provides more dficient
utili zation d resources, is better able to adapt to varying workloads, and provides dynamic
feedback to suppat adaptive real-time gplications that is not found in previous
approaches.

64

| mplementation in a Commercial
Operating System

To demonstrate the eff ectiveness of the SMART scheduler in arealistic general-purpose
computing environment, we have implemented SMART ina commercial operating system,
the Solaris operating system from Sun Microsystems. Thisis a UNIX SVR4 conformant
operating system that is shipped with hundeds of thousands of computers each year. We
used the most recent version d the operating system at the time of the prototype implemen-
tation,which was Version 2.5.1of the operating system. The scheduling framework in this
version d the operating system is largely the same & the improved Solaris sheduling
framework that resulted from the work described in Chapter 2.

Our choice of using the Solaris operating system for our implementation was based ona
few factors. Firgt, it isawidely used general-purpose operating system, which gave us the
oppatunity to examine the impact of our scheduler onthe performance of red applicaions
in a commonly used computing environment. Second, the Solaris operating system is rep-
resentative of other commercial operating systems in its gructure and scheduling frame-
work. Third, we had accessto complete source aodefor the entire Solaris operating system.
In addition, ou previous experience with the operating system and the availability of
kernel-level debuggng toadls were very helpful. Finally, the Solaris operating system was
designed with some consideration for real-time requirements in mind. For instance, pro-
cessesexecutingin kernel mode are usuall y executed at their respedive user-level priorities

and can be preempted, reducing the likelihood d priority inversion.

Whil e there were anumber of advantages to using a commercial operating system as the
basis of our prototype implementation, there was also an implementation cost. Solarisisa

full -featured operating system that is optimized for performance, na implementation ease.

65

Like many commercia operating systems, it is a large mondithic software system with
hundeds of thousands of lines of code and little documentation. The interface between the
scheduling framework and aher aspeds of the operating system was nat always well -
defined and parts of the system do nat fully implement the interface for performance rea-
sons. Furthermore, the system was not designed with a scheduler such as SMART in mind.
As aresult, the implementation d some aspects of SMART could na be dore in the most
straightforward and intuitive manner. Learning enoughabout this g/stem to create the nec-
essry interfaces between SMART and the Solaris operating system was a substantial cost

in designing ou prototype implementation.

This chapter discusses anumber of theimplementationisaiesin creatingthe SMART pro-
totype in the Solaris operating system. Section 5.1 povides some necessary background
abou the Solaris heduling framework. Section 5.2 ascribes our implementation meth-
oddogy, which was to replace the eisting Solaris dispatcher and introduce a new sched-
uling class Section 5.3 ascribes the implementation o the SMART dispatcher, including
improvements to the timer functionality of the operating system. Section 5.4describes the
implementation d the SMART scheduling class

5.1 Solaris Scheduling Framewor k

The Solarisoperating system isamultithreaded UNIX SV R4 conformant operating System.
Unlike older UNIX systemswhich only provide kernel suppat for UNIX processes, Solaris
scheduling is based onthreads. These lightweight objeds are lessexpensive to creae and
use than UNIX processes, and they can be independently scheduled. Threads are used in
Solarisfor exeautingapplications, aswell asfor interrupt handlingand aher internal kernel
functions. They arefully preemptible even when exeauting kernel code, al owingfor better
real-time responsiveness Inthis sction,we give an overview of the structure of the Solaris

scheduler and describe some of the core thread scheduling mechanisms.

As previously mentioned in Chapter 2, the Solaris sheduler is a two-level UNIX SVR4
priority scheduling framework consisting d a set of scheduling classes and a dispatcher.
Each thread is assgned to asingle scheduling class The job o each scheduling classisto
makeitsown pdicy decisionsregarding haw to schedule threads assgned to the dass The

66

job d the dispatcher isto merge the palicy decisions of the different scheduling classes. It
determines aglobal ordering in which to execute threads from all of the scheduling classes,

and then performs the actual work of executing the threads according to that global order-
ing.

The scheduling classes and the dispatcher use prioritiesto perform their functions. When a
thread isasggned to a scheduling class, aset of class €heduling parameters are asociated
with that thread. Asociated with each scheduling classis a continuous range of classpri-
orities. Using the class scheduling parameters of the thread and information abou the exe-
cution hstory of the thread, the scheduling classdetermines a dasspriority for the thread.
The classpriority of athread can change as the class sheduling parameters for the thread
change, or as the execution history of the thread changes. Consider for instance the time-
sharing (TS) classthat comes as the default scheduling classfor any UNIX SVR4 sched-
uler. A thread is assgned to the TS classwith some nice value. The TS class determines a
classpriority for athread by wsingthe thread’ s nice value and information about how much
processingtimethe thread has consumed recently. The TS classwil | periodically adjust the
classpriority of athread depending onhow much processngtimethe thread has consumed

recently.

The pdicy decisions of the scheduling classes are merged by mapping their respective
ranges of classpriorities onto a continuows range of global priorities. The dispatcher then
schedules threads based on these global priorities. Consider for instance two o the default
scheduling classes that come with any UNIX SV R4 scheduler, the real-time (RT) classand
the TSclass Sinceit isaUNIX SVR4 scheduler, the Solaris scheduler has global priorities
0-159.The dasspriorities of the RT classandthe TS classeach range from 0-59. However,
the RT class priorities are mapped to gobal priorities 100-159while the TS classpriorities
are mapped to gobal priorities 0-59. As a result, threads from the TS classare only exe-

cuted if there ae nothreads from the RT classto execute.

The dispatcher uses a set of run queuesto seled threads for execution based ontheir global
priorities. Each gobal priority value hasarun queue asciated with it. Sincethere are 160

global prioritiesin the Solaris sheduler, there ae a orrespondng set of 160run qLeues.

67

When athreal isrunrable, it isassigned to the run queue arrespondngtoitsglobal prior-
ity. The dispatcher is called whenever the processor becomes available to execute athread.
To select a thread to execute, the dispatcher scans the run queues from highest to lowest
priority and chocses the thread at the front of the first norempty queue for exeaution. In
other words, the highest priority runrable thread is selected for execution. Note that where
the thread is placed onthe run queue will impact when the thread is sl ected for exeaution
by the dispatcher. The schedulingframework al ows scheduling classesto determine where
a thread shoud be placed onthe run queue when it is runnable. A scheduling class can
chooseto place athread at the badck of arun queue or at the front of arun queue. For exam-
ple, if ascheduling classalwaysinserts threads at the back of run queues, then threads that
were inserted earlier will run kefore threads that were inserted later. This will result in a
First-In-First-Out scheduling pdicy.

In additionto determiningthe priority assignment of threads, the scheduli ng classes control
how long a thread shoud be allowed to execute. A scheduling classmay assgn a time
quantum to each thread. The time quantum defines the maximum amount of time that a
thread can execute before the scheduler will preempt the thread and make another schedul-
ing cecision. Like other UNIX systems, thisis enforced throughthe use of aperiodic inter-
rupt generated by a hardware dock. The interrupt callsa dock function for the respective
scheduling class of the currently running thread. The function chedks the execution time of
the runningthread and preemptsthethread if it hasused upitstime quantum. If ascheduler
class does not asggn time quanta to its threads and daes not suppat a dock function,
threads belongng to the respective scheduling classwill only be preempted by the dis-
patcher when ahigher priority thread is avail able to run. Note that a thread will continue to
runif it ishigher priority than all other threads even if it has used upits time quantum.

Whil e the scheduling framework provides sveral default scheduling classes, the frame-
work is extensible. New scheduling classes can be implemented that are mapped to dffer-
ent global priority ranges. To suppat this extensible framework, an extensible system cdl
isprovided that all ows users and applicationsto assgn and change scheduling classparam-

eters. These parameters can be assgned onaper thread basis. Each scheduling classtakes

68

the set of class parametersfor agiven thread andreducesit to aclasspriority andtime quan-

tum assignment for the thread.

5.2 Implementation Methodology

There are three basic implementation possbilities for the SMART prototype aff orded by
the Solaris sheduling framework. They are to implement SMART as a user-level process
to implement SMART just as a scheduling class in the existing Solaris scheduling frame-
work, or to implement SMART as a replacement for the existing scheduling framework.
We consider each of these posghili tiesin turn and describe the reasons behind ou eventual

choice of approach.

The easiest to implement would be to buld the SMART prototype ssimply as a user-level
process that runs at the highest priority defined by the scheduling framework. By runnng
such auser-level scheduler processat the highest priority, the underlying scheduling frame-
work simply hands control over to the user-level process The processcould then select a
thread to execute based onthe SMART scheduling algorithm, raise the priority of that
thread to just below that of the scheduler processitself, then block itself for aperiod d time
to alow the seleded thread to execute. Not only would this approach be easier to imple-
ment because no kernel development isrequired, bu it would be more portable asit could
run onother priority-based schedulers, including aher variants of UNIX andWindowsNT.
The primary problem with this approach is that scheduling events that are presented to the
operating system would dften na be known by the user-level process For instance, the
thread that is <heduled may run for lessthan the anournt of time that the scheduler is
blocked, in which case the scheduler would nad be able to run when the scheduled thread
completes its execution. The default Solaris dispatcher would then select a thread to run
based onjust priorities as oppcsed to the SMART agorithm.

Ancther implementation approadch would beto buld SMART asanew scheduling classin
the Solaris sheduling framework. The framework provides a well defined interface for
allowing developers to create their own scheduling pdicies which can be loaded on
demandinto the kernel. However, the framework does nat all ow the scheduling pdiciesto

direaly select which thread to exeaute when the processor becomes avail able. Scheduling

69

paliciesmust indirectly impact thisdedsionby the prioritiesthey assgnto their threadsand
the order in which they place those threads on the respective run queues. Furthermore, the
framework only allows scheduling pdiciesto insert threals at the front or the back of the
run queues. These characteristics of the scheduling framework makeit impossibleto imple-
ment SMART as a scheduling classin an efficient manner. A key asped of the SMART
algorithm is its use of dynamic timing requirements in deciding which thread shoud be
executed. This does not map well to the static priorities of the Solaris <heduling frame-
work. Inaddition, SMART uses biased virtual finishingtimesfor ordering threads of equal
priority. This ordering function daes not map well to the limited run qeue ordering oper-

ations provided with the Solaris sheduling framework.

In light of the disadvantages of these other approaches, the approach that we dhoose for
implementing ou SMART prototype in the Solaris operating system was to replace the
existing scheduling framework. Unlike auser-level implementation, this provided ou pro-
totype the same anourt of accessto information about scheduling events as the existing
scheduling framework. Unli ke ascheduling classimplementation, thisallowed usto define
new run gLeue operations as necessary to suppat the scheduling mechanismsin SMART.
In particular, we replaced the existing priority dispatcher with a SMART dispatcher that
incorporates information about a thread’ s deadllines and shares as well as priorities. Two
chall enges that we faced in this approach were providing interfaces between SMART and
existing qperating system code, and designing the SMART implementation in such away
to be backwards compatible with the existing scheduling framework. The latter goa is
important for the purpases of providing an easy transition path for users of the existing

scheduling framework to move to the SMART scheduling framework.

To provide a natura mapping to the structure of the Solaris operating system, threads are
used as the basic schedulable entity in our SMART framework. For the SMART frame-
work, we replaced the existing dspatcher and created a new scheduling class to provide
aacessfor users and applications to the new functionality of our system. These two aspects

of the system are described in the next two sections.

70

5.3 Dispatcher Implementation

The SMART scheduler exploits a greater amourt of information in making a scheduling
dedsion than the existing Solaris scheduling framework. In particular, the SMART dis-
patcher makes use of more than just the single priority value associated with each thread in
the Solaris schedulingframework. In additionto apriority, the dispatcher assumesthat each
thread is assigned a share, a bias, a dealline, and a time quantum. These parameters are
determined by the scheduling classes and passed to the dispatcher. Default values are ini-
tially assigned for each parameter associated with athread.

Our SMART dispatcher implementation maintains the same set of run queues asthe Solaris
scheduling framework, but usesthem in adifferent way. Like Solaris, each run queue @r-
responds to a priority, and there ae 160 piorities numbered 0-159. However, the run
queuesin SMART arenot used directly for selecting which thread shoud execute. Instead,
they are used for maintaining an importance ordering o all threads based onthe respective
thread priorities and kased virtual finishing times. Threads are assgned to the respective
run queues based on priorities. Threads on the same run queue ae ordered based ontheir
biased virtual finishing times. When a thread needs to be selected for execution, the dis-
patcher starts from thisimportance ordered li st of threads and uses the SMART algorithm
to creae aworking schedule. The first runreble thread in the generated working schedule

is then selected for execution.

Our SMART prototype uses the same function prototypes for inserting and removing
threads from the run queues, bu changes the underlying semantics of the functions. In the
original framework, there were two gueue insertion functions which respectively placed a
thread at the front or back of arun queue. For our SMART framework, we need to be ele
to placesthreadsin arun queue such that they are ordered bytheir respedive biased virtual
finishing times. To achieve this, we change the semantics of the queue insertion functions
such that bath functions now insert athread in arun queue in biased virtual finishing time
order. Inthe event that multi ple threads have the same biased virtual finishing time, tiesare
broken based on the original semantics of the queue insertion functions. The queue
insertion function that originally inserted at the front of the run queue will break ties by

inserting a thread in front of any threads with the same biased virtual finishing time. The
71

gueueinsertionfunctionthat originally inserted at the bad of the run queue will break ties
by insertingathread in back of any threads with the same biased virtual finishingtime. We
will show later that thisfeatureisused for backwards compatibilit y with the original Solaris

scheduling framework.

The SMART dispatcher may run lessimportant threads before more important threads
when it determines that there is excess dack in the system. When athreal is slected for
execution, the dispatcher shoud ensure that the thread orly runsfor an amourt of time that
still all ows less urgent but more important threads to meet their timing requirements. Asa
result, the dispatcher must enforce abound orthe execution time given to athread. Thisis
dorein ou implementation by having the dispatcher set its own time quantum for athread
when the thread is selected to execute. The dispatcher itself will ched to see that whether
the time quantum of the thread has expired, in which case it will preempt the thread. This
dispatcher time quantum isinternal to the dispatcher andis separate from the time quantum

used by the scheduling classes.

The standard UNIX SV R4 scheduling framework uponwhich the Solaris operating system
isbased employs a periodic 10 msclock tick. It isat thisgranularity that scheduling events
can occur, which can be quite limiting in suppating real-time computations that have time
constraints of the same order of magnitude. In particular, the granularity of the time quan-
tum parameter can be no smaller than thetimer resolution. To all ow amuch finer resolution
for scheduling events, we alded a high resolution timeout mechanism to the kernel and
reduced the time scale at which timer based interrupts can occur. The exact resolution
alowed is hardware dependent, bu was typically 1 msfor the hardware platforms we con-
sidered.

