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Abstract

Multimedia applications are becoming ubiquitous. Unlike conventional interactive and

batch applications, these applications often have real-time requirements. As multimedia

applications are integrated with conventional non-real-time applications in the general-

purpose computing environment, the problem arises of how to support the resulting mix of

activities. A key question is how does the operating system schedule processor cycles to

enable applications with and without real-time requirements to co-exist and run

effectively? 

To address this question, we have created SMART, a Scheduler for Multimedia And Real-

Time applications. SMART explicitly supports the time constraints of real-time

applications, and provides dynamic feedback to these applications to allow them to adapt

their performance based on the availabili ty of processor cycles. It is unique in its ability to

make efficient use of processor cycles in meeting real-time requirements under a

dynamically varying system load, even in the absence of admission control policies when

the system is overloaded. SMART integrates support for real-time and non-real-time

applications. This allows it to provide uniform controls that allow users to prioritize or

proportionally allocate processor cycles across all applications, regardless of whether or

not they have real-time requirements. 

SMART achieves this behavior by reducing this complex resource management problem

into two decisions. One based on importance determines the overall resource allocation for

each activity. The other based on urgency determines when each activity is given its

allocation. SMART provides a common importance attribute for both real-time and

conventional activities based on priorities and weighted fair queueing. SMART then uses

an earliest-deadline urgency mechanism to order when activities are serviced, allowing
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real-time activities to make the most eff icient use of their resource allocations to meet their

time constraints. A bias on batch activities accounts for their ability to tolerate more varied

service latencies. This improves performance for interactive and real-time activities during

periods of transient overload.

We have implemented SMART in a commercial operating system and measured its

performance against other schedulers in executing applications with and without real-time

requirements, including continuous media, interactive, and batch applications. Our results

demonstrate SMART's ability to provide superior performance for multimedia

applications. 
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1 Introduction

The workload on computers is rapidly changing. In the past, computers were used in auto-

mating tasks around the work place, such as word and accounts processing in offices, and

design automation in engineering environments. The human-computer interface has been

primarily textual, with some limited amount of graphical input and display. With the phe-

nomenal improvement in hardware technology in recent years, even highly affordable per-

sonal computers are capable of supporting much richer interfaces. Images, video, audio,

and interactive graphics have become common place. A growing number of multimedia

applications are available, ranging from video games and movie players, to sophisticated

distributed simulation and virtual reality environments. In anticipation of a wider adoption

of multimedia in applications in the future, there has been much research and development

activity in computer architecture for multimedia applications. Not only is there a proli fer-

ation of processors that are built for accelerating the execution of multimedia applications,

even general-purpose microprocessors have incorporated special instructions to speed their

execution [29].

While hardware technology has advanced to support the special demands of multimedia

applications, software environments have not. In particular, multimedia applications such

as those that manipulate digital audio and video data often have application-specific timing

requirements associated with their execution. For instance, to provide smooth playback of

a video sequence at a standard 30 frames/sec rate, successive video frames need to be dis-

played within 33 ms of each other. However, today’s general-purpose operating systems

are not effective in supporting these real-time requirements. These multiprogrammed sys-

tems were designed with an emphasis on fairness and throughput without regard to meeting

specific timing requirements. With the growing number of multimedia applications in the
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general-purpose computing environment that do in fact have real-time requirements that

need to be met to function correctly, we are now faced with a growing resource manage-

ment problem. Addressing this resource management problem is the topic of this disserta-

tion.

A fundamental task of any operating system is the effective management of the system’s

resources. Resources that must be properly managed include processor cycles, virtual and

physical memory, and I/O bandwidth. Although mismanagement of any of these resources

can lead to poor system function [70], we have focused on processor scheduling in this dis-

sertation. The question that we address is: given today’s multitasking multimedia environ-

ments in which users may run several competing applications at once, how does the

processor scheduler decide which application should run and when it should run to deliver

the best performance? Processor cycles are often highly oversubscribed, with many appli -

cations being able to consume much more processing power than can be provided. In such

an environment, the degree of effectiveness of processor scheduling is a dominant factor in

overall system performance.

Our interest in this problem began when we noticed severe performance problems when

users executed a mix of interactive, batch, and multimedia applications on a popular com-

mercial desktop computer system. We observed pathological behaviors in which the video

would freeze and the system would even stop accepting user input. Through careful mea-

surement of actual application and operating system performance, we were able to isolate

the performance problems and attribute them in large part due to poor processor scheduling

by the operating system. Some improvements were made to the scheduler and incorporated

into the next commercial release of the operating system to help alleviate the problems, but

we realized that this stop-gap measure would not be enough. As a result, we started work

on a novel approach to scheduling to address the problems that we were seeing in commod-

ity operating systems. This gave birth to SMART, a Scheduler for Multimedia And Real-

Time. The design, implementation, and evaluation of SMART are presented in this disser-

tation.
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1.1. What is Multimedia?

Before going into further detail about the problems we encountered with existing systems

in supporting multimedia applications and how SMART addresses them, let us take a step

back to consider the nature of multimedia. For many people, multimedia is simply being

able to watch a movie or play an audio CD on the computer at the touch of a button. How-

ever, multimedia is far more than just being able to display a stream of video or a stream of

audio. Multimedia is about being able to do computing with media. Much more interesting

multimedia applications already exist today:

• ShowMeTV [67]. Technical discussions often revolve around a whiteboard, which lim-

its such interactions to users in the same geographic proximity. ShowMeTV from Sun

Microsystems, Inc. employs audio, video, and interactive graphics to create a virtual

whiteboard. Each user is seated in front of a desktop computer equipped with audio

and video input devices and the ShowMeTV application. Users can then join a virtual

discussion, at which point video and audio input from the user is available to other

users participating in the discussion. In addition, a shared whiteboard appears on the

computer screen of each participant, on which participants can scribble and share ideas

in much the same way they would do around a physical whiteboard. Such an applica-

tion facilitates collaborative discussions in ways that were not previously possible,

providing participants separated by distance with a rich communication medium

accessible from the convenience of their desktops.

• Joke Browser [2]. David Bacher developed the Joke Browser while at MIT as a

demonstration of the benefits of using closed-captions for content-based media

processing. It records late-night talk show monologues, including audio, video, and

closed-captioned text. The Joke Browser analyzes the closed-captioned text to

segment the monologues into jokes. A client application can be used to find jokes on a

certain topic that have been made in the last week, with searching being done using the

closed-captioned information. Jokes are recalled in their original multimedia format,

with audio and video presentation, displaying all the quirks and mannerisms expected

of a David Letterman show. Similar content-based media processing technology can be

used to index sports highlights or search through network news programming. 
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• NetCam [49]. The job of a security guard is often fill ed with the tedium and monotony

of monitoring a set of small monitors that display video input from video cameras

located at the entrances to a property being monitored. Much of the time, such video

footage consists of scenes of still li fe background. Only once in a while is there any

human activity that would warrant a closer look. It would be much better if there were

some way to eliminate the need to monitor still li fe background and only focus on the

scenes where there is some human activity worth monitoring. Sun Microsystems, Inc.

has created a product called NetCam which can be used exactly for this purpose. Net-

Cam is a small network attached device that takes analog audio and video input, com-

presses it, and sends it over an existing local area network to be viewed on any

computer console. In conjunction with a client application, NetCam can filter out

audio and video footage of still li fe background so that only significant changes in the

footage are displayed to the end user. The audio and video footage can be viewed from

any networked computer console, subject to appropriate permissions. It can also be

stored for later li stening and viewing, which would allow a user at a later time to

quickly browse through any interesting human activity. A video camera in the

employee breakroom being processed by a NetCam might allow other employees to

find out who always leaves the coffee pot empty, or who borrows the business section

of the shared newspaper without returning it.

• AV Photo Finder. With the explosion of the World Wide Web, a slew of companies

have created search engines that allow users to enter a text phrase and find web pages

that contain information matching the respective text. This indexing and searching

capabilit y for text is being extended to images by AV Photo Finder, developed by

Compaq’s AltaVista and Virage, Inc. Given a text phrase, AV Photo Finder finds

images from a database of images that pertain to the subject matter of the phrase. The

database uses textual annotations assigned to each image to perform this content-based

retrieval. In addition, image processing technology allows users to click on any of the

images returned by AV Photo Finder to find other similar images in the database. That

is, AV Photo Finder allows users to find images based on visual appearance or content.
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These examples share a set of common attributes which are characteristic of the kinds of

multimedia applications we see coming on the horizon. First, all of these examples employ

several media together, not just audio or video. ShowMeTV alone makes use of audio,

video, text, as well as graphics to facilitate distance collaboration. It is plain to see that the

“multi” in multimedia connotes the use of many media, including audio and video as well

as more traditional media such as text, graphics, and images. In fact, the term multimedia,

as first used in 1962, simply meant the use or involvement of several media [48]. Second,

these examples do more than just allow several media to co-exist independently. Instead,

they use several media together in an integrated and coordinated fashion. For instance, the

Joke Browser uses closed-captioned text to segment the audio and video from monologues,

and then attempts to display the various media streams in a coordinated and synchronized

manner. Third, these examples marry computing and media to enable the processing of

multimedia, not just the display of multimedia. For instance, NetCam analyzes the video

input for significant scene changes to determine whether or not the video should be dis-

played. The computer is used to perform analysis on the media and take actions based on

that analysis. Instead of being just a display device, the computer is an active participant

that can be programmed to manipulate and control media itself.

1.2. Requirements of Multimedia on Processor Scheduling

To realize the full potential of multimedia, we believe that the abilit y to use software to pro-

cess media is of key importance. All of the previous application examples rely on the ability

to program computers to manipulate and control media. This software-oriented perspective

of multimedia necessitates that the processor play a central role. Afterall , if the processor

is not manipulating the media bits, how is an application going to do any real media pro-

cessing? 

Some may note though that there are a number of commercial products which deliver some

amount of audio or video functionality to a desktop computer without using the processor

to manipulate the media streams. For instance, a number of vendors manufacture a dedi-

cated hardware device to allow a user to watch video on his computer by taking analog

video input, bypassing the processor, and displaying the video directly to the screen. While
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such devices provide some video hardware acceleration, they do not provide true multime-

dia functionality. Such devices typically take just a single media input, providing only “uni-

media” functionali ty. Just trying to support a NetCam-like security application would

require more devices than there are slots available in many desktop computers. Typically

with such hardwired devices, the only integration of their media stream input with other

media is limited to sharing the same computer screen. Perhaps more importantly, these

devices allow lit tle if any interesting processing of the media before it is displayed because

they completely bypass the processor. Reducing your desktop computer to a video display

device is a far cry from the innovative applications possible by taking full advantage of a

general-purpose programmable computing environment. 

If it were the case that users were satisfied with running one multimedia application at a

time, the need for processor scheduling would be greatly reduced. However, users have

come to expect that their multiprogrammed computers should be capable of running

multiple applications at once, often being run by multiple users. We expect no less of this

multitasking functionali ty in running multimedia applications. We want to be able to have

NetCam running in the background while we are participating in a ShowMeTV discussion

about some recent monologue from the Joke Browser. We want to be able to have network

news programming running in the background while being able to compile a program and

surf the World Wide Web. When multiple applications need to be run on the same

processor, scheduling decisions need to made regarding how the processor is shared and

when each application gets to run. With the processor playing a central role in the

processing of multimedia, doing an effective job of processor scheduling is crucial for

delivering good system performance. 

To understand the requirements imposed by multimedia applications on processor sched-

uling, we first describe the salient features of multimedia applications and the computing

environment in which they execute. We contrast these characteristics with those of tradi-

tional applications that current operating systems are designed for. In particular, we focus

on the temporal characteristics of multimedia applications and their impact on scheduler

design.
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To aid our discussion, we define some terms here that are used in this dissertation. We use

the term activity to denote a schedulable entity. An application may consists of one or more

activities. An activity has a set of attributes associated with it that may change over time.

In particular, an activity is called a real-time activity if the activity has some timing require-

ment associated with it. An activity that does not have such a timing requirement is non-

real-time and is called a conventional activity. As it executes, an activity may change

between being real-time or conventional in nature. We will l oosely refer to an application

as being real-time if it consists of one or more real-time activities. We will refer to an appli -

cation as being conventional if it consists of no activities with real-time requirements. 

1.2.1. Timing Characteristics

While there are many forms of media, they can be divided into two classes that have very

different timing characteristics: continuous and discrete. Continuous media are time depen-

dent. Discrete media are time independent. Examples of continuous media are digital audio

and video. Examples of discrete media are text, still images, and graphics. 

Unlike discrete media, continuous media have inherent timing requirements. A continuous

media stream consists of a time sequence of media samples, such as audio samples or video

frames. The distinguishing characteristic of such data is that information is expressed not

only by the individual samples of the stream, but by the temporal alignment of the samples

as well. For example, consider a captured video stream showing a ball bouncing up and

down. The rate of motion of the bouncing ball i s encoded in the time spacing between video

frames. To accurately reproduce the motion of the bouncing ball when the video stream is

displayed, the elapsed time between displayed frames should be the same as the elapsed

time between the respective frames when they were captured. 

Not only are there timing requirements within a continuous media stream, but there may

also be timing requirements among multiple media streams as well. These timing

requirements are often due to the need to synchronize multiple media streams. For instance,

in playing a movie, the audio stream and the video stream need to be synchronized so that

the desired audio is heard when a given video frame is displayed. Moreover, multimedia

can require synchronization across continuous and discrete media, as in the case of closed-
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captioned television programming in which text, audio, and video are displayed together.

Note that when a time independent media is synchronized with a time dependent media, the

result is time dependent as well. This time dependent nature that arises from synchronizing

media streams is a key characteristic of multimedia applications.

When an application processes and displays continuous media streams, it must typically

meet two kinds of timing requirements to preserve the temporal alignment of the media

streams being processed. One requirement is that any delay due to processing between the

input media stream and the processed output media stream should be as constant as possi-

ble. Variance in the delay introduces undesirable jitter in the output stream. The other

requirement is that the application must process media samples fast enough. If media sam-

ples are not processed at the rate at which they arrive, then they will be late being displayed

and it will not be possible to maintain the exact temporal alignment of the media samples.

Note that these timing requirements are typically soft real-time in nature as opposed to hard

real-time. While the inabili ty to process a media sample within its time constraints is often

objectionable, being late only diminishes the quali ty of the results. It does not lead to a cat-

astrophic failure, as would characterize a hard real-time requirement.

The timing requirements in processing continuous media are commonly cyclic in nature,

though they may also be aperiodic. For many continuous media streams, the desired per-

formance is to have the respective media samples displayed at evenly spaced intervals. For

instance, the video frames in a video stream are typically displayed at 30 frames/sec, or one

frame every 1/30th of a second. On the other hand, there are also times when the timing

requirements are aperiodic in nature. For instance, the timing requirements in processing

the video frames in a video stream may not be evenly spaced because there are frames miss-

ing from the video stream. Alternatively, aperiodic timing requirements can arise when an

application is attempting to synchronize the display of a media stream with some form of

user interaction, which is commonly aperiodic.

1.2.2. System Load Character istics

When executing multimedia applications, the resulting load on the system is often high and

very dynamic. Multimedia applications present practically an insatiable demand for
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resources. Even with the rapid advances in hardware technology, today’s workstation-class

computers are just beginning to be able to use software techniques to display full resolution

(640x480 pixels) video at full frame rate (30 frames per second). Emerging HDTV video

standards will require much more computational power. Doing interesting processing with

video will require even more computational power. The multimedia applications that we

see on the horizon will only further consume already insuff icient processor cycles. As

applications such as real-time video are highly resource intensive and can consume the

resources of an entire machine, resources are commonly overloaded, with resource demand

exceeding its availabil ity.

Much of the work that has been done to support real-time requirements has been in the

context of embedded real-time systems in which the application timing requirements and

the execution environment are static and strictly periodic in nature. In contrast, the general-

purpose computing environment in which multimedia applications execute is highly

dynamic in nature. Users may start or terminate applications at any time, changing the load

on the system. 

The processing requirements of multimedia applications themselves are often highly

dynamic as well . While the media samples in continuous media streams typically occur in

time in a periodic manner, the processing requirements for the media samples are often far

from being periodic. For instance, the processing time to uncompress or compress JPEG or

MPEG encoded video can vary substantially for different video frames. Alternatively, the

processing requirements of a multimedia application may vary depending on how it is

being used. For example, in the case of a movie player application, the processing time

requirements of the application when it is fast forwarding through a movie will be quite dif-

ferent from when it is doing normal playback.

1.2.3. Adaptive Character istics

As multimedia applications are highly resource intensive, even a single full-motion full -

resolution video application can often consume the resources of an entire machine. Recog-

nizing that the system may lack sufficient resources to meet the timing requirements of all

multimedia applications, these applications are often able to adapt by offering different
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quali ties of service depending on resource availabili ty. They can tradeoff the quali ty of

their results versus the consumption of processing time. In the case of video for instance, if

a video frame cannot be displayed within its timeliness requirements, the application might

simply discard the video frame and proceed to the next one. If many of the frames cannot

be displayed on time, the application might choose to discard every other frame so that the

remaining frames can be displayed on time. Alternatively, a video application may be able

to reduce the picture quali ty of each frame to reduce its processing requirements so that

each frame can be displayed on time.

1.2.4. Mixed Mode Characteristics

While there is a need to support real-time activities such as those found in multimedia

applications, it is important for the system to continue to be able to run existing conven-

tional applications effectively. In particular, real-time activities should not always be

allowed to run in preference to all other activities because they may starve out important

conventional activities, such as those required to keep the system running.

Not only are there real-time and conventional applications that must be able to run together

on the same system, but multimedia applications may mix continuous and discrete media

processing within a given application. For instance, part of the goal of multimedia is to be

able to create interesting multimedia documents that mix time independent media such as

text and graphics with time dependent media such as audio and video. This results in the

execution of both real-time and conventional activities.

Real-time and conventional activities must be able to co-exist and share resources. In no

way should the capabilities of a multiprogrammed general-purpose computer be reduced to

a single function system, be it a commodity television set or other embedded system, in

order to meet the demands of multimedia applications.

1.2.5. User Character istics

Different users may have different preferences for how a mix of applications should

behave. For instance, when a system is overloaded due to the Joke Browser and Show-

MeTV running simultaneously, one user may want to reduce the quality of the Joke
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Browser video to free up resources that can be used to improve the display quality of the

ShowMeTV. Another user may desire the opposite behavior. The desired behavior may

depend on whether the user is actively engaged in a ShowMeTV collaborative session, or

if the user is bored and would prefer to be entertained for the moment. Alternatively, how

a system partitions resources to trade off the speed of a compilation versus the display qual-

ity of a video depends on which of the two applications is more important to a user. It may

depend on whether the video is part of an important teleconferencing session or just a tele-

vision show being watched while waiting for an important computational application to

complete. Not only may applications be of varying importance to a user, but different users

may be considered to be of differing importance for a shared computer system. For

instance, the owner of a given workstation would typically have priority for the computing

resources of that workstation over other users. Alternatively, a computing service provider

might give higher priority for computing resources to customers that paid a higher service

fee. It is desirable for a system to be flexible enough and have a wide enough range of

behavior to allow different users to obtain different application mix behavior based on their

preferences.

1.2.6. Summary

Historically, real-time computing systems have focused on meeting the requirements of

activities with time constraints, while general-purpose computing systems have focused on

meeting the requirements of conventional activities in the context of a highly dynamic com-

puting environment. The advent of multimedia has brought these activities together in a

new way, along with diverse requirements that arise from mixing two very different kinds

of activities. Unlike traditional real-time or general-purpose computing systems, systems

that support multimedia must support the mix of real-time and conventional activities in a

manner that allows real-time activities to meet their timing requirements without causing

the starvation of important conventional activities. Moreover, such systems wil l be

expected to provide this support in the context of a user-centric, highly dynamic, frequently

overloaded, general-purpose computing environment.