In or SMART implementation, the dispatcher is given the share and kas of each thread
by the scheduling classes and wses that information to compute the biased virtual finishing
time as each thread exeautes. The biased virtua finishing time is computed by the
dispatcher because it serves as a global ordering function for threads from different

scheduling classes that are at the same priority. This allows the SMART dispatcher to

72

provide apropartional share astradionto the scheduling classes, allowingfor the aedion

of scheduling classes with dfferent propartional share scheduling pdicies.

In additionto providing SMART functionality, the SMART dispatcher is designed to sup-
port legacy scheduling classes as well. Thisis dore througha legacy scheduling classtest
function and proper definition d the default thread dispatcher parameters. All |egacy
scheduling classes are listed in an array provided to the legacy scheduling classtest func-
tion.When athread is assgned to a scheduling class the test functions checksif the sched-
ulingclassisalegacy schedulingclass If so, it assgnsthethread a set of default dispatcher
parameters. These aethe same defaultsthat are assigned when athread is created. The pri-
ority is st to the same default as used with the original Solaris dispatcher, the shareis st
to zero, thebiasis st to zero, the deadlineis st to amaximum vaue, andthe time quantum
is &t to amaximum value. If athread has zero share, its biased virtual finishingtimeis st
to amaximum vaue. As aresult, al threads with nonzero shares will be enqueued in front
of al threads with zero shares. More importantly, since al threads with zero shares will

have the same maximum biased virtual finishing time, the tie breaking rules of the queue
insertion functions will be used for thaose threads, reducing those functions to the original
Solaris queue insertion functions. If athread has a deadline set to the maximum value, the
thread is considered a conventional thread. In particular, if al threads are conventional, the
SMART dispatcher reduces to seleding the first runrable thread onthe highest priority
nonempty run gueue. If athread has atime quantum set to the maximum value, the time
quantum is effedively ignared bythe dispatcher. In summary, athread with default values
for its dispatcher parameters is sheduled in exactly the same way as the original Solaris
dispatcher. This ensures that the SMART scheduling framework is backwards compatible

with the original Solaris £heduling framework.

Legacy scheduling classes can be used at the same time a new scheduli ng classes written
for the SMART scheduling framework. If all scheduling classes are mapped to nono\erlap-
ping ranges of global priorities, the interaction d the scheduling classes in the SMART
scheduling framework is smilar to the standard UNIX SV R4 framework. If a new sched-
uling class and a legacy scheduling classare mapped to overlapping ranges of global pri-

orities, the SMART framework gives preference to the new scheduling class over the

73

legacy scheduling classfor threads at the same priority. Thisis because threads in legacy
scheduling classes were each assgned zero shares with a correspondng maximum biased
virtual finishingtime. This causes sich threadsto be considered after threadsin new sched-
uling classes which are each assgned nonzero sharesandasmall er biased virtual finishing
time. The choice of favoring rew scheduling classes over legacy scheduling classes at the
same priority level was to some degree an arbitrary one; the reverse could also have been
dore. Both choiceswould provide suppat for new SMART functionality and legacy sched-
uling class functiondlity.

5.4. Class Implementation

In addition to suppating legacy scheduling classes, the SMART dispatcher provides new
functionality that can be exploited throughthe aedion d new scheduling classes. For our
SMART prototype, we dso created a SMART scheduling class. The primary purpose of
this classis to support the SMART scheduling interface for users and applicaions. The
classnat only ensures that scheduling parameters provided from users and applications are
valid, bu it also sets default parameters when such information is not provided. The user
and appli cationinterfaces are based onthe Solaris priocntl system call, an extensible inter-

face for setting and reading scheduling classparameters.

In ou implementation, the SMART scheduling classis aso resporsible for automaticdly
adjusting the bias associated with conventional threads. This is dore in a table-driven
manner using a UNIX SVR4 scheduler mechanism that is suppated in the Solaris operat-
ing system. This mechanism was originaly designed to suppat the multi-level feedback
discipline used by the TS scheduling class The TS classreads in a scheduling table with
entries correspondngto priority levels. Each entry spedfiesa priority, atime quantum that
isto be asggned to athread at the given priority, and the priority to assgn a thread at the
given priority when its time quantum is used up.As a thread exeautes and completes its
time quanta, it is reassigned a new priority after each time quantum completion, with the
assgned priorities monaonically decreasing. Instead of using this sheduling table to
adjust prioriti es, the SMART scheduling classuses a scheduli ngtableto adjust biases. Each
entry inthe SMART schedulingtable specifiesabias, atime quantum that isto be assgned

74

to athrea at the given hias, and the bias to assign athread at the given priority when its
time quantum is used up.As a thread executes and completes its time quanta, it is reas-

signed an increasing kas after each time quantum completion.

For red-timethreads, the SMART scheduli ng classimplementsthe natification mechanism
that is used for informing red-time gplications when their deadlines canna be met. This
is dore using the basic timeout and signal mechanism in standard UNIX SV R4 systems.
When athread specifies anatify-time with its time @nstraint, the scheduler sets atimeout
correspondng to the natify time. The timeout causes a dock interrupt to go off at the pre-
scribed time. A flag is st once the natify time expires. Once the flag is set, then each time
the thread is slected for execution, the scheduling class chedks to see if the thread will

meet itsdeadline. Thisrequiresthat the scheduling classbe informed when athread belong
ingto theclassis slected for exeaution bythe dispatcher. The origina UNIX SV R4 sched-
uling framework had nosuch way of daoing this, so a new classfunction was added in the
SMART scheduling framework. This class function is cdled when a thread from the
respective schedulingclassis sleded for execution. The function can be used for perform-
ing recessary operations on the thread that has been seleded for execution, including
checking to seeif the deadlinewill be met. If thethread will not be aleto meetitsdeadline,
asignal is ent to the processindicaing that the deadline wil | not be satisfied. A previously
unused signal number is used to dstingush the natification signal from other signals that
the process may receave. If the processdoes nat have asignal handler install ed, the natifi-

cdionsigna isignaed.

5.5 Summary

Althoughthe Solaris scheduling framework was not designed to support the demands of
multimedia gplications, we have been able to extend the framework to implement the
SMART scheduler in the Solaris operating system. This prototype implementation demon-
stratesthat it ispassbleto include SMART suppat for multimedia appli cationsin the con-
text of currently available general-purpose operating systems. It also demonstrates that
SMART functionality can be implemented in a way that continues to provide backwards
compatibility for legacy scheduling pdicies.

75

We nate that whil e the SMART Solaris prototype is nat commercially avail able, itsimple-
mentation has been qute robust and suppats al the same gplications and system func-
tions as the standard Solaris operating system. We have runthe SMART Solaris prototype
onaday to day basis, and have used it to run many of the appli cations that were needed for
writing this dissertation itself.

76

6 M easurement and Performance

To evauate the effediveness of the SMART scheduler, we conducted a number of experi-
ments on our SMART prototype, running microbenchmarks as well as real, commercial
appli caions. Because of the complex interadions between appli cations and operating sys-
temsin general-purpase computer systems, we placed an emphasis on evaluating SMART
with real applicaionsin afully functiona system environment. Our experiments included
guantitative measurements of application and system performance for multimedia, interac-
tive, and batch applications running onSMART in head-to-head comparisons with cther

schedulers used in commercial and research settings.

This chapter describes our experimental results and is organized as follows. Section 6.1
describes the experimental testbed which was used for our experiments. Section 6.2
describes experiments with various microbenchmarks that demonstrate the range of behav-
ior posgblewith the scheduler in areal system environment. Sedion 6.3examines the per-
formance of a set of commercially available multimedia video applicaions running on
SMART versus UNIX SVR4, focusing particularly on the benefits that result from the
SMART interface. Section 6.4compares the performance of SMART against other sched-
ulers commonly used in practice and research by runnng red appli cations and measuring
the resulting behavior. This comparison considers not only real-time multimedia gpli ca-
tion performance, but also quantitatively measuresthe performance of interactive and betch

applicaions.

6.1 Experimental Testbed

The experiments were performed ona standard, production SPARCstation] 10 worksta-
tionwith asingle 150 MHz hyperSPARCL] processor, 64 MB of primary memory, and 3

77

GB of local disk space. The testbed system included a standard 8-bit pseudo-color frame
buffer controller (i.e., GX). The display was managed using the X Window System. The
Solaris 2.5.1 oprating system was used as the basis for our experimental work. In particu-
lar, the high resolution timing functionality described in Section 53 was used for all of the
schedulersin ou experimentsto ensure afair comparison. On the testbed workstation used

for these experiments, the timer resolutionwas 1 ms.

All measurements were performed using a minimally ohtrusive tracing facility that logs
eventsat significant pointsin appli cation,window system, and operating system code. This
is dore via a light-weight mechanism that writes timestamped event identifiers into a
memory log. The timestamps are & 1 ps resolution. We measured the cost of the mecha
nism on the testbed workstation to be 2-4 us per event. We created a suite of toolsto past-
process these event logs and oliain accurate representations of what happens in the actual

system.

All measurements were performed on a fully functional system to represent a redistic
workstation environment. By afully functional system, we mean that all experiments were
performed with all system functions runnng, the window system runnng, and the system
conrected to the network. At the same time, an eff ort was made to eliminate variations in
the test environment to make the experiments repeatable. To this end, the testbed system

was restarted prior to each experimental run.

6.2 Microbenchmarks

We highlight some performance results for various mixes of red-time axd conventional
resource requests. These requests were generated using a set of simple goplications that
alow usto vary their resource requirements to demonstrate the dfediveness of SMART
under avariety of workloads. We look at conventional activities, red-time activities, anda
combination d bath in Sections 6.2.1, 6.2.2 and 6.2 3 respectively. In particular, we focus
onthe propartional sharing aspects of SMART. We demonstrate that propartional sharing
is adiieved for al the cases, regardlessof whether the real-time requests present (if any)
have overloaded the system. We show in bah Sections 6.2.2and 6.2.3that the scheduler

drops the minimum number of dealline requests to achieve fair sharing, in the case of

78

overload. Finally, we aso show in Section 6.2.3that latency tolerance helps minimize the
number of deadli nes dropped.

6.2.1.Conventional Applications

The first case presented is based onthe execution of threeidentical conventional com-
pute-oriented applications, C1, C2, and C3, with relative shares of theratio 3: 2: 1. The
applications were started at approximately the same time and have a running time of
abou 338seconds. We logged the cumulative execution time of each application versus
wall clock time. The results are shown by the solid line arves in Figure 6-1. We note
that Figure 6-1 aswell asall of the other figures sSmply present the raw sampled datawith

no interpolation between sample points.

700 r .

600 .

500 .

400 .

300

200

Cumulative execution time (s)

100

0 1 1 1 1 1
0 200 400 600 800 1000
Elapsed wall clock time (s)
Figure 6-1. Executiontimesfor conventional applicationswhen propartional sharingwith

SMART shares 3:2:1

If the system were perfect, we would expect the foll owing finishing times:
Activity C1: 338 x6/3 = 676 seconds

Activity C2: 676 + (338 — (676 x 2/6)) x 3/2 = 846 seconds

79

Activity C3: 676+ 170 + (338 — (676 x 1/6) — 170 x 1/3) = 1014 secondk.

The correspondngideal performance aurves are dso plotted as datted linesin Figure 6-1.
However, the dotted ideal curves are hardly visible because of the dose match with the
adual experimental results. The results match the expected behavior very well, with activ-
ities C1, C2, and C3 finishing at times 678, 848,and 1018seconds, respectively. Further-
more, the slopes of the graphs, indicaing the resource consumption rates, show that the
adivities are serviced in a propationally fair manner throughou the execution. As
expected, the dopes of C1, C2, and C3 are of theratio 3.00: 2.00: 1.00 in the first stage of
the computationwhen all the programsarerunnng. The slopes of C2 and C3 are of theratio
2.00: 1.00 in the second stage when adivities C2 and C3 are running.

6.2.2.Real-time Applications

6.2.2.1.0ptimal Performancein Underload

To demonstrate the performance of SMART for real-time applications in uncerload, we
executed two real-time applications, R1 and R2, with periodic resource requests. The
resource requests were event-driven, with the event arrival interval determining the dead-
line of the respective request. All of the real-time gplicaions used in these experiments
employed the time cnstraint interface in SMART and were natified immediately if their
deallines could na be met. If a deadline could na be met, the applicaion dscarded the
correspondng resource request and waited urtil the arrival of the next event to be pro-
cesd. We nate that for the particular real-time applications used in these experiments,
there was a small amourt of execution time variation for each resource request when mul-
tiple real-time appli cations were executed together. This was caused by cache @niflicts
between the gopli cations, which depended onthe exact order in which the resource requests

were processed.

R1 required 28-30 ms of execution time to complete each resource request, with each
resource request having a 40 ms deadline from its instantiation. R2 required 1820 ms of
execution time to complete each resource request, with each resource request having a 90

ms deadline from its instantiation. R1 was given 20 events to processand R2 was given

80

888 events to process. Given these resource requirements, the system can be kept busy
abou 97% of the time runnng R1 and R2 during a period d abou 80000ms. R1 and R2
were both assgned equal shares, thoughthe assignment of shares makes no dfferencein
this case. We logged the number of missed deadli nes and the cumulative exeaution time

obtained by each activity, which isillustrated bythe solid line curvesin Figure 6-2.

60000 T T T T T T T

50000

40000

R1 -

30000

20000

R2

Cumulative execution time (ms)

10000

O 1 1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000 80000
Elapsed wall clock time (ms)
Figure 6-2. Execution times for real-time gplications when using SMART in system

uncerload

If the system were perfect, we would expect all deadlines to be satisfied; bath activities
should be @leto oltain their requested resources. Therefore, each activity shoud be ale
to oltain resources propartional to their respedive resource requests. If R1 required exadly
30ms of execution time for each 40ms deadline and R2 required exactly 20 ms of execu-
tiontime for each 90ms deadline, we would exped bath activitiesto finish in rougHy 800

seandswith thefoll owing cumulative execution timesand percentages of processngtime:
Activity R1: 2000 x 30 = 600 ms, 600/ 800M = 75%,

Activity R2: 888 x 20 = 1776 ms, 1776)/800® = 22 %.

81

The correspondngided performance curves are represented by the respective dotted lines
in Figure 6-2. We @n see in Figure 6-2 that both applications obtained nearly their ideal
resource @nsumption rates, with the slight deviation from ideal being due to eadh activity
on average requiring slightly lessthan their respedive ideal exeaution times to complete
their resource requests. Activity R1 obtained 57,066ms of execution time and activity R2
obtained 17,426ms of executiontime. Thistranglatesinto R1 receiving 7246 of the process
ingtime and R2 receiving 22% of the processng time. The slopes of the plots Figure 6-2
shows that each activity receives their respective processng time in a consistent manner
throughou their execution. More importantly, because SMART is optimal in uncerload,

there were no missed deadlines for either applicaion.