12

1.3. Current Practice and Research

In today’s general-purpose computing environment, there is little operating system support

for the requirements of multimedia applications. Multimedia applications that are written

today have lit tle choice but to rely on traditional timesharing operating systems which dom-

inate the general-purpose computing infrastructure. As a result, these applications must

provide their own internal framework for dealing with timing requirements. To run effec-

tively, they often rely on being able to monopolize the system, or require that the system

being used have excess resources. In this way, poor scheduling is less likely to result in fre-

quently missed deadlines. However, these workarounds fly in the face of user expectations

to be able to use multimedia effectively in a fully functional multitasking environment. Fur-

thermore, the fact that many multimedia applications are highly dynamic and highly

resource intensive means that relying on excess resources can require much more expensive

hardware than would otherwise be necessary with more effective resource management.

With commercial computer vendors primarily concerned with the price-performance of

their systems, there needs to be a better way.

Anticipating that processor scheduling based on traditional timesharing would not be suit-

able for the support of multimedia applications, commercial computer vendors have incor-

porated into their operating systems features designed to support applications with real-

time requirements. In particular, UNIX System V Release 4 (SVR4) [68] provides a real-

time static priority scheduler, in addition to a standard UNIX timesharing scheduler. By

scheduling real-time activities at a higher priority than any other class of activities, UNIX

SVR4 allows real-time activities to obtain processor resources when needed in order to

meet their timeliness requirements. This solution claims to provide robust system support

for multimedia applications by allowing applications such as those that manipulate audio

and video to serviced by the real-time scheduler. Not only is UNIX SVR4 the most

common basis of UNIX operating systems, but a similar priority-based scheduling frame-

work is used in many other operating systems, including Windows NT [11]. Through care-

ful measurements of application performance, we have quantitatively demonstrated that the

UNIX SVR4 scheduler manages system resources poorly, resulting in unacceptable system

performance for multimedia applications. Not only are the application latencies much
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worse than desired, but pathologies occur with the scheduler such that the system no longer

accepts user input [50].

Because of the importance of effective processor scheduling for multimedia, a number of

different scheduling approaches have been proposed to attempt to address this resource

management problem. One common approach is resource reservations. The basic idea with

reservations is that each real-time activity is allowed to reserve a fixed percentage of the

processor for meeting its timing requirements. For each real-time activity that has been

assigned a reservation for processor cycles, the scheduler then uses some form of real-time

scheduling to meet the timing requirements of the activities. Conventional activities are

typically allowed to share any unreserved processor cycles in a time-sharing fashion. A pri-

mary limitation of this approach is that assigning the reservations to activities in any mean-

ingful way remains an open problem that is currently at best a trial-and-error procedure. In

addition, because conventional activities are given leftover processor cycles, their starva-

tion is a real possibilit y.

Another common approach is fair queuing. The basic idea with fair queuing is that each

activity is assigned some number of shares. The scheduler then allocates processor cycles

among the activities in proportion to their shares. As the system load and the number of run-

ning activities change over time, there is no need to adjust the assignment of shares to

ensure that each activity is given its proportional allocation of processor cycles, since it is

the ratio of the shares that matters. While fair queuing provides a flexible resource alloca-

tion abstraction, it does not at the same time schedule real-time activities effectively in

meeting their timing requirements. 

Because of the difficulty of scheduling across both real-time and conventional activities,

many researchers have turned to hierarchical scheduling. This is a divide-and-conquer

approach in which each class of activity can be assigned its own scheduling policy. There

can be a real-time scheduling policy tailored to the needs of real-time activities and a con-

ventional scheduling policy tailored to the needs of conventional activities. However, there

still needs to be some way of merging these policy decisions together and the manner in

which this is done is a major factor in the overall effectiveness of the scheduler. Typically,
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the policies are merged together using priorities or proportional sharing. The problem is

that using priorities results in the problems encountered with UNIX SVR4, while using pro-

portional sharing results in the problems encountered with fair queuing.

1.4. The SMART Approach

To address these problems, this dissertation proposes SMART (Scheduler for Multimedia

And Real-Time applications), a processor scheduler that fully supports the requirements

of multimedia applications. SMART consists of a simple application interface and a sched-

uling algorithm that tries to deliver the best overall value to the user. For applications with

real-time requirements, SMART explicitl y accounts for application-specific timing infor-

mation in making scheduling decisions and employs a deadline-based scheduling algo-

rithm. SMART is able to make efficient use of resources in meeting real-time requirements

even under dynamically changing system loads, including when the system is overloaded.

It can provide feedback to applications regarding the availability of resources to allow

applications to adapt based on the system load. In addition, the support for real-time appli -

cations is integrated with the support for conventional applications. This allows the user to

prioritize the sharing of resources across real-time and conventional applications, or pro-

portionally share resources across both kinds of applications, irrespective of their timing

requirements. As the system load changes, SMART adjusts the allocation of resources

dynamically and seamlessly in accordance with user preferences.

SMART achieves this behavior by reducing this complex resource management problem

to two decisions, one based on importance to determine the overall resource allocation for

each activity, and the other based on urgency to determine when each activity is given its

allocation. SMART provides a common importance attribute for both real-time and

conventional activities based on priorities and weighted fair queueing (WFQ) [12].

SMART then uses an urgency mechanism based on earliest-deadline scheduling [45] to

optimize the order in which activities are serviced to allow real-time activities to make the

most efficient use of their resource allocations to meet their time constraints. In addition, a

bias on conventional batch activities that accounts for their ability to tolerate more varied
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service latencies is used to give interactive and real-time activities better performance

during periods of transient overload.

We have implemented SMART in the Solaris operating system, a UNIX SVR4 commercial

operating system developed by Sun Microsystems. To evaluate this system, we have mea-

sured its performance in a full -function system environment on real applications. We have

also quantitatively compared SMART’s performance against other schedulers commonly

used in both research and practice. We believe that measuring real applications in a real

system is the best way to understand and evaluate scheduling performance, especially in

view of the complex requirements of multimedia applications. While most multimedia

application studies focus exclusively on audio and video applications, our studies include

experimental results for real-time audio and video, interactive, and batch applications. We

believe it is important to understand the interactions of different classes of applications and

provide good performance for all classes of applications. Our results show that SMART (1)

delivers optimal performance for real-time activities when the system is underloaded, (2)

can deliver almost a factor of two better performance than schedulers used in practice and

research in meeting real-time requirements when the system is overloaded, (3) delivers

good interactive responsiveness and batch computational performance while effectively

meeting real-time requirements, (4) provides flexible proportional and prioritized resource

sharing across both real-time and conventional activities, (5) and provides predictable con-

trols that are well correlated with experimentally measured application behavior.

1.5. Dissertation Overview

This dissertation is organized as follows. Chapter 2 describes the quantitative measure-

ments that demonstrate the limitations of commodity operating systems in supporting mul-

timedia applications. Chapter 3 begins our discussion of SMART, starting with the

SMART interface. Chapter 4 presents the SMART scheduling algorithm. Chapter 5

describes issues in the implementation of SMART in a commercial operating system.

Chapter 6 presents experimental results that quantify the performance benefits of SMART

as compared with other approaches. Finally, we present some conclusions and directions

for future work.
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2 Limitations of Commodity Operating 
Systems

Commodity multiprogrammed operating systems, typified by the UNIX operating system,

evolved from the much different environment of large-scale, multi-user, time-sharing sys-

tems. These time-sharing systems attempt to be fair to all applications while maximizing

total system throughput. Without explicit information from the applications, the best that

can be done is to use heuristics that intuit some properties of applications from their behav-

ior and adjust the allocation of resources in a way that provides the desired results. For

example, some schedulers attempt to approximate a shortest-processing-time-first algo-

rithm by observing the accumulated run-time of processes and giving fewer processing

cycles to those tasks which run for longer periods of time [39]. Such heuristics may result

in less than desirable behavior when users want to run long-running multimedia applica-

tions that are both compute-intensive and have tight timing requirements that need to be

met.

In an attempt to support applications with real-time requirements in the context of a gen-

eral-purpose computing environment, AT&T’s UNIX System V Release 4 (SVR4) was

designed to include a real-time static priority scheduler, in addition to a standard UNIX

time-sharing scheduler [68]. A user can indicate to the operating system that an application

has timing requirements that need to be met by classifying the application as a real-time job

and assigning it a priority value. UNIX SVR4 ensures that all real-time activities are

assigned strictly higher priorities than that of any other class of activities. By running all

activities in priority order, UNIX SVR4 allows real-time activities to obtain processor

cycles when needed to meet their timing requirements. This solution claims to provide

robust system support for multimedia applications by allowing applications such as those
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that manipulate audio and video to be serviced by the real-time scheduler. Since UNIX

SVR4 is a common basis of commercial operating systems, it is important to investigate

these assertions. Therefore, we have used a UNIX SVR4 based system to examine actual

performance of real multimedia applications running in a workstation environment.

Through careful measurements of application and system software performance, we quan-

titatively demonstrate that the UNIX SVR4 scheduler manages system resources poorly for

both so-called real-time and conventional activities, resulting in unacceptable system per-

formance for multimedia applications. Not only are the application latencies much worse

than desired, but pathologies occur with the scheduler such that the system no longer

accepts user input. To alleviate some of these problems, a number of modifications were

made to the UNIX SVR4 time-sharing scheduler. While the modified time-sharing sched-

uler is not very effective, these modifications do result in a noticeable performance

improvement for multimedia applications. The time-sharing scheduler in Sun's Solaris

operating system, version 2.3 and later, is based on the modifications described in this

work.

This chapter describes experiments and measurements we performed to identify the limita-

tions of commodity operating systems in supporting multimedia applications. It is orga-

nized as follows. Section 2.1 provides an overview of the experiments. Section 2.2

describes the experimental setup and applications that we used for our measurements. Sec-

tion 2.3 presents our measurements. Section 2.4 discusses the results. We then present some

summary remarks regarding the limitations of commodity operating systems in supporting

multimedia applications.

2.1. Overview of Experiments

To examine the abilit y of the processor scheduling policies of UNIX SVR4 to support mul-

timedia applications, we identified three classes of computational activities that character-

ize the main types of programs executed on workstations: interactive, continuous media,

and batch. Interactive activities are characteristic of applications (e.g., text editors or pro-

grams with graphical user interfaces) in which computations must be completed within a

short, uniform amount of time in order not to disrupt the exchange of input and output
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between the user and application. Continuous media activities are characteristic of applica-

tions that manipulate sampled digital media (e.g., television or teleconferencing) within

application-specific timing requirements. Simple continuous media activities are often

cyclic computations that process and transport media samples at a defined rate. Batch activ-

ities are characteristic of applications (e.g., long compilations or scientific programs) in

which the required processing time is sufficiently long to allow users to divert their atten-

tion to other tasks while waiting for the computation to complete. By selecting applications

from each of these classes, a representative workload can be constructed that characterizes

typical multimedia workstation usage. To simplify the experiments and the task of inter-

preting the resulting data, only one program from each class is used in the following exper-

iments.

To obtain valid results, the experimentation was done with a standard, production worksta-

tion and operating system. However, measurements of actual system behavior are quite

complex as compared to simulation-based experimentation. As a result, as we discuss in

Section 2.2, a number of measures were taken to permit repeatability of experimental

results and allow the identification and isolation of processor scheduling effects. Since the

purpose of the experiments is to explore the effectiveness of various processor scheduling

policies, an attempt was made to minimize the effects of other resource management deci-

sions. Results were collected from the execution of a series of trial runs of the representa-

tive programs on the testbed hardware. The parameters of the trials were chosen so as to

permit the exploration of a wide range of different conditions with the minimum number of

experiments.

2.2. Exper imental Design

To characterize typical workstation usage, three applications were chosen to represent

interactive, continuous media, and batch activities. A sample screen shot of these applica-

tions is shown in Figure 2-1. Each of these programs was implemented in the most obvious,

and straight-forward fashion. The applications were:
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• typing (interactive class) — This application emulates a user typing to a text editor by

receiving a series of characters from a serial input line and using the X window server

[60] to display them to the frame buffer.

• video (continuous media class) — This is a real-time video player application (e.g. as

used for television, teleconferencing) that attempts to show frames of video at a con-

stant rate. Video captures data from a digitizer board, dithers to 8-bit pseudo-color, and

relies on the X window server to render the pixels to the frame buffer. Video frames are

640x480 pixels.

• compute (batch class) — This application is intended to represent programs such as the

UNIX make utility. make execution is characterized by repeated spawning and waiting

for various programs such as compiler passes, assemblers, and linkers. To reduce vari-

ability induced by the system’s virtual memory, file system, and disk I/O handling, a

simple shell script was used that repeatedly forks and waits for small processes to com-

plete (in this case, the UNIX expr command).

Figure 2-1. Sample application screen
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A number of software tools were added to the testbed to permit the logging of significant

events into files, and the post-processing of these files for the generation of tracing reports.

Modifications were made to the application programs and components of the system soft-

ware to generate the necessary tracing events, but these modifications did not measurably

change the performance of the software. 

While not strictly an application program, the X window server represents a fourth major

component that contributes to the overall performance of the system in these experiments.

It was necessary to instrument the window server to obtain the desired measurements of

user-level system performance. In particular, the typing application displays the typed char-

acters to the computer display via the X window server. To obtain measurements of the

time between when a character was typed and when it was displayed, it is important to

include measurements of the time taken by the X window server to display the character on

behalf of the application. Similarly, the video application displays video to the computer

display via the X window server. To obtain measurements of the time between when a

video frame arrives and when it is displayed, it is important to include measurements of the

time taken by the X window server to display the video frame on behalf of the application.

Note that the window system’s behavior per se is not of interest here, only its contribution

to the user-visible performance of the application programs in the example mix.

The experiments were performed in a representative workstation environment; it consisted

of a SparcStation10 with a single 50MHz processor and 64MB of primary memory. The

testbed system included a standard 8bit (pseudo-color) frame buffer controller (i.e., GX),

and a 1GB local (SCSI) disk drive. In addition, the testbed workstation began with the

release of Sun’s operating system that was in distribution prior to this work — Solaris 2.2

[18], which is based on UNIX SVR4. 

UNIX SVR4 supports multiple concurrent scheduling policies, called scheduling classes.

In particular, a real-time class (RT) class and a time-sharing (TS) class are included in

UNIX SVR4. The scheduling classes are unified into a single priority scheduler by map-

ping each of them onto a range of global priorities, with time-sharing processes mapped to

the low priority range and real-time processes to the highest priority range. UNIX SVR4
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also provides a set of commands for assigning processes to a class and controlli ng each

class. These were used to assign processes for each experiment to the RT class, the TS

class, or to a new scheduling class we developed as described later. In addition, for some

experiments, controls specific to the scheduling class were used to modify their default

behaviors.

To support the video continuous media application, an SBus I/O adaptor was constructed

and added to the system. The adaptor permits the decoding and digitization of analog video

streams into a sequence of video frames. This video digitizing unit appears as a memory-

mapped device in an application’s address space and allows a user-level application to

acquire video frames, whose pixels can be color-space converted into RGB values, dithered

to 8-bit depth, and displayed via the window system.

An effort was made to eliminate variations in the test environment to make the experiments

repeatable. To this end, the testbed was disconnected from the network and restarted prior

to each experimental run. In addition, to enable a realistic and repeatable sequence of typed

keystrokes for programs of the interactive class, a keyboard/mouse simulator was con-

structed and attached to the testbed workstation. This device is capable of recording a

sequence of keyboard and mouse inputs, and then replaying the sequence with the same

timing characteristics.

2.3. Measurements

To evaluate a system’s performance, a means of measuring the system’s operation is

needed that encompasses all of the activities in all of the applications. However, the

measure of quality of an application’s performance is different for each class of application.

To deliver the desired performance on interactive activities, the system should minimize

the average and variance of time between user input and system response to a level that is

faster than that which a human can readily detect. This means that for simple tasks such as

typing, cursor motion, or mouse selection, system response time should be less than 50-150

milli seconds [62]. To deliver peak performance on simple display-oriented continuous

media activities, the system should minimize the difference between the average display

rate and the desired display rate, while also minimizing the variance of the display rate. In
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particular, uncertainty is worse than latency; users would rather have a 10 frames per

second (fps) constant frame rate as opposed to a frame rate that varied noticeably from 2

fps to 30 fps with a mean of 15 fps [71]. To deliver good performance on batch activities,

the system should strive to minimize the difference between the actual time of completion

and the minimum time required for completion as defined by the case when the whole

machine is dedicated to the given activity. In other words, if a make takes 10 minutes to

complete on an unloaded system, the user would like the make to take 10×(1+δ) minutes,

where δ is as small as possible, to complete even when there are other activities running on

the system.

Because the relative value of each application to a user is subjective and application perfor-

mance is measured in many different ways (i.e. interactive character latency verses video

frame rate), no single figure-of-merit can be derived to compare test results. That is, any

calculation resulting in a single value would require an assignment of weights and conver-

sion factors to each measurement to account for the relative values of the applications and

the different units of measurement. Since any such arbitrary assignment is suspect and is

likely to obscure significant information, the outcome of each test is presented as a value

contour. In a value contour, the achieved performance on each measurement is charted rel-

ative to a normative baseline value. If a single figure-of-merit is desired, it can be derived

by assigning weights appropriate to the relative value of each application to the contour

data.

Using value contours based on the mean and standard deviation of characteristic execution

times, we capture the essential quality metric for each application class. The measured

characteristic and baseline values are shown in Table2-1 for each of the applications. To

obtain these baseline values, each application was run in isolation on an otherwise quies-

cent workstation. Note, therefore, that when multiple applications are run simultaneously,

it is not generally possible for all of them to reach 100% of the baseline value. The data

from the experiments described in this paper, obtained from running these applications

simultaneously, is shown in Table2-2.
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Table 2-2. Individual experiment results for UNIX SVR4 scheduling classes

The data in Table2-2 shows that the choice of scheduler has a tremendous impact on appli -

cation performance. The quality metrics for all of the applications differ by more than two

orders of magnitude across different schedulers. There are even a number of instances in

which an application did not even complete the measured operation.

Figure 2-2 presents a set of value contours derived from this data. In each contour, the first

two bars, labeled ‘Tχ’ and ‘Tσ’ , represent the mean and standard deviation, respectively,

for typing character latency. These values are normalized to the baseline values such that a

full size bar represents a mean or standard deviation of latency as small as on an otherwise

Application Measurement Mean Std. Dev.

Typing Latency between character arrival and render-
ing to frame buffer

38.5 msec 15.7 msec

Video Time between display of successive frames 112.0 msec 9.75 msec

Compute Time to execute one loop iteration 149.0 msec 6.79 msec

Table 2-1. Application baseline values

Application / Scheduling Class Typing Video Compute

X T V C χ (msec) σ (msec) χ (msec) σ (msec) χ (msec) σ (msec)

TS TS TS TS 42900.0 23800.0 2780.0 9300.0 150.0 16.0

TS+20 TS TS TS-20 49.6 26.4 117.0 17.9 3910.0 699.0

TS+20 TS TS-5 TS-20 41.8 17.9 529.0 1430.0 189.0 279.0

TS+20 TS TS-10 TS-20 44.0 18.5 174.0 619.0 412.0 896.0

TS TS RT TS — — 1100.0 4810.0 243.0 415.0

RT TS TS TS 26400.0 14400.0 4230.0 9350.0 150.0 22.9

RT- TS RT+ TS — — 142.0 260.0 — —

RT+ TS RT- TS 42000.0 32900.0 112.0 8.1 8040.0 2870.0

TS-M TS-M TS-M TS-M 46.0 19.1 177.0 48.3 496.0 114.0

Legend

X The X Window System server TS SVR4 TS (time-sharing class)

T The typing application TS±n SVR4 TS with nice of ±n

V The video application RT SVR4 RT (real-time class)

C The compute application RT+ SVR4 RT with higher priority

χ Mean RT− SVR4 RT with lower priority

σ Standard Deviation TS-M Modified TS scheduling class

— : Application did not complete measured operation
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idle system (i.e. a taller bar represents better performance). Similarly, the bars labeled ‘Vχ’

and ‘Vσ’ , represent the normalized mean and standard deviation of the time between dis-

play of successive frames for video. Finally, the bars labeled ‘Cχ’ and ‘Cσ’ , represent the

normalized mean and standard deviation of the time taken by one iteration of compute. The

following section provides a description of the scenarios represented by each and an anal-

ysis of these results.