To show that the optimal performance of SMART in urderload translateswell into practice,
we dso demonstrate that SMART performs well in meeting the deadlines of real-time
applicaions when the system utilization is nearly 100%. We executed two periodic real-
time goplications, R1 and R3, but thistime the applicationstogether consumed nearly 100%
of the machine. R1 again required 2830 ms of execution time to complete eadch resource
request, with each resource request having a 40 ms deadline from its instantiation. R3
required 1820 ms of executiontime every 80ms. R1 was given 2000eventsto processand
R3 was given 1000events to process R1 and R3 were bath assigned equal shares, though
the assgnment of shares makes no difference in this case. Welogged the number of missed
deallines and the aumulative executiontime obtained by each adivity, which isillustrated

by the solid line aurvesin Figure 6-3.

If the system were perfect and the actual processng time required in any gven interval
never exceeds 100% utili zation, we would expect al deadlines to be satisfied in this case
as well; both adivities sroud be ale to oltain their requested resources. Furthermore, if
R1 required exadly 30 ms of execution time for each 40 ms deadline and R3 required
exactly 20 ms of execution time for each 80ms deadline, we would expect both activities

to finish in rougHy 800seamnds with the foll owing cumulative execution times:
Activity R1: 2000 x 30 = 600 ms
Activity R3: 1000 x 20 = 200 ms.

82

60000 T T T T T T T

50000 | ny .
40000 | y .
R1 -

30000 | % -

20000 | P R3 .

Cumulative execution time (ms)

10000 | e §

O 1 1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000 80000
Elapsed wall clock time (ms)
Figure 6-3. Execution times for red-time gplications when using SMART on a nearly

100% loaded system

The correspondngided performance curves are represented by the respective dotted lines
in Figure 6-3. We @n see in Figure 6-3 that both appli cations obtained nearly their ided
resource ansumption rates, with the slight deviation from ideal being due to each activity
on average requiring sightly lessthan their respedive ideal exeaution times to complete
their resource requests. Activity R1 obtained 57,178ms of execution time and activity R3
obtained 19,673ms of execution time. SMART met al but 3 of the 1999 akadlines of R1
and met all of the deadlines of R3. Even with nearly 100% average resource utili zationand
some variability in the exeaution times of these gplications, SMART was able to meet
over 99% of the deadlines.

6.2.2.2.Proportional Sharingin Overload

To demonstrate the unique aoility of SMART to al ow red-time goplicaionsto propation
aly shareresourcesin overload, we exeauted threeidentical real-time applications, R1, R2,
and R3, with relative shares of theratio 3: 2 : 1. Each application takes 18-20 ms of exe-
cutiontime to compl ete each resource request, and each resource request has a40 ms dead-

line from its instantiation. To show the dynamic behavior of these gplications when the

83

applicaion mix changes, the applications are started at approximately the same time, bu
each application is executed for a diff erent number of iterations. R1 processed a sequence
of 1000red-timerequests, R2 processed asequence of 1500real -time requests, and R3 pro-
cessed asequence of 2000red-timerequests. Welogged the cumulative executiontime and
number of deadlines missed for each appli caion. These measurements areillustrated bythe

solid line arvesin Figures 6-4 and 6-5.

60000 T T T T T T T

50000 .

40000 r .

30000 .

20000

Cumulative execution time (ms)

10000

0 1 1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000 80000
Elapsed wall clock time (ms)
Figure 6-4. Execution times for real-time applications when propational sharing with

SMART shares 3:2:1 in system overload and underload

If the system were perfect, we would expect the three activiti es to accumulate processng
time in accordance with their shares during the first 40,000ms, then at the completion d
R1, R2, andR3 shoud be &leto completethe remainder of their deadlines sncethe system

isnolonger overloaded. In particular, the ided total cumulative execution timeswould be:
Activity R1: 400 x 3/6 = 2000 ms
Activity R2: 4000 x 2/6 + (1500 —1000) x 20 = 2333 ms

Activity R3: 4000 x 1/6 + (2000 —1000) x 20 = 26667/ ms.

84

The correspondng idea performance arves showing cumulative executiontime for each
adivity are plotted asdotted linesin Figure 6-4. Asthe system isoverloaded duingthefirst
40,000ms, na all deadlines can be met. Based ontheir respedive resource requirements

and shares, we would expect the total number of deadli nes met by each activity to be:
Activity R1: 2000/20 = 1000 out of 1000 ekadlines met
Activity R2: 23333/20 = 1166 out of 1500 ekadlines met

Activity R3: 26667/20 = 1333 out of 2000 ckadlines met.

3000

2500

2000 r i

1500

1000

Cumulative deadlines met

500

1 1 1 1 1 [} L

0
0 10000 20000 30000 40000 50000 60000 70000 80000
Elapsed wall clock time (ms)

Figure 6-5. Deadlines met by real-time gplicaions when propationa sharing with

SMART shares 3:2:1 in system overload and underload
The performance curves showing the ideal number of deadlines met for each activity are
plotted asdotted linesin Figure 6-5. These idea numbersassume not only that eadh activity
receivestheideal amourt of resources, bu also that all of that processingtime can be dfec-
tively used toward meeding deadlines; processngtimeis not wasted on deadlines that will
not be met. To dothis, it isimportant to na only allocate processngtime in theright sized
guantafor each activity, but also that the quanta be provided at the right timeto be synchro-
nized with the deadlines.

85

We can see there is a close match between the measured results and the ideal curves. The
total cumulative execution times of R1, R2, and R3 were 19,045, 23,061and 25,094ms,
respectively. The total number of deadlines met by R1, R2, and R3 were 999 out of 100Q
1100 out of 150Q and 1331out of 200Q respedively. The difference between the total

number of expeded deadlines met and the actual number of deadlines met islessthan 2%.

We divide the resultsinto the overloaded and undbrloaded periods. During the first 40 sec-
onds of elapsed wall clock time, all threeapplications are executing. The slopes of the left
graph show the respective measured resource cnsumptions of R1, R2, and R3to bein the
ratio 2.80: 2.02: 1.00.Note that the resource consumption d R1 isabit less than its pro-
portional share because it does not require its propartional share to complete its deadli nes.
If the system were perfect and that there are no variability in the adivities exeautiontime,
we expect applications R1, R2, and R3 to meet rougHy 10®%, 66%, and 33% of their
respective deadlines. Duringthis period, each application had 1000 @adlinesthat it desired
to have satisfied. Figure 6-5 shows the number of deadlines met. Duringthefirst 40 second
period, R1 met 999 deadli nes, R2 met 604 deadlines, and R3 met 345 deadlines. They cor-
relate well with the ideal values.

R1 completesits execution at the beginning d the next 20 seconds of wall clock timewhile
R2 and R3 continue to compete for resources. Note that the remaining adivities are no
longer requesting more than their propartional shares. The slopes of Figure 6-4 show the
respective measured resource consumptions of R2 and R3 during this period to be in the
ratio 1. : 1.00.Both activities missa wupe of deadlines as R1 is completing its execu-
tion, bu then are ale to satisfy all of their remaining deadlines. This example shows
SMART automatically adjusts to the load condtion and transitions between owerload and
underload gracefully.

6.2.3.Conventional and Real-time Applications

6.2.3.1.Real-time Requests Using L essthan Proportional Share
In mixing conventional and real-time applications, we first consider the case when the real -

time gplications require less than their propationa share of resources to satisfy their

86

dedlines. We show two examples of this case in Figures 6-6 and 67 using applicaions

with different resource requirements and dff erent share assignments.

60000 T T T T T T T

50000 .

40000

C1

30000 .
- R1

20000

Cumulative execution time (ms)

10000 | ~ §

O 1 1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000 80000
Elapsed wall clock time (ms)
Figure 6-6. Execution times for rea-time and conventiona applications when

propartional sharingwith equal SMART shares

Figure 6-6 showstwo equal-share gplications, R1 and C1, of which Rl isred-time andC1
is conventional. In particular, R1 required 1820 ms of execution time for each o its
resourcerequests, and hesa40msdeadlinefrom itsinstantiation. If the system were perfect
and R1 required exactly 20msto processeach 40ms deadli ne request, we would expect R1
nat to miss any deadlines and for each application to use 50% of the system, as il lustrated
by the datted line in Figure 6-6. Our measured results correspondwell with the ideal and
indicate that R1 did na missany o its deadlines. Since R1 actually required slightly less
than its propartional share of resources, C1 was al owed to consume more than its propar-
tional share and make better progress In total, R1 consumed rougHy 48% of the system

while C1 consumed the remaining 524 of the system.

Figure 6-7 shows a periodic red-time gplicaion R2 and a conventional application C2
whose respective sharesareintheratio 3: 1. R2 required 28 30 ms of processngtimewith

aperiodic deadline every 40ms. If the system were perfect and R2 required exadly 30 ms

87

to processeach 40ms deadline request, we would expect R2 nat to missany deadlines and
for R2 and C2 to consume resources in propation to their shares, 75 and 2%, respec-
tively, asill ustrated bythe dotted linesin Figure 6-7. Our measured results correspondwell
with theided andindicate that R2 did na missany o its deadlines. R2 consumed rougHy
72% of system while C2 consumed the remaining 28% of the system. The slight difference
from ided is due to the fact that R2 consumes alittle bit lessthan the stated ideal .

60000 T T T T T T T

50000 | R2 - .

40000

30000

20000

Cumulative execution time (ms)

C2

10000

O 1 1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000 80000
Elapsed wall clock time (ms)
Figure 6-7. Execution times for rea-time and conventiona applications when

propationa sharingwith SMART shares 3:1

6.2.3.2.Latency Tolerance

To show some of the benefit of latency tolerance, we again consider the case of two equal-
share gplications, R1 and C1, of which Rl isred-time and C1isconwventional. Inthiscase
however, while each resource request of R1 still hasa40msdeadlinefromitsinstantiation,
the work required for each resourcerequest varieswith an even dstribution between 1030
ms of executiontime, with an average of 20 ms. While the resource mnsumption graphin
this case remains smilar to Figure 6-6 gven the time scalesinvoved, the number of dead-
lines that are missed by R1 depends on the latency tolerance of C1. If C1 cannd tolerate
any latency, then R1 misses 192 ou of 1999 ceallines. However, if C1 is given alatency

88

tolerance of just 100 ms, R1 can execute withou missgng any of its deadlines, despite the
fact that its desired resource consumption for any gven resource request varies from 25%

to 79 of the machine.

6.2.3.3.Proportional Sharing with Latency Tolerance in Overload

We demonstrate that SMART is able to share resources propartionally even for mixes of
conventional and real-time appli cations in which the set of red-time resource requests is
overloaded. Figures 6-8 and 69 show the results of executing three equal-share gplica-
tions, R1, R2, and C1, of which R1 and R2 are real-time and C1 is conventional. In partic-
ular, R1 and R2 are identical applications, each requiring rougHy 3841 ms of exeaution
time for eadh resource request, and each resource request having a 60 ms deadline from its
instantiation. Each real-time activity processed a sequence of 2000resourcerequests. Clis
a onventional activity with alatency tolerance of 200 ms and takes 40,000ms of process

ing time to complete.

90000 -

80000 | -
70000 | -
60000 | -
50000 | -
40000 | c1

30000 | =R |

R1
20000 1

Cumulative execution time (ms)

10000 a

O 1 1 1 1 1
0 20000 40000 60000 80000 100000 120000
Elapsed wall clock time (ms)

Figure 6-8. Execution times for rea-time and conventiona applications when
propartional sharingwith equal SMART sharesin system overload

89

2250 T T T T T

2000 r 1

1750 .

1500 r .

1250 + .

1000

750 | R1 §

R2
500 .

Cumulative deadlines met

250 .

O 1 1 1 1 1
0 20000 40000 60000 80000 100000 120000
Elapsed wall clock time (ms)

Figure 6-9. Deadlines met by rea-time gplicaions when propational sharing with
conventional applications with equal SMART sharesin system overload

If the system were perfect, we expect activities to share resources based ontheir shares
since the system is overloaded. As a result, each adivity shoud be alocated 1/3 of the
resources. All three activities sroud complete in 120,000ms. Their ideal performance
curvesfal onthedotted linein Figure 6-8. Given 1/3 of theresources, each red-time activ-
ity shoud be &leto complete half of its deadlines:

ActivitiesR1, R2: 2000 x (60/40) x 1/3 = 1000 out of 2000 akadlines met.

Figure 6-8 shows that all three applications consume nealy identical propations of the
resource, in close corresponcence with the ided. C1 was able to consume aslightly larger
portion d the processng time because it was always able to run if there were available
resources. R1 and R2 were only able to make valuable use of the processng time when it
was possble to satisfy their respective deallines. For instance, if R1 till had to run 40ms
to meet its deadline and the deadline was only 30 ms away, it would be uselessto run R1.

Figure 6-9 showsthat the number of deadlines met by R1 and R2 correspondwell with their
expected values. Out of 2000 aeadlines, R1 met 985 ceadlines while R2 met 998 deadli nes.

90

The number of respective deadlines that each of them completed isin theratio 1.00: 1.01,
which very closely corresponds to their shares. Over the course of 120 seconds of execu-
tion, the total amourt of time spent by bah R1 and R2 in processing deadlines that could
not be met was lessthan 1 second. The SMART scheduler is able to make dficient use of
processor cyclesto devote the processor alocations of both red-time goplications almost

entirely toward resource requests whose deadlines can be met.

The aility of the mnventional application C1 to tolerate latency was a contributing factor
in the ability of bath real-time goplications to meet such alarge percentage of their dead-
lines, given their propartional shares, variancesin executiontimes, andthe overloaded con-
dition. At the same time, the conventional application was gill able to consume dlightly
morethan its propartional share of procesor cyclesdueto its ability to runwhenever there
were cycles that could na be used effectively by the real-time applications. When the
latency tolerance of C1 was instead zero, the number of deadlines missed increased by
10%.

6.2.4.Summary of Microbenchmark Results

Our measurements of microbenchmark real-time and conventional appli cations runnng on
SMART demonstrate that SMART can provide propartional sharing acrossboth real-time
and conventional applications, even as the load onthe system changes from underload to
overload. Our empirical measurements correlate well with expected behavior, with each
applicaion oldaining rearly itsideal resource dl ocaionin each experiment. Furthermore,
our results also demonstrate that SMART is able to make effedive use of the propartional
share dlocation gven to areal-time application in meeting the deadlines of the application,

even when the system is overloaded.

6.3 Commercial Multimedia Video Applications

While microbenchmark performance is commonly used as a basis for evauating a
scheduler, the real test of the effectivenessof a scheduler is its performance on mixes of
real applicaions. Real appli cations are much more complex than microbenchmarks. This

is especially the case with multimedia video applications, which dften require intensive

91

processor as well as memory operations. They also often need accessto specialized inpu

and ouput devicesin conjunction with their need for processor cycles.

To provide an evaluation & SMART with real appli cations, we mnducted experiments on
amix of commercia multimediavideo applications. We present adual measurements from
these experiments to demonstrate how the performance of multimedia appli caions can be
improved usingthe SMART interface. Because UNIX SVR4 serves asacommon kesisfor
workstation operating systems, we have compared the performance of multimedia applica-
tions when using SMART against the performance of these gplicaions when using the
standard UNIX SVR4 schedulers. In particular, our experiments evaluate three different
schedulers: SMART, UNIX SVR4 time-sharing (TS) scheduling, and UNIX SVRA4 real-
time (RT) scheduling.

As a representative multimedia video appli cation, we used the SLIC-Video player, alow-
cost video product that captures and dsplays video imagesin real-time. As a baseline, we
measure the performance of the gplication when runnng onan aherwise quiescent sys-
tem. We then measure the performance of multiple SLIC-Video payers running under
UNIX TSand UNIX RT with adynamically changing load. To improve the video perfor-
mance, we describe a few simple modifications to the gplication that allow it to take
advantage of the SMART interface, then present results to quantify the performance

improvement achieved.

6.3.1.Application Description and Quality Metric

SLIC-Video isahardware/software video product used in Sun Microsystems workstations.
The SLIC-Video hardware mnsists of an SBus I/O adaptor that permits the decding and
digitization d analog video streamsinto a sequence of video frames. Thisvideo dgitizing
unit appears as a memory-mapped device in an application’s address gace and allows a
user-level applicationto acquire video frames. The SLIC-Video player software consists of
an application that capturesthe video datafrom the digitizer board, dthersto 8-bit pseudo
color inthe case of asystem with astandard 8-bit pseudo-color frame buffer controller, and
diredly rendersthe pixelsto the frame buff er whil e coordinating with the X window server

for window management. The resolution d the image rendered is configurable by the

92

applicaion. For our experiments, the image rendered was seleded to be astandard size of
320 x 24 pixels.

The digitizer board has alimited amourt of buffering that all ows the hardware to continue
to processan analog video stream into video frames whil e the software captures video data
from the digitizer board. The buffer has three slots that are organized as aring; whenit is
full, the hardware wraps aroundto the beginning of the buffer and owerwrites its contents.
Each slot isassigned atimestamp when it iswritten. Lockingis used to ensure that the hard-
ware does not overwrite abuffer slot that is being read by the software and the software
does not read a buffer slot that isin the midd e of beingwritten bythe hardware. In namal
playback mode, the hardware digitizer cooperates with the software apture by sending a
signal each time the hardware completesdigitizingaframe. Thesignal is synchronized with
the arrival rate of framesand accurs one full frametime dter the apture board first begins
digitizingaframe. Uponreceiving the signal, the software follows apdicy of readingfrom
the buffer dlot with the earliest timestamp. For our experiments, the arival rate of frames
from the hardwareto the softwareis 29.97frames per second(fps). Asaresult, the software
begins processng each dgiti zed frame roughy 33 ms after the hardware first begins digi-

tizing the correspondng frame of analog video.

To describe the performance of the video application, we first discussa metric for measur-
ingthe quality of itsresults. In video playback, thefirst goal in delivering the highest qual-
ity video is to preserve the temporal aignment of the incoming video stream. The time
delay between frame arival and frame display should befairly constant. In additionto con
stant time delay, it is desirable to have constant interdisplay times between displayed
frames. We would like to have dl of the incoming frames rendered if possible. If many of
the incoming frames canna be rendered ontime, it is desirable to discard framesin areg-
ularly spaced fashion for more constant interdisplay times as oppcsed to dscarding them
unevenly. This provides better video quality especially for high-motion scenes. In particu-
lar, uncertainty is worse than latency; users would rather have al0 fps constant frame rate
asoppased to aframe rate that varied naicealy from 2 fpsto 30fpswith amean of 15fps.
Finally, for amix of video players, it isdesirable to allow the user to hias the performance

of the gpli cations in accordancewith his preferences.

93

For our experiments, three SLIC-Video capture cards were added to the test system to
permit the execution d three video players srowing three different video sources at the
same time. The video sources used were avideo camera and television grogramming from
aSun Tuner. Video was displayed to the standard 8-bit pseudo-color frame buffer used on
the testbed system. As described earlier, the display was managed using the X Window
System.

6.3.2.Basdline Performance

In preparation for our discussion onthe performance of multiple SLIC-Video playersrun-
ning ondifferent schedulers, we first measured the performance of the SLIC-Video payer
running by itself onan atherwise quiescent system. The application was executed and mea-
sured for a 300secondtime period. The gopli cation characteristics measured were the per-
centage of CPU used, the percentage of frames displayed, the average and standard
deviationin the delay between the arival and dsplay of each frame, and the average and
standard deviation in the time delta between frames being dsplayed. The standard devia-
tioninthe delay between frame ariva andframe display isthe primary measure of quality.
It isindicative of how well the temporal alignment in the video stream is preserved. The
standard deviationin the time delta between frame displaysis a secondary measure of qual-
ity. It measuresthe variability in the interdisplay times. Separate measurements were made
for each 100secondexecution interval of the application. These measurements are shown
in Table 6-1. We performed these measurements using the UNIX SVR4 TS scheduler, the
UNIX SVR4 RT scheduler, andthe SMART scheduler. There was nosignificant difference

in the baseline measurements for different schedulers runnng the single video appli caion.

elapsed time || CPU usage |framesplayed| avg delay std delay avg delta std delta
0-100s 87.28% 99.73% 64.15ms 1.84ms 3343 ms 248 ms
100-200s 87.32% 99.80% 65.17 ms 1.93ms 3341ms 1.80ms
200-300s 87.35% 99.83% 66.19 ms 1.27 ms 3340ms 1.98 ms

Table 6-1. Baseline applicaion performance

The measurements $ow that SLIC-Video uses up rearly 90% of the CPU to dsplay video
at 29.97 328240 pxéd fps. It displays over 99% of the frames that arrive, andit does ©in

94

atimely manner that preserves the temporal alignment in the video stream. Both the delay
between frame ariva andframe display, andthetime delta between frames displayed have
minimal variation. The delay between frame arrival andframedisplay isrougHy two frame
times, correspondngto the gplication pdicy of processing the framein the digitizer hard-
ware buffer with the earliest timestamp. This delay is due to the software not receiving the
frame from the hardware digiti zer urtil at least one frame time after the frame arrivesto the
hardware, and the software requiring rougHy one frame time to processeach video frame.
The time delta between displayed frames is one frame time, correspondng to the fact that

over 99% of the frames that arrive are displayed.

6.3.3.Scheduler Experiments and M easurements

We examinethe impact of diff erent schedulers onthe performance of multiple SLIC-Video
players runnng undr adynamicaly changing load. The scenario we used was to first run
two video players V1 and V2 for 100 seconds, then start the exeaution d a third video
player V3 andrunall three video players for the next 100 seconds, then terminate the exe-
cution d V3 and continue runningV1 and V2 for 100secnds. In this <enario, we assume
that V1 andV2 aresimply executed by default with nouser parameterswith the expectation
that they deliver similar performance. In addition, we would like V3 to have twice the per-

formance of V1 and V2.

Using the baseline performance measurements, we first describe what the expected ided
performance should be for this <enario. Since asingle SLIC-Video player consumes
nealy the entire machine, it is not possible to execute two video payers at 30 fps. Given
the baseline processng requirements for this application, it would be possible for each
video player to sometimes display every frame and sometimes display every other frame,
but it would be better for each video player to maintain amore cnstant time delta between
theframesit displays. Asaresult, we would ideall y expect that duringthe first 100seconds
of execution, V1 and V2 would each reduce their frame rate by skipping helf of their
respective frames and dsplaying the other half. Note that this does nat require mnsuming
100% of the CPU. Ideally, thiswill result in the a66.73ms time delta between displayed

frames for each application. In addition, since each dgitizer still captures frames at 29.97

95

fps and its respective video player application processes the frame with the earliest
timestamp that is gored in the digitize’s buffers, the delay between frame arival and
display shoud be 100.10ms. By the same token when V3 begins, we would expect V1 and
V2 to reduce their frame rate further, displaying orly 25% of their frames, with delay and
time deltaof 166.83msand 13.47 ms, respectively. V3 should be able to dsplay 50% of
its frames, with delay and time delta of 100.10ms and 66.73ms, respedively. Upon
termination d V3, we would ideally expect that the performance of V1 and V2 would be
the same asduringthefirst 100seconds of their execution.In all cases, there shoud idedly
be zero variation in the time delay between frame arrival and dsplay and the time delta

between frame displays.

We compare the ided CPU allocations and application performance results with the ectual
CPU allocations and applicaion performance results obtained when running the mix of
video players on different schedulers. We considered five scheduler scenarios, which are
discussed in further detail in Sections 6.3.4through 6.3.7

* UNIX TS: Thethreevideo applicaionsare run wsing the TS scheduling classin UNIX
SVR4, asdiscussed in Section 63.4.

* UNIX RT: The three video applications are run wsing the RT scheduling class in
UNIX SVR4, as discussed in Section 6.3.5.

* UNIX TS2: Thethree video applications are again runasin the UNIX TS case, bu the
applications are modified to doabetter job o synchronizing the video frame process
ing with the arival of video frames. The modifications are discussed in detail in Sec-
tion 6.3.6.

* SMART: The three video applications are run ising SMART, as discussed in Sedion
6.3.7.

The CPU all ocations obtained onthe different schedulers are shown in Figure 6-10. The
applicaion performanceresults obtained ondifferent schedulersare shown in Figures6-11
through 615. Figure 6-11 shows the percentage of frames displayed. Figures 6-12 and 6
13 show the average and standard deviationin the delay between the arrival and dsplay of

96

each frame. Figures 6-14 and 615 show the average and standard deviation in the time
delta between frames being dsplayed.

100

]] — M v3
80+ R
H v

60 1+

401

Percent CPU usage

201+

Ideal
UNIX TS
UNIX TS2
SMART
Ideal
UNIX TS
UNIX RT
UNIX TS2
SMART
Ideal
UNIX TS
UNIX RT
UNIX TS2
SMART

o
[BEY
o
o
2]
[N
o

0-

N

00s 200-

w

00s

Figure 6-10.CPU allocations obtained by video payers V1, V2, and V3 on different
schedulers during threedifferent time intervals

6.3.4.UNIX SVR4 Time-sharing Performance

We ran the experimental scenario described in Section 6.3.3under standard UNIX TS
scheduling. To gve V3 rougHy twice the performance of V1 and V2 under UNIX TS
extensivetrial anderror wasrequired to findasuitable “nice” setting for V3to hiastheall o-
cdion d resourcesin accordance with the propartions desired. The nice setting for V3 was
+15.The“UNIX TS’ barsin Figure 6-10 show theresulting CPU all ocationsfor this exper-
iment. Despite extensive trial and error, there is a noticeable difference between the ideal
CPU adllocations and the CPU allocations obtained under UNIX TS for al of the video
applicaions.

The second lar in Figures 6-12 and 6-14 show the average delay and time delta measure-
mentsfor the video appli cations running undr UNIX TS, and Figures 6-13 and 615 show
the standard deviations in thase measurements, respectively. Whil e the average delay and

average time delta measurements were quite acceptable, the standard deviation in those

97

100 100

Time range 0 - 100 s Time range 200 - 300 s

80 1— 80 1

60 1+ 60
401 40

201 20 1

Percent frames displayed
|
|

Percent frames displayed

E

Ideal
UNIX TS
UNIX RT

UNIX TS2
SMART

Ideal
UNIX TS
UNIX RT

UNIX TS2
SMART

Ideal
UNIX TS
UNIX RT

UNIX TS2
SMART

Ideal
UNIX TS
UNIX RT

UNIX TS2
SMART

<
[y
<
N
<
=
<
N

100 -
S Time range 100 - 200 s
()
T 80t
o
1]
©
m60'_
()
5
&= 401
=
c
[}
S 201
()
o
of—uwr—mr— T VW E N E T O E N E
0o F x u o 0o FH x 0 o H x 0
S x x B < T x x B < T x x B <
zz2z zz22z zZz2%23
55z9 55z9» 55z°9
-] -] -]

<
-
<
N
<
W

Figure 6-11. Percentage of frames displayed by uideo players V1, V2, and V3 when
runnng on dfferent schedulers during three different time intervals
measurements was nat. During the first 100secnds of executionwith just V1 andV2 run-
ning, the standard deviation in the delay between frame arival and frame display for V1
and V2 was more than 45ms, and kalloored to more than 100ms with V3 also running.
The standard deviation in the time delta between frame displays with just V1 and V2 run-
ning was more than 50 ms, and grew to more than 100ms with V3 also running. The per-
formance of V3, while better than V1 or V2 duingthe sametimeinterval, exhibited alarge
amourt of videojitter aswell. Its gandard deviationin the delay between frame arival and
frame display, as well as its gandard deviation in the time delta between frame displays,

was over 65 ms, nearly two frame times of variation. The performance is far fromideal.

98

Time range 0 - 100 s Time range 200 - 300 s

[EnY

N

o
|

[EEY

N

o
|

©
o
|
|
|
©
b=
|
|
|

o
o
I

Average frame delay (ms)
|
Average frame delay (ms)
(o))
o
|
|

w
o
I
w
o
|

o
o

UNIX TS
UNIX RT

Ideal
UNIX TS2

UNIX TS
UNIX RT
UNIX TS2
SMART
Ideal
SMART
Ideal
UNIX TS
UNIX RT
UNIX TS2
SMART
Ideal
UNIX TS
UNIX RT
UNIX TS2
SMART

<
=
<
N
<
iy
<
N

@ 1801 Time range 100 - 200 s
£ — —
Z 1501 _
()
T 120
£
G 901
S 60
o
()
> 301
<
O-TGU)P—NP— T O N T 0 N
o P ¥ o F oo S For oo
S x x P < T x x F < T x x F <
zz2%3 - S Zx=
55z9 s5z0» 5s5z0
-] =) =)
Vi V2 V3

Figure 6-12. Average frame delay for video players V1, V2, and V3 when running or
different schedulers during three different time intervals

6.3.5.UNI X SVR4 Real-time Perfor mance

We ran the same experimental scenario o threevideo players under standard UNIX RT
scheduling. V1 and V2 are bath assigned the same default priority, while V3isassgned a
higher priority than either V1 o V2. The CPU all ocations and appli cation measurements
for this experiment are antrasted with the results under UNIX TSin Figures 6-10through
6-15.