Figure 2-2. Application value contours

2.4. Interpretation of Results

It is expected that, in a well -behaved system, concurrent applications should all make some

progress in their computation. That is, the running of an application by a user indicates

a.) All in SVR4 TS

e.) Video in RT

h.) Video and X-serverg.) Video and X-server

b.) SVR4 TS, Nice 

d.) SVR4 TS, Nice

Tχ Tσ VσVχ Cχ Cσ

in RT, P(X)>P(V)in RT, P(V)>P(X)

(X+20,C-20)

i.) All i n TS-M

f.) X-server in RT

c.) SVR4 TS, Nice 
(X+20,V-5,C-20)

Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ

Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ

Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ Tχ Tσ VσVχ Cχ Cσ

 (X+20,V-10,C-20)
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some residual value for it. Therefore, no one application should be able to prevent others

from running in absence of overt action by a user indicating this is the desired behavior. In

addition, there should be no cases in which the system fails to respond to operator input;

otherwise, control over the system is lost. Finally, users should be able to exercise a wide

range of influence over the system’s behaviors using a stable and predictable control mech-

anism.

The results of these experiments indicate that the standard UNIX SVR4 scheduling system

often violates these objectives. The straightforward approach to adding multimedia appli -

cations to an SVR4-based workstation results, at best, in a low degree of value being pro-

vided to the users, and serious pathological behavior in the worst case. The following

sections describe the test results for the SVR4 time-sharing class alone, the SVR4 time-

sharing and real-time classes together, and a new implementation of the time-sharing class.

2.4.1. SVR4 Time-shar ing Class

The first thing a typical user would do is simply run the chosen set of applications, which,

by default, associates all applications with the time-sharing (TS) scheduling class. Doing

this results in a pathological condition where the window system no longer accepts input

events from the mouse or keyboard, causing the interactive application to freeze and the

continuous media application to stop displaying frames of video. In fact, this pathology is

so complete that attempts to stop the processes by typing commands in a shell (i.e. com-

mand interpreter) window prove futile, because the shell itself is not permitted to run.

The value contour for this scenario is shown in Figure 2-2a, and il lustrates that all of the

applications, with the exception of the batch job, contribute a relatively small amount to the

total delivered value. This is due to the fact that the batch application forks many small pro-

grams to perform work, and then waits for them to finish. Because the batch application

sleeps to wait for each child process to complete, the TS scheduling class identifies it as an

I/O-intensive “interactive” job and provides it with repeated priority boosts for sleeping. As

a result, the batch application quickly moves to the highest time-sharing priority value and

remains there for the remainder of the experimental run.
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An added effect occurs when the window server develops a backlog of outstanding service

requests. As it works down this queue of outstanding commands, the TS scheduling class

identifies the window server as CPU-intensive and lowers its priority. At the same time,

because it sleeps in the process of obtaining new video frames, video is assigned a higher

priority, allowing it to run and thereby generate additional traffic for the window server. As

a result, the quality of the video being displayed is poor because the window system is not

able to execute to process the frames fast enough. Worse yet, typing exhibits an average

delay of more than 42 seconds from receiving a character to having it displayed, as opposed

to the baseline value of 39 milliseconds. The interactive application suffers a degradation

of three orders of magnitude because the window server, which must execute to render the

character’s pixels to the frame buffer, is not scheduled to run frequently enough to work its

way through its growing backlog of commands. Moreover, due to the design of the standard

SVR4 TS class, it can often take tens of seconds for the priority of a penalized process to

recover to the point at which it can actually run. This augments the effect of the improper

processor scheduling decisions and contributes to the poor overall performance of the sys-

tem.

In an attempt to deal with this problem, the system’s administrative controls were used to

change the TS priorities of the window system and the applications. These user priorities

are used by the TS scheduler to modify the actual scheduling priorities. These controls cor-

respond roughly to traditional UNIX nice values. In one case, the user priority of the

window system was elevated to the maximum possible level (+20), while the user priority

of compute was depressed to the minimum possible level (−20), as shown in Figure 2-2b.

This had the effect of improving the performance of video and typing, but compute barely

ran. In an attempt to fix this, the user priority of video was degraded modestly (−5), result-

ing in the contour in Figure 2-2c. This shows how very small changes in these controls can

lead to large and unpredictable effects. Finally, Figure 2-2d illustrates the result of video

receiving a medium amount of degradation (−10). The achieved mean values of all appli -

cations are relatively high, but the variance in frame rate for video is unacceptably high.

Note also the counterintuitive result that video performs better in this scenario than in

Figure 2-2c, even though the scheduler controls indicated a lower importance for video.
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Although the use of user priority adjustments could alleviate the pathological condition

inherent in the SVR4 TS scheduling class, this approach is not effective in general (e.g.,

with multiple, independent applications). That is, it can take a great deal of experimentation

to find a set of control values that work well, and the settings might only work for that exact

application mix. In addition, this approach severely degrades the performance of video,

resulting in highly variable display rates.

2.4.2. SVR4 Time-shar ing and Real-time Classes

Although UNIX SVR4 also provides so-called “ real-time” facilit ies, the assignment of dif-

ferent tasks to the real-time (RT) scheduling class yielded equally unsatisfactory results.

Since video best fits the notion of what a real-time application is, the obvious first step for

using the RT class is to assign video to it. However, when this is done, the system again

ceases to accept input events from the mouse or keyboard and the video again degrades

severely. This is due to the fact that any ready task in the RT class takes precedence over

any TS task. Since video is almost always active, tasks in the TS class are hardly ever

allowed to execute — in fact, shell programs are not even permitted to run, so a user cannot

even attempt to stop such a “real-time” application. Once again, the quality of the video

being displayed is poor because the window system is not able to execute to process the

frames sent to it by the continuous media application. Again, the system delivers low over-

all value for any choice of value assignments, as shown in Figure 2-2e.

Alternatively, the window system could be associated with the RT class, with all of the

applications remaining in the TS class. Although in such a case, the window system related

activities (e.g., mouse tracking) perform well, the basic TS scheduling system pathology

allows the batch job to monopolize the processor. As a result, none of the other applications

can achieve even a small fraction of their possible value, as illustrated in Figure 2-2f.

Another attempt to provide a high degree of value to the user involves placing both video

and the window system in the RT class, and having all applications remain in the TS class.

In this case, the system executes video to the complete exclusion of all other processing.

That is, neither typing nor compute are permitted to run at all , and it is not possible to type

commands into the system’s shell windows. In fact, basic kernel services such as the
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process swapping, flushing dirty pages to disk, and releasing freed kernel memory are

inhibited. The reason for this behavior is that video and the window server consume

essentially all of the system’s processor cycles, and real-time processes take precedence

over all “system” and time-sharing processes. This is because the RT scheduler uses a strict

priority policy, and no processes from other scheduling classes are permitted to run while

there are ready processes in the RT class.

Figure 2-2f and Figure 2-2g show the results that are derived from placing the window

system at a lower and at a higher RT priority than video, respectively. While neither case

delivers acceptable results, the first case (i.e., with the window server’s priority below

video) was particularly bad because video did not leave suff icient time for the window

server to process its requests. Note also, that in Figure 2-2h, video had less variance than in

the baseline measurements. This is due to the strict priority scheduling discipline; processes

in the RT class run in preference to all other processes, including system daemons.

Finally, we note that placing interactive applications in the RT class to improve their per-

formance would also be ineffective unless the window server were placed in the RT class.

Even then, proper operation is not assured because basic system services can be prevented

from functioning due to resource demands in the higher priority real-time class. For exam-

ple, when the X window server, typing, and video are run in the RT class, with priorities

P(X)>P(typing)>P(video), typing unexpectedly performs more than three times worse than

its baseline because it relies on streams I/O services [68] for character input processing.

Because the streams processing is not done in the RT class, it is deferred in favor of the

applications in RT, which consume virtually all of the CPU cycles.

2.4.3. Modified Time-shar ing Class

A modified time-sharing (TS-M) scheduling class was developed to correct the problems

demonstrated in these experimental runs. In particular, the modified version removes the

anomalies of identifying batch jobs as interactive, and vice versa. In addition, it attempts to

ensure that each process that can run is given the opportunity to make steady progress in its

computation, while retaining a bias in favor of interactive processes. Finally, it reduces the

feedback interval over which CPU behavior is monitored and penalties and rewards given.
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The time-sharing scheduling class contained in Sun’s Solaris operating system, version 2.3

and later, is based on this work. 

The results of the default use of this class for all applications and the window server process

are given by Figure 2-2i. As can be seen, this delivers significantly better results for the

continuous media and interactive applications than any combination of the standard SVR4

scheduling classes. It should also be noted that this scheduling policy achieves this level of

performance without significantly starving the batch application, which still receives

approximately 30% of the available CPU time. 

Additional tests were performed by adjusting user priorities and by combining this new

scheduling class with the SVR4 RT class (as was done with SVR4 TS class). However,

with the exception of the cases where there was suff icient load in the RT class to consume

all CPU cycles and starve the TS-M scheduling class, this resulted in no pathologies and

showed a more predictable relationship between user priorities and application perfor-

mance than the standard SVR4 TS scheduling class.

2.5. Summary

Through trial and error, it may be possible to find a particular combination of priorities and

scheduling class assignments to make the SVR4 scheduling pathologies go away. How-

ever, such a solution would be extremely fragile and would require discovering new set-

tings for any change in the mix of applications. In fact, these problems have been induced

in many instances with different applications and conditions than those described here. For

example, the continuous media application by itself can freeze the system when a user

simply uses a popup menu. The modified time-sharing scheduling class eliminates these

pathologies and provides default resource management behavior that favors interactive

applications while not overly penalizing others. 

Commodity operating systems, typified by UNIX SVR4, evolved from the much different

environment of large-scale, multi-user, time-sharing systems. These systems attempt to be

fair to all applications while maximizing total system throughput. As a result, a user (or



30

system administrator) has only limited control over UNIX operating system resource man-

agement decisions. 