Whil e the standard deviations in the quality metrics are better than thase under UNIX TS,
UNIX RT suffers from two maor problems. The first problem is evident by the
99

120

120

Time range 0 - 100 s Time range 200 - 300 s

100 + 100 +

©
o
|
©
o
|

N
o
|
N
o
|

N
o
I

Std deviation frame delay (ms)
(e}
o
I

Std deviation frame delay (ms)
N (e}
Q o
I I

o

o

Ideal
Ideal
Ideal

UNIX TS
UNIX RT
UNIX TS2
SMART
UNIX TS

UNIXRT|_]
UNIX TS2

SMART []
UNIX TS
UNIX RT
UNIX TS2
SMART
Ideal
UNIX TS
UNIX RT
UNIX TS2

SMART []

<
=
<
N
<
iRy
<
N

120

Time range 100 - 200 s

100
80
60
40

20 1

Std deviation frame delay (ms)

Ideal
Ideal

UNIX RT |

UNIX TS2 |

UNIX TS
UNIX RT
UNIX TS2
SMART
UNIX TS

SMART [
Ideal
UNIX TS
UNIX RT
UNIX TS2
SMART

\Y,

-
<
N
<
W

Figure 6-13. Standard deviationin the frame delay for video playersV1,V2,and V3 when
runnng on dfferent schedulers during three different time intervals
performance measurements on V3. Since V3 has ahigher priority than either V1 or V2, its
performance should be better that of V1 or V2. However, the performance of V3isactually
somewhat worse than either of the other video players. The problem is that the signaling
mechanism used to inform the user-level application d the arrival of aframeis a system-
level function that therefore executes at a system-level priority. In UNIX SVR4, processes
that are scheduled by the real-time scheduler are given higher priority than even system
functions. The result is that the signal mechanism does not get to execute urtil all of the
real-time video players finish processng their respective frames and dock waiting to be

informed of the arival of anew frame to be processd. This seridli zes the exeaution d all

100

Timerange 0- 100 s Time range 200 - 300 s

A
(o]
o
[EnY
(o]
o

[EnY
a1
o
|
[EEY
a1
o

SMART
w o
o © o
| | | I I |

120+ 120

Average time delta (ms)
(o}
o

Average time delta (ms)
(e}
o

w o
o © O
| |
Ideal
UNIX TS|
UNIXRT[]
UNxTs2[]
Ideal
UNIX TS|
UNIXRT []
UNIX TS2
SMART

T N N T 0O E &N
n
g LEPg T XxF 2
> 5 X =2 S 5 X =
32320 S5z0
25 2 5
Vi V2 Vi V2
Time range 100 - 200 s
- 180 9
S
~ 150+
s _
= i
o< 1201 —
)
£ 90;
)
S 601
2
& 301
O'T‘;mt—mr— B O E N T 0 E N
o FH x u o o FH x u o o FH x u o
'2><><'_< E><><"<E E><><"<(
EEXE E—XE E—XE
55z©9 55z0 55z0
)) 5
V1 V2 V3

Figure 6-14. Average time delta between frames for video players V1, V2, and V3 when
runnng on dfferent schedulers during three different time intervals

of the video applications, irrespedive of their assgned priority. The result for the end user

is a complete lack of control in biasing the alocation d resources according to his

preferences.

A more fundamental problem with runnng video under UNIX RT isthat because the video
applicaionsare given the highest priority, they are able to take over the machine and starve
out even the processng required to all ow the system to accept user input. Theresult is that
the user is unable to regain control of the system withou restarting the system. Clearly
UNIX RT isan urecceptable solution for multimedia gopli cations.

101

120 . 120
Time range 0 - 100 s

Time range 200 - 300 s

100 + 100

©
o
|

Std deviation time delta (ms)
(o))
- ; > O <
I
Std deviation time delta (ms)
(o2} (o]
o o

o S &

| i i i i I
UNIXTS[]
UNIXRT|___]
UNIXTS2|]

Ideal
Ideal
Ideal

oA
o o o
I |

UNIX TS

UNIX RT |]

UNIX TS2

UNIX TS
UNIX RT
UNIX TS2
SMART

SMART 1]

Ideal
UNIX TS
UNIX RT
UNIX TS2
SMART

SMART[]

V1 V2 V1 V2
120

Time range 100 - 200 s

Std deviation time delta (ms)

Ideal
Ideal
Ideal
UNIX RT
SMART

SMART |

UNIX RT |
UNIX TS2

UNIX TS
UNIX RT
UNIX TS2
SMART
UNIX TS
UNIX TS2 |
UNIX TS

<
=

\Y,

N
<
w

Figure 6-15. Standard deviation in the time delta between framesfor video playersV1,V2,
and V3 when running on dfferent schedulers during three different time
intervals

6.3.6.Managing Timein UNIX SVR4 Time-sharing

The SLIC-Video production code used in the previous experiments does not explicitly
account for the frame arival times, nar doesit explicitly attempt to adjust itsrate of execu-
tion when many o the frames canna be processed. Insteal, it smply processs video
framesasfast asposgble. In particular, when the application finishes processingits current
frame, if another frame has already arrived, the gpli cationsimply processesthe new frame

immediately irrespedive of when the frame arived. This results in a substantial variance

102

in the time delay between the arival of the frame and its display. Rather than dscarding
frames that cannot be processed in time at aregularly spaced interval, the goplication hep-
hazardly attempts to render whatever frames it can, implicitly discarding those frames

canna be processed before they are overwritten by the hardware.

In an attempt to addressthese problems and improve the performance under UNIX TS, the
video appli cationwas modified to accourt for the frame arrival timesin determiningwhich
frames it shoud render and when it shoud render each of thase frames. The gplicaion
seleds a time delay in which to render its video frames. It measures the amourt of wall
clock time that elapses during the processng d each frame. Then, it uses an exporential
average of the dapsed wall clock time of previously displayed frames as an estimate of how
longit will taketo processthe aurrent frame. This estimate is used in conjunction with the
frame arrival time to determine if the given frame can be displayed ontime. If the video
player isready to display its frame early, then it delays until the appropriate time; but if it
is late, it discards its current frame. The applicaion defines early and late as more than
16.68ms (half of the time delta between arriving frames) early or late with respect to the
seleded time delay.

The seleded time delay is used by the application to determine which frames to discard.
The goplicationwill try torender 1 out of N frames, where N istheratio of the selected time
delay over the time delta between arriving frames. The gplication attempts to change its
discard rate based on the percentage of framesthat are rendered ontime. If alarge percent-
age of the frames rendered are | ate, the application will reduceits frame rate and increase
its sleded time delay accordingly. If the frames are all being rendered ontime, the gpli-
caionwill increase its frame rate and reduce its slected time delay to improve its quality
of service. Notethat the burden of these appli cation modificationsis placed squarely onthe
applicaion developer; no assstanceis provided bythe scheduler.

We ran the same experimental scenario of threevideo players under standard UNIX TS
with the above mentioned code modifications. The CPU all ocations and applicationresults
are shown in Figures 6-10 through6-15 as “UNIX TS2". We see that the performance is
better than UNIX TS without explicit time management in the application, and daes not

103

have the pathdogical behavior foundwith UNIX RT. However, the standard deviationin
timedelay for V1andV2 while V3isrunningis dill more than 40ms, whichisfar beyond
the modest 16.83ms threshold o timelinessused by the application. This is the result of
two problems. One isthat the scheduler, having no knevledge of the timing requirements
of the gplicaion, das nat alocae resources to each application at the right time. The
other problem isthat the goplication hes adifficult time of selectingthe best time delay and
frame rate to use for the given loading condtion. Withou scheduler information, it must
guessat when theload changes based onits own estimates of system load. Theresult isthat
its slected time delay and frame rate oscil late back and forth due to inaacurate knowledge
of the dlocation d processing time that the scheduler will give the gplication undr the

given system load. Guessngis not goodenough.

6.3.7.SMART UNI X SVR4 Performance

To enable the SLIC-Video application to take alvantage of SMART, threesimple modifi-
caionswere madeto the ade described in Section 63.6. First, rather than havingthe gpli-
cdionrely onits own estimates of whether or not a frame islate and should be discarded,
the appli cation setsatime nstraint that informsthe scheduler of its dealline and cpu-esti-
mate. The deadlineis st to be 16.68ms after the selected time delay. The cpu-estimateis
cdculated in the same manner as the average elapsed wall clock time: the application mea-
sures the execution time required for each frame and then uses an exporentia average of

the execution times of previoudy displayed frames as the cpu-estimate.

Second, uporeetting the given time constraint, the gpli cation sets its natify-time equal to
zeo, thereby requesting the scheduler to ndify the goplicationright away if ealy estimates
predict that the time cnstraint canna be met. When anatificationis sent to the applicaion,
the application’s natify-hander simply records the fad that the ndatification has been
received. If the natificationisreceived bythe time the gplication begins the computation
to processand dsplay the respective video frame, the frame is discarded; otherwise, the

applicaion simply alows the frame be displayed late.

Third, rather than having to guess what the system loading condtion is a any gven

moment, the gplication oldainsits avail abili ty from the scheduler. It reducesitsframerate

104

if frames canna be completed on time and the required computational rate to process
frames on time & the aurrent frame rate is greater than its al ocdion rate. It increases its
frame rate if the availability indicaes that the consumption rate is lessthan its all ocaion
rate.

We ran the same experimental scenario of three video players under SMART, taking
advantage of its real-time API. The CPU allocation and application results of this experi-
ment are shown in Figures 6-10 through6-15, respectively. Not only does SMART effec-
tively allocate CPU time in accordance with the user preferences for the experiment,

SMART provides application results that are closest to the ideal performance figures.

In particular, SMART providesthe smallest variation d any scheduler in the delay between
frame arival and frame display. The delay iswell under 10 msfor all of the video players.
Discounting the UNIX RT scheduler which ignares the user preferences, SMART aso
givesthe small est variation d any scheduler in the time delta between frames. The superior
performance obtained by wsing the SMART interface an be dtributed to two fadors. One
factor isthat the scheduler accourts for the time constrai nts of the appli cationsin managing
resources. The second fador is that the gplicaion is able to adjust its frame rate more
effedively because the SMART interface dlows it to obtain availability information from
the scheduler.

6.4. Multimedia, I nteractive, and Batch Applications

While many multimedia gopli cation studies focus exclusively on audio o video appli ca-
tions, multimedia encompasses a much broader range of activities. In addition, it isimpor-
tant to redi ze that audio and video applications must co-exist with conventional interactive
and hetch applications in a general-purpose computing environment. We believe it is
important to uncderstand the interactions of these diff erent classes of applicaions and pro-

vide good performance for all classes of appli cations.

To evaluate SMART in this context, we have condwcted experiments on an applicaion
workload with a wide range of classes of applications in a fully-functional workstation

environment. We describe two sets of experiments with amix of real-time, interadive and

105

batch appli cations executing in aworkstation environment. The first experiment compares
SMART with two existing schedulers: the UNIX SVR4 scheduler, bah red-time (UNIX
RT) andtime-sharing (UNIX TS) pdlicies, and a WFQ procesor scheduler. These sched-
ulers were chosen as a basis of comparison kecause of their common use in practice and
research. UNIX SVR4 isa common kasis of workstation operating systems used in prac-
tice, and WFQ is a popuar scheduling technique that has been the basis of much recent
schedulingresearch. The secondexperiment demonstratesthe ability of SMART to provide
the user with predictable resource allocation controls, adapt to dyramic changes in the
workload, and deliver expected behavior when the system is not overloaded.

Three appli cations were used to represent batch, interactive and real-time computations:

* Dhrystone (batch) — This is the Dhrystone benchmark (Version 1.1), a synthetic

benchmark that measures CPU integer performance.

* Typing (interactive) — This application emulates a user typing to a text editor by
receiving a series of charaders from aseria inpu line and wsing the X window server
[60Q] to dsplay them to the frame buffer. To enable arealistic and repeatable sequence
of typed keystrokes for interactive applications, a hardware keyboard simulator was
constructed and attached via aserial line to the testbed workstation. This device is
capable of recording a sequence of keyboard inpus, and then replaying the sequence

with the same timing charaderistics.

* Integrated Media Sreams Player (real-time) — The Integrated Media Streams (IMS)
Player from Sun Microsystems Laboratories is a timestamp-based system capable of
playing synchronized audio and video streams. As described in Section 3.5,the gpli-
cation was developed and tuned for the UNIX SVR4 time-sharing scheduler in the
Solaris operating system. For the experiment with the SMART scheduler, we have
inserted additional system call sto the application to take advantage of the features pro-
vided by SMART. The detail s of the modifications were described in Section 3.5 We

use this applicationin two dfferent modes:

106

News (real-time) — This application dsplays s/nchronized audio and video streams
from local storage. Each media stream flows under the direction d an independent
thread of control. The audio and video threads communicate througha shared memory
region and use timestamps to synchronize the display of the media streams. The video
inpu stream contains frames at 320x240 joxel resolution in JPEG compressed format
at rougHy 15 frames/second, thoughthere is sme variation in the time between suc-
cessve timestamps. The aidio inpu stream contains dandard 8-bit p-law monaural
samples. The captured data is from a satelli te news network. As described in Sedion
3.5, the audio and video streams were defined by the application to be synchronized if
the respective video frame was displayed within 20ms of the crrespondng dock of
audio samples. A video frameis considered too early or toolate if it is displayed more

than 20ms early or late with resped to the audio.

Entertain (real-time) — This application pocesses video from local storage. The
video inpu stream contains frames at 320x240 jxel resolution in JPEG compressed
format at roughly 15 frames/second. The gplication scales and dsplays the video at
640x480 jpxel resolution. The captured data contains a mix of television program-
ming, including sitcom clips and commercias. The video stream is not displayed in
synchrony with any audio, so the timestamps on the video inpu stream determine
when to dsplay each frame. A video frame is considered too early or too late if it is

displayed more than 20ms early or late with respect to its associated timestamp.

6.4.1.Application Characteristicsand Quality Metrics

Representing dff erent classesof applications, Typing, Dhrystone, Newsand Entertain have

very different charaderistics and measures of quality. For example, we cre @ou the

resporsetimefor interadive activiti es, the throughpu of batch activities and the number of

deallines met in red-time activities. Before discussng hov a combination d these appli-

cdions executes on dfferent schedulers, this sdion describes how we measure the quality

of each of the different applications, and hav each would perform if it were to run onits

own.