Without such control it is not possible to provide the full range of behaviors that might be

desired of multimedia applications. For example, providing uniform rates of audio and

video presentation, where variance in the delivery rate is minimized, may be more impor-

tant to some applications than others. Knowledge of the “slack” available in such compu-

tations can lead to more effective resource util ization. In addition, when the system is

overloaded with continuous media applications, a way of identifying applications of lesser

or greater importance to the users can allow the system to automatically perform service

trade-offs rather than forcing it to degrade all applications equally at best, or randomly at

worst. Armed with such information, the system can manage its resources in such a way as

to maximize the total value delivered to the end user. 

Finally, note that the existence of the strict-priority real-time scheduling class in standard

UNIX SVR4 in no way allows a user to effectively deal with these types of problems. In

addition, it opens the very real possibility of runaway applications that consume all CPU

resources and effectively prevent a user or system administrator from regaining control

without rebooting the system.
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3 The SMART Inter face and Usage Model

A fundamental task of an operating system is to manage the resources of a computer system

in a predictable and reliable way that satisfies the needs of users. However, different users

may have different preferences for the behavior of a mix of applications. For any given mix

of applications, there are often a wide range of possible behaviors. In this context, an oper-

ating system cannot be expected to determine a priori a single set of application behaviors

that works best for all users. There may be many application behaviors that work well for

different users under different circumstances for different applications.

It is not the job of the operating system to tell users what is the best way for their applica-

tions to behave. We believe that users know best how they want their applications to

behave. Instead, the operating system should provide mechanisms that allow users to

choose from a wide range of selectable behaviors for a mix of applications. If a wide range

of behaviors is possible, the operating system can accommodate whatever application

behaviors a user desires for a mix of applications.

To provide a wide range of selectable application mix behaviors, the interface between the

operating system and applications and users is crucial. After all, the operating system on its

own has no way of knowing the behavior desired by applications and users. It also does not

know the resource requirements of the applications. Such information is important for

making well-informed scheduling decisions, such as when a real-time application needs to

run to meet its timing requirements. For users and applications, the interface determines

how easy or how hard it is to control the system behavior for a mix of applications. For

instance, in the absence of any higher-level programming abstractions for dealing with

timing requirements, a recurring development cost is imposed on each programmer who

creates a real-time application.
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To reduce the burden of real-time programming and provide effective performance for mul-

timedia applications, SMART provides a simple interface for applications and users that

allows access to its underlying resource management mechanisms. This interface (1)

enables the operating system to manage resources more effectively by using knowledge of

application-specific timing requirements, (2) provides dynamic feedback to real-time

applications to inform them if their time constraints cannot be met so that they can adapt to

the current loading condition, (3) gives end users simple predictable controls that can be

used to bias the allocation of resources according to their preferences. 

This chapter presents the design of the SMART interface and its usage model, with partic-

ular emphasis on the real-time application programming interface. The interface provides

two kinds of support for multimedia applications. One is to support the developers of mul-

timedia applications that are faced with writing applications that have dynamic and adap-

tive real-time requirements. The other is to support the end users of multimedia

applications, each of whom may have different preferences for how a given mix of appli -

cations should run. The SMART combination of application-level real-time support with

predictable controls for expressing user preferences affords a wide range of rich predictable

behaviors for mixes of multimedia applications and their users.

3.1. Application Developer Suppor t

Multimedia application developers are faced with the problem of writing applications with

real-time requirements. They know the time constraints that should be met in these

applications and know how to allow these applications to adapt and degrade gracefully

when not all time constraints can be met. The problem is that current operating system

practice, as typified by UNIX, does not provide an adequate amount of functionali ty for

supporting these applications. For example, in dealing with time in UNIX time-sharing, an

application can obtain simple timing information such as elapsed wall clock time and

accumulated execution time during its computations. An application can also tell the

scheduler to delay the start of a computation by “sleeping” for a duration of time. But it is

not possible for an application to ask the scheduler to complete a computation within

certain time constraints, nor can it obtain feedback from the scheduler on whether or not it
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is possible for a computation to complete within the desired time constraints. The

application ends up finding out only after the fact that its efforts were wasted on results that

could not be delivered on time. The lack of system support exacerbates the diff iculty of

writing applications with real-time requirements and results in poor application

performance.

To address these limitations, SMART provides to the application developer three kinds of

programming constructs: a time constraint to allow an application to express to the sched-

uler the timing requirements of a given block of application code, a notification to allow

the scheduler to inform the application via an upcall when its timing requirements cannot

be met, and an availability to indicate the availability of processing time. In particular,

applications can have blocks of code that have time constraints and blocks of code that do

not, thereby allowing application developers to freely mix real-time and non-real-time

computations. The SMART application programming constructs are described in further

detail i n Section 3.4.

By allowing applications to inform the scheduler of their time constraints, the scheduler can

optimize how it sequences the resource requests of different applications to meet as many

time constraints as possible. It can delay those computations with less stringent timing

requirements to allow those with more stringent requirements to execute. It can use this

knowledge of the timing requirements of all applications to estimate the load on the system

and determine which time constraints can and cannot be met. By providing notifications,

the scheduler frees applications from the burden of second guessing the system to deter-

mine if their time constraints can be met. By having the scheduler provide information on

the availabili ty of resources to applications, an adaptive real-time application can deter-

mine how best to adjust its execution rate when its timing requirements cannot be met.

The model of interaction provided by SMART is one of propagating information between

applications and the scheduler to facilitate their cooperation in managing resources. Neither

can do the job effectively on its own. Only the scheduler can take responsibility for

arbitrating resources among competing applications, but it needs applications to inform it

of their requirements to do that job effectively. Different applications have different
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adaptation policies, but they need support from the scheduler to estimate the load and

determine when and what time constraints cannot be met.

Note that time constraints, notifications, and availabili ties are intended to be used by appli -

cation writers to support their development of real-time applications; the end user of such

applications need not know anything about these constructs or anything about the timing

requirements of the applications.

3.2. End User Suppor t

Different users may have different preferences for how processing time should be allocated

among a set of applications. Not all applications are always of equal importance to a user.

For example, a user may want to ensure that an important video teleconference be played

at the highest image and sound quality possible, at the sacrifice if need be of the quality of

a television program that the user was just watching to pass the time. However, current

practice, as typified by UNIX, provides litt le in the way of predictable controls to bias the

allocation of resources in accordance with user preferences. For instance, in UNIX time-

sharing, all that a user is given is a “nice” knob [1] whose setting is poorly correlated to user

observable behavior [50].

SMART provides two parameters to predictably control processor allocation: priority and

share. These parameters can be used to bias the allocation of resources to provide the best

performance for those applications which are more important to the user. 

The user can specify that applications have different priorities. The application with the

higher priority is favored whenever there is contention for resources. The system wil l not

degrade the performance of a higher priority application to execute a lower priority

application. For instance, suppose we have two real-time applications, one with higher

priority than the other, and the lower priority application having a computation with a more

stringent time constraint. If the lower priority application needs to execute first in order to

meet its time constraint, the system will allow it to do so as long as its execution does not

cause the higher priority application to miss its time constraint. Among applications with

the same priority, the user can specify the share of each application. This will allow each
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application to receive an allocation of resources in proportion to its respective share

whenever there is contention for resources. 

Our expectation is that most users wil l run the applications in the default priority level with

equal shares. This is the system default and requires no user parameters. The user may wish

to adjust the proportion of shares between the applications occasionally. A simple graphical

interface can be provided to make the adjustment as simple and intuitive as adjusting the

volume of a television or the balance of a stereo output. The user may want to use the pri-

ority to handle specific circumstances. Suppose we wish to ensure that an audio telephony

application always can execute; this can be achieved by running the application with high

priority.

3.3. SMART Use of Information

Fundamental to the design of SMART is the separation of importance information as

expressed by user preferences from the urgency information as expressed by the time con-

straints of the applications. Prematurely collapsing urgency and importance information

into a single priority value, as is the case with standard UNIX SVR4 real-time scheduling,

results in a significant loss of information and denies the scheduler the necessary knowl-

edge to perform its job effectively. By providing both dimensions of information, the

scheduler can do a better job of sequencing the resource requests in meeting the time con-

straints, while ensuring that even if not all t ime constraints can be met, the more important

applications will at least meet their time constraints.

While SMART accounts for both application and user information in managing resources,

it in no way imposes draconian demands on either application developers or end users for

information they cannot or choose not the provide. The design provides reasonable default

behavior as well as incrementally better results for incrementally more information. By

default, an end user can just run an application as he would today and obtain fair behavior.

If he desires that more resources should be allocated to a given application, SMART pro-

vides simple controls that can be used to express that to the scheduler. Similarly, an appli -

cation developer need not use any of SMART’s real-time programming constructs unless

he desires such functionali ty. Alternatively, he might choose to use only time constraints,
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in which case he need not know about notifications or availabilities. When the functionality

is not needed, the information need not be provided. However, unlike other systems, when

the real-time programming support is desired, as is often the case with multimedia applica-

tions, SMART has the abil ity to provide it.

3.4. SMART Real-time API

Having described the basic usage model for SMART and presented an overview of the

SMART interface, we now provide a more detailed description of the real-time application

programming constructs and their use. An example that shows how these constructs are

used in a real-time video application is described in Section 3.5.

3.4.1. Time Constraint

The time constraint is used to allow an application to inform the scheduler of the real-time

characteristics of a computation, as defined by a block of application code. A time con-

straint consists of two parameters:

• deadline: The deadline is the time by which the application requests that the block of

code be completed.

• cpu-estimate: The cpu-estimate is an estimate of the amount of processing time

required for the block of code.