107

Table 6-2 shows the execution time of each application onan atherwise quiescent system
using the UNIX SV R4 scheduler, measured over a time period o 300 seconds. We note
that there is no significant difference between the performance of different
schedulers when running orly one gpli cation. The execution times include user time and
system time spent on tkehalf of an application. The Dhrystone batch application can run
whenever the processor isavail able and can thus fully utili ze the procesor. The exeaution
of other system functions (fsflush, window system, etc.) takes less than 1% of the CPU
time. The measurements on the red-time applications are taken every frame, and thase for
Typing are taken every character. None of the real-time and interadive gplicaions can
take up the whole machine onits own, with bah News audio and Typing taking hardly any
time at all. The video for News takes up 424 of the CPU, whereas Entertain, which ds-
plays sded video, takes up aimost 60% of the processor time.

Name Basis of No. of CPU Time CPU Time | % CPU Avg.

M easurement Mesasurements Avg. Std. Dev.
News audio per segment 4700 1.54 ms 0.79 ms 2.42%
News video per frame 4431 28.35 ms 2.19ms 42.34%
Entertain per frame 4487 39.16 ms 271 ms 5855%
Typing per charader 1314 1.96 ms 0.17ms 0.86%
Dhrystone per exeaution 1 298.73 s N/A 99.63%

Table 6-2. Standalone execution times of applications

For each application, the quality of metric is different. For Typing, it is desirable to mini-
mize the time between user inpu and system resporse to a level that is faster than what a
human can readily detect. This means that for simple activities such as typing, cursor
motion, @ mouse selection, system resporse time shoud be lessthan 50:150ms [62]. As
such, we measured the Typing charader latency and determine the percentage of charaders
processed with latency lessthan 50ms, with latency between 50-150ms, and with latency
greater than 150ms. For News audio, it isdesirable not to have any artifactsin audio ouput.
As sich, we measured the number of News audio samples dropped. For News video and
Entertain, it is desirable to minimize the diff erence between the desired display time and
the actual display time, whil e maximizing the number of frames that are displayed within
their time constraints. As such, we measured the percentage of News and Entertain video

frames that were displayed ontime (displayed within 20ms of the desired time), displayed

108

ealy, displayed late, andthe percentage of framesdropped na displayed. Finally, for batch
applicaions such as Dhrystone, it is desirable to maximizethe processing time devoted to
the application to ensure as rapid forward progressas possible. As such, we ssmply mea-
sured the CPU time Dhrystone accumulated. To establi sh a baseline performance, Table 6-

3 shows the performance of each appli cation when it was executed onits own.

Name Quality Metric OnTime| Early Late |Dropped| Avg. Std.
Dev.
News audio | Number of audio dropouts|{100.00%| 0.00%]| 0.00%]| 0.00% 0 0
Newsvideo | Actual display timeminus| 99.75%| 0.09%| 0.13%| 0.02%| 1.50ms| 2.54ms
desired display time

Entertain | Actual display timeminus | 99.58%| 0.22%| 0.13%| 0.07%| 1.95ms| 3.61ms
desired display time

Typing |Deay from charader input | 100.00% N/A 0% N/A|[26.40 ms| 4.12ms
to charader display
Dhrystone | Accumulated CPU time N/A N/A N/A N/A|298.73 s N/A

Table 6-3. Standalone application quality metric performance

While measurements of accumulated CPU time ae straightforward, we note that several
steps were taken to minimize and quantify any error in measuring audio and video perfor-
mance as well as interactive performance. For News and Entertain, the measurements
reported here are performed by the respective gplicaions themselves during exeaution.
We dso quantified the error of these internal measurements by using a hardware device to
externally measure the actual user perceived video dsplay and audio dsplay times [61].
External versusinternal measurementsdiffered bylessthan 10ms. The differenceisdueto
the refresh time of the frame buffer. For Typing, we measured the end-to-end charader
latency from the arival of the dharader to the system in the inpu device driver, through
the processng d the dharacter by the gplication, unil the actual display of the darader
by the X window system charader display routine.

6.4.2.Scheduler Characteristics

To provide a daracterization d scheduling owerhead, we measured the context switch
times for the UNIX SVR4, WFQ, and SMART schedulers. Average context switch times
for UNIX SVR4, WFQ, and SMART are 27 us, 42us, and 47us, respectively. These mea-

surements were obtained running the mixes of appli cations described earlier inthis ®dion.

109

Similar resultswere obtained when we increased the number of real-time multimedia gpli-
caionsin the mix up to 15,at which pdnt no further multimedia goplications could be run

due to there being nomore memory to all ocate to the gplications.

The UNIX SV R4 context switch time essentially measures the context switch overhead for
ascheduler that takes almost notimeto decide what adivity it needsto execute. The sched-
uler simply selects the highest priority activity to exeaute, with al adivities already sorted
in priority order. Note that this measure does not account for the periodic processing done
by the UNIX SV R4 timesharing pdicy to adjust the priority levels of all activities. Such
periodic processngis naot required by WFQ or SMART, which makes the comparison o
overhead based oncontext switch times more favorable for UNIX SVR4. Nevertheless, as
adivitiesaretypically scheduled for time quanta of several milli seconds, the measured con-
text switch times for al of the schedulers were nat foundto have asignificant impact on

applicaion performance.

For SMART, we dso measured the st to an applicaion d assgning scheduling parame-
ters such astime constraints or reading bad schedulinginformation. The cost of assigning
scheduling parametersto an activity is 20 us whil e the cost of reading the schedulinginfor-
mationfor an adivity isonly 10us. The small overheal easily allows application develop-
ers to program with time nstraints at a fine granularity withou much penalty to

applicaion performance.

6.4.3.Comparison of Default Scheduler Behavior
Our first experiment is smply to run all four appli cations (News, Entertain, Typing, and

Dhrystone) with the default user parameters for each o the schedulers:

* UNIX RT: Thereal-time News and Entertain appli cations are put in the real-time class

leaving Typing and Dhrystone in the time-sharing class

« UNIX TS: All the gplicaions are run in time-sharing mode. (We also experimented
with puting Typingin the interactive appli caion class and oliained dlightly worse per-

formance.)

110

* WFQ: All the gplications are run with equal share.

* SMART: All the applications are run with equal share and equal priority.

Because of their computational requirements, the exeaution d these goplicaionsresultsin
the system being owerloaded. In fad, the News video and the Entertain appli cations alone
will fully occupy the machine. Both the Typing and News audio appli cations hardly use any
CPU time, taking upatotal of only 3-4% of the CPU time. It isthus desirable for the sched-
uler to deliver short latency on the former application and meet all the deadlines on the
latter application. With the default user parametersin UNIX TS, WFQ, and SMART, we
expect the remainder of the computationtimeto be distributed evenly between News video,
Entertain, and Dhrystone. Even with an ideal scheduler, we expect the percentages of the

frames dropped to be 25% and 4% for News video and Entertain, respedively.

CPU allocation

100

% 80l & other
g] News audio
; 601] News v.ideo
o B Entertain
© L1 Typing
c 401+
8 [| Dhrystone
o
o 201

O 4

©
[}
=

UNIX RT
UNIX TS

WFQ
SMART

Scheduler used

Figure 6-16. CPU allocations obtained by appli cations when run with default behavior on
different schedulers

Figure 6-16 presents the CPU allocation acrossdiff erent appli cations by dfferent schedul-

ers. It includes the percentage of the CPU used for executing aher system functions such

as the window system (labeled Other). The figure also includes the expected result of an

ideal scheduler for comparison pupaoses. For the real-time goplications, Figures 6-17 and

6-18 show the percentage of media unitsthat are displayed ontime, early, late, or dropped.

111

For theinteractive Typingapplication, Figure 6-19 showsthe number of charadersthat take
lessthan 50msto dsplay, take 50-150msto dsplay, and take longer than 150msto ds-
play. Figures6-20through 623 present more detail by showingthe distributions of the data
points. We have also included the measurements for each o the gplications running by
itself (Iabeled Sanddone) in the respective figures. We observe that every scheduler han-
dlesthe News audio applicaionwell with noaudio dropous. Thuswewill only concentrate

on dscussing the quality of the rest of the goplications.

News audio News video

100

O Dropped
B Late
O Early
B on Time

80

40

20

Percent of total media units

Ideal

©
4]
h=l

UNIX RT
UNIX TS

WFQ
SMART
UNIX RT
UNIX TS

WFQ
SMART

Scheduler used

Figure 6-17.News application performance on dfferent schedulers as measured by
percentage of audio and video samples delivered ontime
Unlike the other schedulers, the UNIX RT scheduler gives higher priority to applicaions
in the real-time class. It devotes most of the CPU time to the video applicaions, and thus
drops the least number of frames. (Nevertheless SMART is able to deliver more on-time
frames than UNIX RT for the News video, while using less resources.) Unfortunately,
UNIX RT runs the real-time appli cations aimost to the exclusion d conventional applica-
tions. Dhrystone getsonly 1.6% of the CPU time. More disturbingly, the interactive Typing
applicaiondoes nat get even the little processng time requested, recaving orly 0.24% of
the CPU time. Only 635out of the 1314characterstyped are even processed within the 300
second duation, and rearly all the characters processed have an uracceptable latency of

greater than 150ms. Note that putting Typing in the real-time classdoes nat al eviate this

112

problem as the system-level 1/0 processng required by the applicationis gill not able to
run, because system functions are run at alower priority than real-time adivities. Clearly,

it isnot acceptable to use the UNIX RT scheduler.

Entertain

100
n
qE,) 80l] Dropped
© M Late
5_5 60+ O EarIy‘
S W on Time
S a0t
c
[}
o
o 201+
[a

O.

©
[}
=

UNIX RT
UNIX TS

WFQ
SMART

Scheduler used

Figure 6-18. Entertain application performance on dfferent schedulers as measured by
percentage of video frames delivered ontime

All the other schedulers gread the resources relatively evenly acrossthe threedemanding
applicaions. The UNIX TS scheduler has lesscontrol over the resource distribution than
WFQ and SMART, resultingin adlight biastowards Entertain over Dhrystone. The basic
principles used to achieve fairness acrossapplications are the same in WFQ and SMART.
However, we observe that WFQ scheduler devotes dightly more (3.8%) CPU timeto Dhry-
stone at the expense of News video. This eff ect can be attributed to the standard implemen-
tation d WFQ processor scheduling whereby the propational share of the processor
obtained by an activity isbased orly onthe time that the activity is runrable and daes nat
include any time that the activity is sleeping.

Since the video applications either process a frame or discard a frame altogether from the

beginning, the number of video frames dropped is diredly correlated with the anourt of

time devoted bythe scheduler to the applications, regardlessof the scheduler used. The dif-

ference in al ocation accouns for the difference in the number of frames dropped between

the schedulers. We foundthat in eadh instance the scheduler drops abou 6-7% more frames
113

than theided computed using average computationtimes and the scheduler’s goecific dlo-
caionfor the application.

Typing
100

O Unprocessed

m Latency > 150ms
Ol Latency 50-150ms
| Latency < 50ms

80

60

40

20

Percent of total characters typed

Ideal
UNIX RT
UNIX TS

WFQ

SMART

Scheduler used

Figure 6-19. Typing application performance on dfferent schedulers as measured by
charader latency
The schedulers are distinguished by their ability to meet the time cnstraints of those
frames processed. SMART meetsasignificantly larger number of time cnstraints than the
other schedulers, delivering over 250% more video frames ontime than UNIX TS and over
60% more video frames on time than WFQ. SMART’s effediveness hads even for cases
whereit processes alarger total number of frames, asin the comparisonwith WFQ. More-
over, as shown in Figures 6-20 and 621, the late frames are handled soon after the dead-
lines, urlike the case with the other schedulers. As SMART delivers a more predictable
behavior, the applications are better at determining how longto seep to avoid dsplaying
the framestooearly. Asaresult, thereisare atively small number of early frames. It deliv-
ers on time 57% and 3P0 of the total number of frames in News video and Entertain,

respectively. They represent, respectively, 86% and 8% of the frames displayed.

To understand the significance of the bias introduced to improve the real-time and interac-
tive gplication performance, we have dso performed the same experiment with al biases
set to zero. The use of the biasisfoundto yield a 10% relative improvement on the sched-
uler’s ability in delivering the Entertain frames ontime.

114

News video

30 T T T T
Standalone —
UNIX RT —--
o5 | UNIXTS i
WF
” SMART ----
(O]
E 20+ g
o
I
2 15t i
©
1<
8
= 10 + g
o
5 - 4
O o '~ _— T R L .
-100 -50 0 50 100 150 200

Actual minus desired display time (ms)

Figure 6-20. Distributions of frame display times for the News application on different

schedulers
Entertain
30 T T T T
Standalone —
UNIX RT —--
o5 | UNIXTS i
WF
” SMART ----
(O]
E 20 g
o
I
8 15t i
©
€
8
= 10 + g
o
5 - 4
O . I.") [- L 771 R
-100 -50 0 50 100 150 200

Actual minus desired display time (ms)

Figure 6-21. Distributions of frame display times for the Entertain application ondifferent
schedulers

115

In contrast, the WFQ delivers 32% and 26 of the total frames on time, which represents
only 53% and 58% of the frames processed. There ae many more late framesin the WFQ
casethanin SMART. Thetardinesscausesthe applicationstoinitiate the processngealier,
thusresultingin a arrespondngly larger number of early frames. The UNIX TS performs
even more poaly, delivering 196 and 126 of the total frames, representing orly 22% and
21% of the frames processed. Some of the frameshanded by UNIX TS are extremely late,
causing many frames to be processed extremely early, resultingin avery large variancein

display time arossframes.

Typing
100 | '
2 .- Standalone —
% 90 7 UNIX RT —— |
Z; UNIX TS
c 80 : |
g SMART ----
5 /0 |
S
< 60 |
2
Y— 50 |
o
8 40 |
o
8 30 |
)
=
E 20 |
=]
g 10 |
O
K e POR— I
10 150 200 J

Character latency (ms)
Figure 6-22. Distributions of charader latency for the Typing applicaion on dfferent

schedulers
Finaly, as saown in Figure 6-22, SMART is auperior to bah SVRT-TS and WFQ in
handling the Typing application. SMART has the |east average and standard deviation in
charader latency and completes the most number of charaders in lessthan 50 ms, the
threshold of human detectable delay.

While bath SMART and WFQ deliver acceptable interactive performance, Typing per-
forms worse with WFQ because an activity does not accumulate any credit at all when it

sleegps. We performed an experiment where the WFQ agorithm is modified to allow the

116

blocked activity to accumulate limited credit just as it would when run onthe SMART
scheduler. The result is that Typing improves significantly, and the video appli cation gets
afairer share of the resources. However, even thoughthe number of dropped video frames
is reduced dlightly, the modified WFQ agorithm has roughy the same poa performance

as before when it comes to delivering the frames ontime.

Dhrystone
300 T T T T T
Standalone
UNIX RT ~——-

—~ 250 | UNIX T8 -~]
K2 Q
o ART ===
E
= 200 | i
je]
5
o
£ 150 |]
(O]
©
(O]
IS
S 100 .
S T e
S e e
Q e !
z
< 50t - .,-f:—,:ffiff‘:“"" b

O ﬂffi:‘:‘ﬁ”} 7777777777777 pom—mm = e fo———e———— === [--———————=——

0 50 100 150 200 250 300

Elapsed wall clock time (s)

Figure 6-23. Cumulative execution time for the Dhrystone applicaion on different
schedulers

6.4.4.Adjusting the Allocation of Resources

Besides being eff ective for red-time gplications, SMART has the aility to suppat arbi-
trary sharesand prioritiesand to adapt to dfferent system loads. Weill ustrate these features
by running the same set of appli cations from before with dfferent priority andshare assgn-
ments under different system loads. In particular, News is given a higher priority than all
the other applications, Entertain is given the default priority and twice & many shares as
any cather application, and all other applications are given the same default priority and
share. Thislevel of control afforded by SMART's priorities and sharesis not possble with
other schedulers. The experiment can be described in two pheses:

117

* Phase 1: Run al the gplications for the first 120 seconds of the experiment. News

exits after the first 120 seconds of the experiment, resulting in aload change.

* Phase 2: Run the remaining appli cations for the remaining 180secnds of the experi-

ment.

Besides News and Entertain, the only other time-consuming application in the system is
Dhrystone. Thus, inthefirst part of the experiment, News shoud be dlowed to use as much
of the processor as necessary to meet its resource requirements sinceit has ahigher priority
than all other applications. Since News audio uses lessthan 3% of the machine and News
video uses only 42% of the machine on average, over half of the procesor’s time shoud
remain available for runnng aher applications. As Typing consumes very little processng
time, it shodd be handled perfectly and aimost all of the remaining computation time
should be distributed between Entertain and Dhrystone in the ratio 21. The time dl otted
to Entertain can service at most 62% of the deadlines on average. When News finishes,
however, Entertain is al owed to take up to 2/3 of the procesor, which would allow the
applicaiontorun at full rate. The system is persistently overloaded in Phase 1 of the exper-
iment, and onaverage underloaded in Phase 2, thoughtransient overloads may occur due

to fluctuationsin processng requirements.

Figures 6-24 through 627 show the CPU all ocation and quality metrics of the different
applicaions run uncr SMART as well as an ideal scheduler. The figures $how that
SMART’ s performance comes quite close to the ided. First, it implements propartional
sharing well in bah underloaded and owerloaded condtions. Second, SMART performs
well for higher priority real-time gplications and red-time gplications requesting less
than their fair share of resources. In the first phase of the computation, it provides perfect
News audio performance, and delivers 97% of the frames of News video ontime and meets
9% of the deadlines. In the second phase, SMART displays 98% of the Entertain frames
on time and meets 99% of the deadlines. Third, SMART is able to adjust the rate of the
applicaion requesting more than its fair share, and can meet a reasonable number of its
deallines. In the first phase for Entertain, SMART drops only 5% more total number of

frames than the ided, which is calculated using average exeautiontimes and an all ocaion

118

of 33% of the processor time. Finally, SMART provides excellent interactive resporse for
Typingin bah overloaded and unarloaded condtions. 9%% of the characters are displayed
with adelay unndiceable to typical users of lessthan 100ms|[8].

CPU allocation

100
% 380 [other
g] News audio
; 60 [News v.ideo
o B Entertain
© L1 Typing
c 401
Q Hl Dhrystone
)
o 201

Ideal
SMART
Ideal
SMART

Phase 1 Phase 2

Figure 6-24. CPU all ocations for different applications under a cdhanging load when using
SMART end user controls

News audio News video

100 -
2
5 [skipped
pt 80 1 m
g Late
£ 60. Ol Early'
E M on Time
o
Y 40'
o
=
8 20;
[0)
[a
o+= p—
Sk Sk
S < S <
> >
0 0
Phasel Phasel

Figure 6-25. News application performance under a changing load when using SMART
end wser controls

119

Entertain

100

380 O Skipped
B Late

601 Ol Early
B on Time

401

201

Percent of total frames

Ideal
SMART
Ideal
SMART

Phase 1 Phase 2

Figure 6-26.Entertain application performance under a danging load when using
SMART end user controls

Typing
100

m Latency > 150ms
Ol Latency 50-150ms
| Latency < 50ms

80

60

40

20

Percent of total characters typed

Ideal
SMART

Phase 2

Figure 6-27. Typing application performance under a changing load when using SMART
end user controls

6.4.5.Summary

Our experiments in the context of a full featured, commercial, general-purpose operating

system show that SMART: (1) reduces the burden o writing adaptive real-time

applicaions, (2) has the ability to cooperate with applicaions in managing resources to

meet their dynamic time nstraints, (3) provides resource sharing across both real-time

120

and conventional applications, (4) deliversimproved real-time and interadive performance
over other schedulers withou any need for users to reserve resources, adjust scheduling
parameters, or know anything abou application requirements, (5) provides flexible,
predictable controls to allow users to hias the alocaion d resources according to their
preferences. SMART adhieves this range of behavior by dfferentiating between the
importance and ugency of real-time and conventional applications. This is done by
integrating priorities and weighted fair queueing for importance, then using urgency to
optimize the order in which tasks are serviced based onearli est-deadli ne scheduling. Our
measured performance results demonstrate SMART's effectiveness over that of other

schedulersin suppating multimedia applications in aredi stic workstation environment.

121

7 Conclusion

We ae at the dawn of an era in which many everyday applications will use multimedia.
Tomorrow’s multimedia appli cations will do much more than just playback pre-recorded
audio and video; we expect that such appli cationswill employ sophisticated image process
ingtechniques andintegrate cmmplex computer graphics, all delivered with highinteractiv-
ity and red-time resporse. However, multimedia gplicaions have very different
charaderistics from the cnventional nonrea-time applications that popuate desktop
computerstoday. They aretypically highly resource intensive, and dten have dynamic and
adaptive application-spedfic time constraints asociated with their exeaution. To integrate
these gplicaionsinto the general-purpose computing environment, multitasking software
environments must be ale to suppat the demands of real-time multimedia applicationsin
conjunction with the demands of existing conventional applications. To al ow this combi-
nation d red-time and conventional activities to co-exist, general-purpose operating sys-
tems must effectively manage computing resources to meet the rea-time demands of
multimedia goplicaions while still providing goodperformance for conventional interac-
tive and hatch applications. Operating systems have so far been ureble to effectively
manage resources to suppat this combination d real-time and conventional adivities. To
enablethewide-spread use of multimedia, operating systems must evolve beyondtheir cur-

rent resource management limitations.

This dissertation represents a step towards enabling the wide-spread use of multimediain
general-purpose computing environments. In thisdissertation, we have devel oped a proces-
sor scheduler that supports the co-existence of dynamic, adaptive real-time applicaions
with conventional nonreal-time gplicaions. We have shown that this scheduler can be

implemented in a commercial operating system and dceiver significant performance

122

improvements for bath red-time and conventional appli cations over other schedulers used

in research and practice. This disertation makes the foll owing contributions:

We have conducted the first experimental studies that quantitatively evaluated UNIX
SVR4's ahility to suppat multimedia applicaions. UNIX SVR4 serves as a mmmon
basis of commercial workstation operating systems and claims to provide suppat for
multimedia applications. We demonstrated that UNIX SVR4 processor scheduling is
inadequate, resulting in pathologicd behaviors in which the video would freeze and
the system would even stop accepting user inpu.

We have aeded anew scheduler interface that enables users and applications to coop-
erate with the operating system in managing resources to suppat multi media users and
applications. This interface faadlitates a greater flow of information among tsers,
applications, and the operating system. It alows an operating system to accourt for
both application and wser information in managing resources, yet in noway impases
draconian demands on either application developers or end users for information they

canna or chocose not to provide.

We have developed a novel asynchronous natification mechanism to provide dynamic
feedback to real-time applications to inform them if their time constraints cannot be
met and enables applicaions to define their own pdicies for adapting their quality of
serviceto the aurrent system load. Posgble alaptation pdiciesthat can take advantage
of the natification medanism include discarding a computation that will missits dead-
line, progressvely refining a computation urtil its deadline, continuing a cmputation

after its deadline, and ssimply defining a new deadline for acomputation.

We have developed a scheduler interface and algorithm that is the first to suppat pro-
portional share control at different priority levels across both real-time and conven-
tional activities. These priority and proportional share controls give end users smple
predictable controls that can be used to hias the alocation d resources according to

their preferences.

123

* We have aeaed a unified approach to scheduling red-time and conventional activi-
ties. We show that our SMART scheduler is the first to provide optimal performance
for real-time gplications when the system is underloaded while simultaneously pro-
viding propational share cntrol across red-time and conventional activities. Our
scheduling algorithm is able to provide good combined red-time and conventional

application performanceeven in the asence of admission control palicies.

* We have introduced the notion d latency tolerance as a medianism to improve the
resporse time of interactive applications by adjusting the instantaneous all ocation o
resources that an application reaives. However unlike multi-level feedbadk schedul-
ers, ou latency tolerance mechanism does nat change the overal alocaion o

resources that an appli cation receives.

* We have implemented a prototype of SMART in a commercia operating system envi-
ronment. We have shown that is possble to implement SMART in such away that pro-
vides effective suppat for multimedia goplications while being completely backwards
compatible with a UNIX SVR4 scheduling framework. Our implementation in fact
suppats al of the default scheduling classes in UNIX SVR4. We have demonstrated
the robustness of our implementation in runnng red multimedia, interactive, and

batch applicaionsin afully-functional workstation environment.

* We have demonstrated the effectiveness of our unified approach to scheduling by
quantitatively comparing it with aher schedulers used in research and pradice. By
measuring the performance of adual real-time multimedia, interadive, and betch
applications in afull y-functional workstation environment, we show that SMART pro-
vides better performance and control than aher schedulers. In fact, SMART can
deliver almost a factor of two better performance than schedulers used in practice and

research in meding real-time requirements when the system is overloaded.

We have shown that SMART provides eff ective procesor scheduling for real multimedia

applicaions in a general-purpose computing environment.

124

7.1 Future Work

Effective uniprocessor schedulingis crucia for multimedia gplicaions, bu multi proces-
sor scheduling suppat for multimedia applications is becoming increasingly important.
Whil e some previous work has attempted to addressthe problem of real-time multi proces-
sor scheduling [14][19][21], little work has been dore to addressthe problem of how to
alow both red-time and conventional appli cations to share resources and co-exist together
in a multiprocessor environment. Scheduling multimedia appli cations on multiprocessors
pases chall engesthat do nd arisein scheduling single processor systems. A single dispatch
gueue from which tasks are scheduled is sufficient for the uniprocessor case. However,
experience with commercial operating systems suggests that scheduling multiple proces-
sors with a centralized dispatch queue is a synchronization bdtlenedk that can limit the
scdability of multi processor systems [18][72]. If a dispatch queue shoud be assciated
with each processor, how shoud tasks be assigned to thaose dispatch queues in the first
place? In particular, the operating system must effedively balance the load acrossmulti ple
processors. As multimedia gopli catlion workloads often have dynamicdly varyingresource
demands, the operating system must decide when to migrate tasks from one processor to
ancther for load balancing. On the other hand, the operating system may want to reduce
task migrationthroughsome form of cache dfinity to reduce @che missesthat occur when

atask migrates among Focesors.

The SMART scheduler prototype implemented in the Solaris operating system is cgpable
of scheduling activities in multiprocessor systems, bu it does nat currently address a
number of multiprocesor scheduling isaues such as scheduling red-time adivities across
multi ple procesors, load balancing among pocessors, and accounting for possble ade
effedsin determining which procesor to use for executing a given activity. Nevertheless
our experience with SMART leads us to believe that the basic ideas in SMART can be
extended to address these multiprocesor schedulingisauesin suppating multimedia gpli-
cdions. In fad, we have begun experimenting with a new multi processor scheduler along
these lines. Key features of our approach are: (1) decoudes the assgnment of which pro-
cessor to use to run a given task (processor task assignment) from the scheduling o tasks

aready assgned to a procesor (per procesor scheduling), (2) accourts for cache dfects

125

in the processor task assgnment by recognizing that conventional appli cations often have
good cache locality but multimedia applications that stream large amourts of data often
have poa cachelocality, (3) explicitly accourtsfor applicationtime cnstraintsin bah the
processor task assgnment and the per processor scheduling to make efficient use of
resources in meeting real-time requirements, (4) provides flexible prioritized and popar-
tional resource sharing acrossboth real-time and conventional activities. In particular for
our multi processor scheduler, we take alvantage of SMART’s flexible usage model and

interface and employ the SMART scheduling algorithm for per processor scheduling.

While dfedive procesor schedulingis crucial to suppat multimedia gopli cations, proces-
sorsarejust one set of comporentsin an overall system. Other resourcesthat require efec-
tive resource management include I/O bandwidth, memory, networks, and the network/haost
interface. Meding the demands of future multimedia appli cations will require coordinated
resource management acrossall critical resources in the system. Providing resource man-
agement mechanisms and poli cies acrossmultiple resources that effectively suppat adap-
tive and interadive multimedia applications remains a key chall enge. We beli eve that the
ideas discussed here for processor scheduling will serve as a basis for future work in
addressing the larger problem of managing system-wide resources to suppat multimedia

applicaions.

126

Bibliography

[1]

(2]

(3]

[4]

(5]

6]

[7]

(8]

[9]

(10

[11]

M. J. Bach, The Design d the UNIX Operating System, Prentice Hall Inc., Englewood
Cliffs, NJ, 1986.

D. R. Bacher, “Content-based Indexing d Captioned Video”, S.B. Thesis, Department of
Electrical Engineering and Computer Science, Massachusetts I nstitute of Technology, May
1994,

V. Baiceanu, C. Cowan, D. McNamee, C. Pu, and J. Walpadle, “Multimedia Appli cations
Require Adaptive CPU Scheduling”, Proceedings of the IEEE RTSSWorkshop onResource
Allocation Prablems in Multimedia Systems, Washington, DC, Dec. 1996.

J. Barton and N. Bitar, “A Scdable Multi-discipline, Multi-processor Scheduling
Framework for IRIX”, Procealings of Workshop on Job Sheduling for Parallel
Procesdng, Santa Barbara, CA, pp. 45-69, Apr. 1995.