Because the cpu-estimate is an estimate of the amount of processing time required to pro-

cess a time constraint, it may differ from the actual amount of time required. The cpu-esti-

mate may be greater than or less than the actual processing time required. We define how

SMART behaves in each of these cases. SMART uses the cpu-estimates in conjunction

with the deadlines to determine if an activity will be able to meet its time constraint given

the current system load. If the cpu-estimate of an activity is larger than the actual processing

time required, SMART will end up being more conservative in deciding whether the activ-

ity can meet its deadline. If the cpu-estimate of an activity is smaller than the actual pro-

cessing time required, SMART may not allocate enough processing time for the activity to

complete its time constraint. 
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Note that SMART leaves the decision up to the programmer regarding how aggressive or

how conservative to be with the use of the cpu-estimate. This is a programmer-dependent

and application-dependent decision. It is not the job of the operating system to dictate how

this decision is made. This is something that a programmer should know best and is not

something that can be automated. As a result, SMART provides the programmer with the

abil ity to provide any cpu-estimate and thereby choose from a wide range of possible appli -

cation mix behaviors. To provide a better understanding of how these cpu-estimates can be

determined, we discuss one estimation method in Section 3.5.

SMART treats the cpu-estimate as only an estimate of processing time. An activity is not

necessarily limi ted to only using as much processing time as is indicated by its cpu-esti-

mate. If an activity needs more processing time than indicated by its cpu-estimate, the activ-

ity can obtain additional processing time in accordance with its priority and share. The

activity wil l be allowed to run for more than its cpu-estimate only if doing so does not con-

fli ct with the resource requirements of any more important activities, where importance is

determined based on priorities and shares. For instance, if a real-time activity is the highest

priority activity, that activity will be given any extra processing time it requires. However,

if a real-time activity is a low priority activity and the system is overloaded, the activity

may not be given the extra processing time required to meet its deadline because doing so

would cause other higher priority activities to miss their deadlines. The use of priorities and

shares for determining if an activity can exceed its cpu-estimate is consistent with their use

in determining if an activity can meet its time constraint when the system is overloaded.

If the system is overloaded, there will typically be some low importance real-time activities

that are not able to meet their time constraints. A question arises as to what is done with

such activities. One possibilit y is for the operating system to abort the execution of the

block of code associated with the given time constraint. This would require applications to

be written in such a way to deal with such abort events, which would make many real-time

programs more difficult to write. Another possibil ity is to treat a real-time activity as a

conventional activity once its time constraint has been missed, but we have already pointed

out that real-time and conventional activities typically have very different requirements that

need to be met. SMART allows real-time activities that are not able to meet their time
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constraints to run for some portion of their requested processing time before their deadline.

The portion of the requested processing time that is given is assigned in accordance with

an activity’s priority and share, such that the execution of the given activity does not

conflict with the requirements of any more important activities. This processing time may

be used by the application in whatever manner the application deems appropriate for

dealing with a missed time constraint, such as handling a notification or gracefully adapting

and degrading by setting a more relaxed time constraint for its computation. Note that when

the system is heavily overloaded, the less important activities may not receive any

processing time before their respective deadlines. Once the deadline of a real-time activity

has passed, the real-time activity is allowed to execute in accordance with its priority and

share, much in the same way as an activity that has exceeded its cpu-estimate.

By default, if the deadline is not specified, the time constraint is simply ignored. By default,

if the cpu-estimate is not specified, the system conservatively assumes that the application

requires whatever processing time is available until the deadline.

3.4.2. Notification

The notification is used to allow an application to request that the scheduler inform it when-

ever its deadline cannot be met. A notification consists of two parameters:

• notify-time: The notify-time is the time after which the scheduler should inform the

respective application if it is unlikely to complete its computation before its deadline.

• notify-handler: The notify-handler is a function that the application registers with the

scheduler. It is invoked via an upcall mechanism from the scheduler when the sched-

uler notifies the application that its deadline cannot be met. 

The notify-time is used by the application to control when the notification upcall i s deliv-

ered. For instance, if the notify-time is set equal to zero, then the application will be notified

immediately if early estimates by the scheduler indicate that its deadline will not be met.

On the other hand, if the notify-time is set equal to the deadline, then the application will

not be notified until after the deadline has passed if its deadline was not met.
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The combination of the notification upcall with the notify-handler frees applications from

the burden of second guessing the system to determine if their time constraints can be met,

and allows applications to choose their own policies for deciding what to do when a dead-

line is missed. For example, upon notification, the application may choose to discard the

current computation, perform only a portion of the computation, or perhaps change the time

constraints. This feedback from the system enables adaptive real-time applications to

degrade gracefully.

The processing of a notification by an application requires some amount of processing time.

A question that arises is when should a notification be processed and how much processing

time should an application be allowed to use in processing a notification? One solution

would be to treat notifications as high priority events which are processed immediately. A

problem with this approach is that a low priority application could take over the system by

doing all its required computing in a notification handler. The system could limit the

amount of processing that can occur in a notification handler and preempt the application

once that limit is reached. However, the choice of such a limit could arbitrarily limit the

functionality of some applications which really needed the extra processing time for their

notification handlers. Moreover, high priority applications could still be adversely

impacted by notification processing by low priority applications if there are many low pri-

ority applications that need to be notified. In SMART, a notification is instead processed as

part of the normal allocation of processing time that is given to an application. As a result,

a high priority application will have its notification processed at a high priority and a low

priority application will have its notification processed at a low priority. In this way, noti-

fication processing by lower priority applications will not disrupt the execution of higher

priority applications. 

By default, if the notify-time is not specified, the application is not notified if its deadline

cannot be met. In addition, if no notify-handler is registered, the notify-time is ignored.

3.4.3. Availabili ty

When it is not possible to meet the time constraints of an application due to the loading con-

dition of the system, the application may adapt to the loading condition by reducing the
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quali ty of its results to reduce its resource consumption. When the load on the system even-

tually reduces, the application would like to return to providing a higher quality of service.

To enable applications to obtain this kind of system load information, the scheduler pro-

vides availabilit ies to applications at their request. An availability is an estimate of the pro-

cessor time consumption of an application relative to its processor time allocation. It

consists of two parameters:

• consumption-rate: The consumption-rate is the percentage of the processor that is

being consumed by the application.

• allocation-rate: The allocation-rate is the percentage of the processor that the applica-

tion can use as determined by the scheduler based on the priority and share of the

application.

If the allocation-rate is larger than the consumption-rate, the application is using less than

its allocation of the processor. If the allocation-rate is less than the consumption-rate, the

application is using more than its allocation of the processor. For example, suppose we have

two applications with equal priority and equal share, one of which only needs 25% of the

processor while the other one needs 55% of the processor. Then the respective (consump-

tion-rate, allocation-rate) of each application would be (25, 50) and (55, 50), respectively.

By comparing its consumption-rate with its allocation-rate, an application can determine if

it can consume a larger portion of processing time and thereby deliver a higher quality of

service.

3.5. Programming Example

To illustrate how the SMART application interface makes it easier to develop a real-time

application, we describe the development of an application which plays multimedia audio

and video. The application described is the Integrated Media Streams (IMS) Player from

Sun Microsystems Laboratories. This application displays synchronized audio and video

streams from local storage. Each media stream flows under the direction of an independent

thread of control, which we refer to as a media player. The audio and video players com-

municate through a shared memory region and use timestamps to synchronize the display
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of the media streams. The application adapts to its system environment by adjusting the

quali ty of playback based on the system load. 

We note that the timing and processing requirements of the media player are not strictly

periodic in nature. Most of the timestamps of the media streams occur in a cyclic fashion,

but some media samples are spaced further apart in time because intermediate samples

were lost when the media streams were first recorded; the media player was designed to be

able to accurately playback media streams even if they have aperiodic timestamps. In addi-

tion, the video player processes JPEG compressed video, which results in a significant

amount of variation in frame processing times. 

The application was developed and tuned for the UNIX SVR4 time-sharing scheduler in

the Solaris operating system. We describe what it took to develop the IMS Player for UNIX

SVR4, then discuss how we modified it for SMART.

3.5.1. Video Player

The video player reads a timestamped JPEG video input stream from local storage,

uncompresses it, dithers it to 8-bit pseudo-color, and renders it directly to the frame buffer.

When the video player is not used in synchrony with an audio player, the player uses the

timestamps on the video input stream to determine when to display each frame and whether

a given frame is early or late. When used in conjunction with the audio player, the video

player attempts to synchronize its output with that of the audio device by matching the

timestamps of the video frames with the timestamps of the audio samples being played. In

particular, since humans are more sensitive to intra-stream audio asynchronies (i.e. audio

delays and drop-outs) than to asynchronies involving video, the thread controlli ng the audio

stream free-runs as the master time reference and the video “slave” thread uses the

information the audio player posts into the shared memory region to determine when to

display its frames.

If the video player is ready to display its frame early, it delays the display of the frame until

the appropriate time; but if it is late, it discards its current frame on the assumption that con-

tinued processing will cause further delays later in the stream. The application defines early
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and late as more than 20 ms early or late with respect to the audio. For UNIX SVR4, the

video player must determine entirely on its own whether or not each video frame can be

displayed on time. This is done by measuring the amount of wall clock time that elapses

during the processing of each video frame. An exponential average [20] of the elapsed wall

clock time of previously displayed frames is then used as an estimate for how long it will

take to process the current frame. If the estimate indicates that the frame will complete too

early (more than 20 ms early), the video player sleeps an amount of time necessary to delay

processing to allow the frame to be completed at the right time. If the estimate indicates that

the frame wil l be completed too late (more than 20 ms late), the frame is discarded.

The application adapted to run on SMART uses the same mechanism as the original to

delay the frames that would otherwise be completed too early. We simply replace the appli -

cation’s discard mechanism with a time constraint system call to inform SMART of the

time constraints for a given block of application code, along with a signal handler to process

notifications of time constraints that cannot be met. The time constraint informs SMART

of the deadline for the execution of the block of code that processes the video frame. The

deadline is set to the time the frame is considered late, which is 20 ms after the ideal display

time. It also provides an estimate of the amount of execution time for the code calculated

in a similar manner as the original program. In particular, an exponential average of the

execution times of previously displayed frames scaled by 10% is used as the estimate. Upon

setting the given time constraint, the application requests that SMART provide a notifica-

tion to the application right away if early estimates predict that the time constraint cannot

be met. When a notification is sent to the application, the application signal handler simply

records the fact that the notification has been received. If the notification is received by the

time the application begins the computation to process and display the respective video

frame, the frame is discarded; otherwise, the application simply allows the frame be dis-

played late.