A. C. Bavier, A. B. Montz, and L. L. Peterson, “Predicting MPEG Exeaution Times’,
Proceedings of SGMETRICS ‘98, pp. 131-140, June 1998.

J. C. R. Bennett and H. Zhang, “WF2Q: Worst-case Fair Weighted Fair Queueing”, IEEE
INFOCOM ‘96, San Francisco, CA, pp. 120-128, Mar. 1996.

G. Bolldla and K. Jeffay, “Support for Real-Time Computing Within General Purpose
Operating Systems: Supparting Co-Resident Operating Systems”, Proceedings of the [IEEE
Real-Time Techndogy and Applications Symposium, Chicago, IL, pp. 4-14, May 1995.

S. K. Card, T. P. Moran, and A. Newell, The Psychology of Human-Computer Interaction,
L. Erlbaum Associates, Hillsdale, NJ, 1983.

R. K. Clark, “Scheduling Dependent Real-Time Activities’, Ph.D. Thesis, Department of
Computer Science, Carnegie Mellon University, Aug. 1990.

G. Coulson, A. Campbell, P. Robin, G. Blair, M. Papathomas, and D. Hutchinson, “The
Design of aQoS Controlled ATM Based Communications Systemin Chorus’, IEEEJSAC,
13(4), pp. 686-699, May 1995.

H. Custer, Inside Windows NT, Microsoft Press Redmond, WA, 1993

127

(12

(13

(14

[15]

[16]

[17]

(18

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation d a Fair Queueing
Algorithm”, Proceedings of SGCOMM ‘89, pp. 1-12, Sept. 1989,

M. Dertouzos, “Control Robatics: The Procedural Control of Physical Processors’,
Proceedings of the IFIP Congress, Stockhalm, Sweden, pp. 807-813, Aug. 1974

M. Dertouzos and A. Mok, “Multiprocessor On-line Scheduling of Hard-Red-Time
Tasks’, IEEE Transactions on Sdtware Engineering, 15(12), pp. 1497-1506, Dec. 1989,

M. Dertouzos, “ Creaing the People’' s Computer”, MIT Techndogy Review, Association of
Alumni and Alumnae of the Massachusetts Institute of Technology, pp. 20-28, Apr. 1997.

R. B. Essck, “An Event-based Fair Share Scheduler”, Procealings of the 1990 Winter
USENIX Conference, Washington, DC, pp. 147-161, Jan. 1990.

S. Evans, K. Clarke, D. Singleton, and B. Smadders, “Optimizing Unix Resource
Scheduling for User Interaction”, Proceedings of the 1993 Sunmer USENIX Conference,
Cincinnati, OH, pp. 205-218, June 1993.

J. R. Eykholt, S. R. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah, M. Smith, D. Stein,
J. Voll, M. Weeks, and D. Williams, “BeyondMultiprocessing...Multithreading the SunOS
Kernd”, Proceedings of the 1992 Summer USENIX Conference, San Antonio, TX, pp. 11-
18, June 1992,

H. Forbes and K. Schwan, “Rapid —A Multiprocessor Scheduler for Dynamic Red-Time
Applicaions’, Technicd Report GIT-CC-94-23, College of Computing, Georgia Institute
of Technology, Apr. 1994.

N. G. Fosback, Stock Market Logic, Institute for Econometric Research, Ft. Lauderdale, FL,
1976

M. R. Garey and D. S. Johrson, “Scheduling Tasks with Nonuniform Deadlines on Two
Processors’, JACM, 23(3), pp. 461-467, July 1976.

L. Georgiadis, R. Guérin, V. Peris, and K. N. Sivargjan, “Efficient Network QoS
Provisioning Based on per Node Traffic Shaping’, IEEEACM Transactions on
Networking, 4(4), pp. 482501, Aug. 1996.

D. B. Golub, “Operating System Support for Coexistence of Real-Time and Conventional
Scheduling’, Technical Report CMU-CS-94-212, Schod of Computer Science, Carnegie
Mellon University, Nov. 1994.

P. Goyal, X. Guo, and H. M. Vin, “A Hierarchical CPU Scheduler for Multimedia
Operating Systems”, Proceedings of the Second $mpasium on Operating Systems Design
and Implementation, Sedtle, WA, pp. 107-122, Oct. 1996.

P. Goyal, Panel talk at the IEEE RI'SS Workshop on Resource Allocation Problems in
Multimedia Systems, Washington, DC, Dec. 1996.

128

[26]

[27]

(28]

[29]

(30

(31

(32

(33

(34

[35]

[36]

[37]

(38

[39]

J. G. Hanko, E. M. Kuerner, J. D. Northcutt, and G. A. Wall, “Workstation Support for
Time-Criticd Applications’, Proceedings of the Second Internationd Workshop on
Network andOperating Sstem Suppat for Digital Audio andVideo, Heidelberg, Germany,
pp. 4-9, Nov. 1991.

J. G. Hanko, “A New Framework for Processor Scheduling in UNIX”, Abstract talk at the
Fourth International Workshop on Network and Operating S/stems Sugport for Digital
Audio andVideo, Lancaster, U. K., Nov. 1993

G. J. Henry, “The Fair Share Scheduler”, AT&T Bell Laboratories Technical Journal,
63(8), pp. 1845-1858, Oct. 1984.

IEEEMicro, 15(4), Aug. 1996.

K. Jeffay and D. Bennett, “A Rate-Based Exeaution Abstraction for Multimedia
Computing’, Proceedings of the Fifth Internationd Workshop onNetwork and Operating
Systems Supprt for Digital Audio and Video, Durham, NH, pp. 67-78, Apr. 19%.

M. B. Jones, P. J. Leach, R. P. Draves, and J. S. Barrera Il1, “Support for User-Centric
Modular Real-Time Resource Management in the Rialto Operating System”, Proceedings
of the Fifth International Workshop onNetwork and Operating Systems Supyrt for Digital
Audio andVideo, Durham, NH, pp. 55-65, Apr. 1995.

M. B. Jones, J. S. Barreralll, A. Forin, P. J. Leach, D. Rosu, and M. C. Rosu, “An Overview
of the Rialto Real-Time Architecture”, Proceedings of the Seventh ACM SSGOPSEuropean
Workshop, Connemara, Ireland, pp. 249-256, Sept. 1996

M. B. Jones, personal communication, July 1997.

M. B. Jones, D. Rosu, and M-C. Rosu, “CPU Reservations and Time Constraints; Efficient,
Predictable Scheduling o Independent Activities’, Proceedings of the Sxteenth ACM
Sympaosium on Operating Systems Principles, St. Malo, France pp. 198-211, Oct. 1997.

K.B.Kennyand K. Lin, “Building Flexible Real-Time Systems Using the Flex Language”,
IEEE Computer, 24(5), pp. 70-78, May 1991

S. Khanna, M. Sebree, and J. Zolnowsky, “Readtime Scheduling in SunOS 5.0,
Proceedings of the 1992 Winter USENIX Conference, San Francisco, CA, pp. 375-390, Jan.
1992

L. Kleinrock, Queueing Systems Vol 2: Computer Applications, John Wiley & Sons, Inc.,
New York, NY, 1976.

C. J. Lindblad, “A Programming System for the Dynamic Manipulation of Temporally
Sensitive Datd’, Technical Report MIT/LCS/TR-637, Laboratory for Computer Science,
Massachusetts Ingtitute of Technology, Aug. 199%.

S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The Design and
Implementation of the 4.3BSD UNIX Operating System, Addison-Wesley, Reading, MA,
1989

129

(40

[41]

[42]

(43

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51

(52

(53

J. P. Lehoczky, L. Sha, and J. K. Strosnider, “ Enhanced Aperiodic Responsivenessin Hard
Real-Time Environments’, Proceedings of the IEEE Real-Time Systems Symposium, San
Jose, CA, pp. 261-270, Dec. 1987.

J. P. Lehoczky, L. Sha, and Y. Ding, “The Rate Monaonic Scheduling Algorithm: Exact
Characterizationand Average Case Behavior”, Proceedings of the [IEEE Real-Time Systems
Symposium, Santa Monica, CA, pp. 166-171, Dec. 1989.

I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns, and E.
Hyden, “The Design and Implementation of an Operating System to Support Distributed
Multimedia Applications’, IEEEJSAC, 14(7), pp. 1280-1297, Sept. 1996.

R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf, “Policy/Medanism Separation
in Hydra”, Proceedings of the Fifth ACM Symposium on Operating Systems Principles,
Austin, TX, pp. 132-140, Nov. 1975.

C. J. Lindblad, “A Programming System for the Dynamic Manipulation of Temporally
Sensitive Data”, Tedhnical Report MIT-LCS-TR-637, Laboratory for Computer Science,
Massachusetts Ingtitute of Technology, Aug. 199%.

C. L. Liuand J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment”, JACM, 20(1), pp. 46-61, Jan. 1973.

C. D. Locke, “Best-Effort Decision Making for Real-Time Scheduling’, Ph.D. Thesis,
Department of Computer Science, Carnegie Mellon University, May 1986

C.W. Mercer, S. Savage, and H. Tokuda, “ Processor Capacity Reserves. Operating System
Suppat for Multimedia Applications’, Proceadings of the |EEE Internationd Conference
on Multimedia Computing and Systems, Boston, MA, pp. 90-99, May 1994.

Merriam-Webster’s Collegiate Dictionary, 10th ed., Merriam-Webster, Springfield, MA,
1998

J. D. Northcutt, J. G. Hanko, A. T. Ruberg, and G. A. Wall, “NetCam: An Audio/Video
Network-Attached Device”, In preparation, Dec. 1998,

J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A. Wall, “SVR4 UNIX Scheduler
Unacceptable for Multimedia Applicaions’, Procealings of the Fourth International
Workshop on Network and Operating Systems Suppart for Digital Audio and Video,
Lancaster, U. K., pp. 3548, Nov. 1993.

J. Nieh and M. S. Lam, “SMART UNIX SVR4 Suppat for Multimedia Applications”’,
Proceedings of the IEEEInternational Conferenceon Multimedia Computing and Systems,
Ottawa, Canada, pp. 404-414, June 1997.

J. Nieh and M. S. Lam, “The Design, Implementation, and Evaluation of SMART: A
Scheduler for Multimedia Applications’, Proceedings of the Sxteenth ACM Symposiumon
Operating Systems Principles, St. Malo, France, pp. 184-197, Oct. 1997.

J.Niehand M. S. Lam, “Multimediaon Multiprocessors; Where' sthe OSWhen Y ou Really
Need It?”, Procealings of the Eighth International Workshop onNetwork and Operating
Systems Supprt for Digital Audio and Video, Cambridge, U. K., pp. 103-106, July 1998

130

(54

(53]

[56]

[57]

(58]

(59

[60]

[61]

[62]

[63]

[64]

[63]

[66]

[67]

[68]

J. D. Northcutt, Mechanisms for Reliable Distributed Real-Time Operating Systems. The
Alpha Kernel, Academic Press Boston, MA, 1987.

J. D. Northcutt, “The Alpha Operating System: Requirements and Rationale’, Archons
Projed Technicd Report #88011, Department of Computer Science, Carnegie-Mellon
University, Jan. 1988.

J. D. Northcutt and E. M. Kuerner, “System Suppat for Time-Critical Applications’,
Proceedings of the Seaond International Workshop on Network and Operating Systems
Suppat for Digital Audio andVideo, Heidelberg, Germany, pp. 242-254, Nov. 1991

A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Single-Node Case”, IEEEACM Transactions
on Networking, pp. 344-357, June 1993.

“PointCast Unveils First News Network that Reaches Viewers at Their Desktops’, Press
Release, PointCast Inc., San Francisco, CA, Feb. 13, 199%.

S. Ramos-Thuel and J. P. Lehoczky, “On-Line Scheduling of Hard Dealline Aperiodic
Tasksin Fixed-Priority Systems’, Proceedings of the [EEE Real-Time Systems Sympasium,
Raleigh Durham, NC, pp. 160-171, Dec. 1993

R. W. Scheifler and J. Gettys, “The X Window System”, ACM Transactions on Graphics,
5(2), pp. 79-109, Apr. 1986.

B. K. Schmidt, J.D. Northcutt, and M. S. Lam, “A Method and Apparatus for Measuring
Media Synchronization”, Proceedings of the Fifth I nternational Workshop onNetwork and
Operating Systems Suppart for Digital Audio and Video, Durham, NH, pp. 203-214, Apr.
1995

B. Shneiderman, Designing the User Interface: Strategies for Effective Human-Computer
Interaction, 2nded., Addison-Wesley, Reading, MA, 1992.

L. Sha, J. P. Lehoczky, and R. Rajkumar, “Solutions for Some Practicd Problems in
Prioritized Preemptive Scheduling’, Proceedings of the IEEE Real-Time Systems
Symposium, New Orleans, LA, pp. 181-191, Dec. 1986.

SLIC-Video User’'s Guide, Rdl. 1.0, MultiMedia Access Corporation, 1995,

|. Stoica and H. Abdel-Wahab, “Earliest Eligible Virtual Deadline First: A Flexible and
Accurate Mecdhanism for Proportional Share Resource Allocation”, Technicd Report 95-
22, Department of Computer Science, Old Dominion University, Nov. 19%.

|. Stoica, H. Abdel-Wahab, and K. Jeffay, “On the Duality between Resource Reservation
and Propartional Share Resource Allocation’, Multimedia Computing ard Networking
Proceedings, SPIE Proceedings Series, Vol. 302Q San Jose, CA, pp. 207-214, Feb. 1997.

J.C.Tangand E. A. Isaacs, “Why Do Users Like Video? Studies of Multimedia-Supported
Collaboration”, Technicd Report SMLI TR-92-5, Sun Microsystems Laboratories, Dec.
1992

UNIX System V Release 4 Internals Sudent Guide, Vol. I, Unit 2.4.2.,, AT&T, 1990.
131

[69]

(70

[71]

(72

C. A. Waldspurger, “Lottery and Stride Scheduling: Flexible Proportional-Share Resource
Management”, Ph.D. Thesis, Department of Electricd Engineering and Computer Science,
Massachusetts Institute of Technology, Sept. 19%.

G. A. Wall, J. G. Hanko, and J. D. Northcutt, “Bus Bandwidth Management in a High
Resolution Video Workstation,” Proceedings of the Third International Workshop on
Network and Operating $/stem Support for Digital Audio andVideo, LaJolla, CA, pp. 274-
288, Nov. 1992.

T. Winogad, personal communication, Mar. 1993.

J. Zolnowsky, “Redtime Dispatch in SunOS. an Update”, Proceedings of the Second
Annud SwnSdt Technical Conference, Menlo Park, CA, Apr. 19%.

132