Figures 3-1 and 3-2 indicate that simple exponential averaging based on previous frame

execution times can be used to provide reasonable estimates of frame execution times even

for JPEG compressed video in which frame times vary from one frame to another. The data

in Figure 3-1 was for a network news programming video sequence while the data in Figure
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3-2 was for a television entertainment video sequence. The data in each figure was col-

lected over a 300 second time interval of the respective video sequence. Each figure shows

the actual execution time for each video frame and the estimate error, which is the differ-

ence between the estimated and actual execution time for each frame. Note that the slight

positive bias in the estimate error is due to the 10% scaling in the estimate versus the actual

execution time. 

As expected, the execution time for processing JPEG video frames varies considerably over

the course of the video sequence. Different frames take different amounts of time to decom-

press, depending on the amount of scene complexity in the respective frame. However, the

processing time required by successive video frames in the sequence is often similar

because typically not that much content changes from one video frame to the next. Expo-

nential averaging is able to take advantage of this characteristic to do a reasonable job of

predicting the execution time of a given frame by using the execution times of immediately

preceding video frames. At the same time, since the average is dynamically adjusted and

gives most weight to recent frame execution times, it is able to provide reasonable estimates

even with substantial variation in frame execution times over the course of a video

sequence. The results also illustrate the diff iculty of using a more static resource reservation

scheme based on a single processing time estimate for all video frames. Using the upper

bound on the processing time as an estimate may yield a low util ization of resources; using

the average processing time may cause too many deadlines to be missed.

There are cases when the scene in a video sequence may change quite suddenly between

two successive frames. For instance, an action-packed entertainment programming

sequence would typically have a number of sudden scene changes. In these cases, the pro-

cessing time can vary considerably between two successive frames. As a result, the esti-

mate error from exponential averaging will be higher during such scene changes. In fact,

the estimate error shown in Figure 3-2 which is from entertainment programming is higher

than the estimate error shown in Figure 3-1 which is from network news programming. The

reason is that there are many more sudden scene changes in the entertainment program-

ming. In contrast, the network news programming has more talking head video clips which

vary lit tle from frame to frame.
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While it is more difficult to provide an accurate estimate of video frame processing time

during sudden scene changes from one frame to the next, it is also more difficult for users

to see many of the details in the video during such rapid scene changes. As a result, if larger

estimate errors during sudden scene changes caused the corresponding video frames to be

scheduled less accurately, the visual effect of the inaccuracy is often not very noticeable to

the user. 

While we have used JPEG video for these measurements, reasonable estimates of frame

execution times can also be provided for other video formats such as MPEG video [5]. In

the case of MPEG video, averaging would be required for each type of frame. By allowing

time constraints to be specified on a frame-by-frame basis, SMART provides enough flex-

ibilit y to handle real-time requirements that may be quite dynamic and aperiodic in nature.

Figure 3-1. Actual vs. estimated frame execution times for JPEG network news video

3.5.2. Audio Player

The audio player reads a timestamped 8-bit µ-law audio input stream from local storage and

outputs the audio samples to the audio device. The processing of the 8-bit µ-law monaural

samples is done in 512 byte segments. To avoid audio dropouts, the audio player takes
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advantage of buffering available on the audio device to work ahead in the audio stream

when processor cycles are available. Up to 1 second of workahead is allowed. For each

block of code that processes an audio segment, the audio player aims to complete the seg-

ment before the audio device runs out of audio samples to display. The deadline communi-

cated to SMART is therefore set to the display time of the last audio sample in the buffer.

The estimate of the execution time is again computed by using an exponential average of

the measured execution times for processing previous audio segments. It turns out that the

processing time for all the audio segments is relatively constant, so that there is very little

error in the execution time estimates. Audio segments that cannot be processed before their

deadlines are simply displayed late. Note that because of the workahead feature and the

audio device buffering, the resulting deadlines can be highly aperiodic.

Figure 3-2. Actual vs. estimated frame execution times for JPEG entertainment video

We see from this example that the SMART interface can be used to reduce the burden of

developing real-time applications. It facili tates the communication of application timing

requirements between the application and the operating system. Because the interface

allows time constraints to be specified on a per instance basis, it can be used to support real-
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time applications that are highly adaptive, dynamic, and aperiodic in nature. As we show

in Chapter 6, when coupled with an underlying scheduling algorithm, the SMART inter-

face helps to provide significant improvements in the performance of multimedia applica-

tions over other scheduling approaches.

3.6. Summary

We have described a new scheduling interface that provides effective support for multime-

dia applications in a general-purpose computing environment. The SMART interface

accounts for user preferences and allows applications to cooperate with the scheduler in

supporting their real-time requirements. In particular, the interface allows users to prioritize

and proportionally share resources among applications according to their preferences. Fur-

thermore, the scheduler cooperates with applications so that the scheduler can employ

application-specific timing information it needs to manage resources effectively, and real-

time applications can obtain the necessary dynamic feedback to enable them to adapt to

changes in the system load to provide the best possible quality of service.
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4 The SMART Scheduling Algor ithm

A well-designed interface between the operating system and its applications and users pro-

vides users with the ability to select from a wide range of possible behaviors for a given

mix of applications. However, an interface alone is ineffective without an underlying

scheduling algorithm that can actually make good use of hardware resources in supporting

such possible application behaviors.

In this chapter, we describe the underlying scheduling algorithm in SMART. This algo-

rithm effectively supports a wide range of application behaviors, as expressed using the

SMART interface. We first describe the principles of operations used in the design of the

SMART scheduler. We then give an overview of the rationale behind the design, followed

by an overview of the algorithm and then the details.

4.1. Pr inciples of Operations

It is the scheduler’s objective to deliver the behavior expected by the user in a manner that

maximizes the overall value of the system to its users. We have reduced this objective to

the following six principles of operations:

• Priority. The system should not degrade the performance of a high priority application

in the presence of a low priority application.

• Proportional sharing among real-time and conventional applications in the same pri-

ority class. Proportional sharing applies only if the scheduler cannot satisfy all the

requests in the system. The system will fully satisfy the requests of all applications

requesting less than their proportional share. The resources left over after satisfying

these requests are distributed proportionally among activities that can use the excess.
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While it is relatively easy to control the execution rate of conventional applications,

the execution rate of a real-time application is controlled by selectively shedding com-

putations in as even a rate as possible.

• Graceful transitions between fluctuations in load. The system load varies dynamically,

new applications come and go, and the resource demand of each application may also

fluctuate. The system must be able to adapt to the changes gracefully.

• Satisfying real-time constraints and fast interactive response time in underload. If real-

time and interactive activities request less than their proportional share, their time con-

straints should be honored when possible, and the interactive response time should be

short.

• Trading off instantaneous fairness for better real-time and interactive response time.

While it is necessary that the allocation is fair on average, insisting on being fair

instantaneously at all times would cause many more deadlines to be missed and deliver

poor response time to short running activities. We will tolerate some instantaneous

unfairness so long as the extent of the unfairness is bounded. This is the same motiva-

tion behind the design of multi -level feedback schedulers [39] to improve the response

time of interactive activities.

• Notification of resource availabilit y. SMART allows applications to specify if and

when they wish to be notified if it is unlikely that their computations wil l be able to

complete before their given deadlines.

4.2. Rationale and Overview

Real-time and conventional applications have very diverse characteristics. Real-time appli -

cations have some well-defined computation which must be completed before an associ-

ated deadline. The goal of a real-time application is typically to complete as many

computations before their respective deadlines as possible. In contrast, conventional appli -

cations have no explicit deadlines and their computations are often harder to predict.

Instead, the goal is typically to deliver good response time for interactive applications and

fast program completion time for batch applications. These characteristics are summarized
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in Table 4-1. It is this diversity that makes devising an integrated scheduling algorithm dif-

ficult. A real-time scheduler uses real-time constraints to determine the execution order, but

conventional activities do not have real-time constraints. Adding periodic deadlines to con-

ventional activities is a tempting design choice, but it introduces artificial constraints that

reduce the effectiveness of the system. On the other hand, a conventional activity scheduler

has no notion of real-time constraints; the notion of time-slicing the applications to opti-

mize system throughput does not serve real-time applications well .

Table 4-1. Categories of applications

The crux of the solution is not to confuse urgency with importance. An urgent activity is

one which has an immediate real-time constraint. An important activity is one with a high

priority, or one that has been the least serviced proportionally among applications with the

same priority. An urgent activity may not be the one to execute if it requests more resources

than its fair share. Conversely, an important activity need not be run immediately. For

example, a real-time activity that has a higher priority but a later deadline may be able to

tolerate the execution of a lower priority activity with an earlier deadline. Our algorithm

separates the processor scheduling decisions into two steps; the first identifies all the can-

didates that are considered important enough to execute, and the second chooses the activ-

ity to execute based on urgency considerations.

A key characteristic of this two-step scheduling algorithm is that it avoids the tyranny of

the urgent. That is, there are often many urgent activities that need to get done, but not

enough time to do all of them completely within their time constraints. However, trying to

focus on getting the urgent activities done while neglecting the less time constrained but

more important activities that need to get done is typically a path to long term disaster.

Instead, what our algorithm effectively does is it gets things that are more urgent done

Real-Time Applications Conventional Applications
Interactive Batch

Deadlines Yes No No

Quantum of Execution Service time: no value if the 
entire activity is not executed

Arbitrary choice Arbitrary choice

Resource Requirement A slack is usually present Relinquishes machine while 
waiting for human response

Can consume all processor 
cycles until it  completes

Quali ty of Service Metr ic Number of deadlines met Response time Program completion time
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sooner, but defers less important activities as needed to ensure that the more important

activities can meet their requirements. In particular, what candidates are considered impor-

tant enough to execute depends on the load on the system. If the system is lightly loaded

such that all activities can run and meet their requirements, then all activities will be con-

sidered important enough to execute. The algorithm will then order all activities based on

urgency to do the best job of meeting the deadlines of all real-time activities. If the system

is heavily loaded such that not all activities can run and meet their requirements, then the

algorithm will only consider as candidates the most important activities that can meet their

requirements with the available processing time.

While urgency is specific to real-time applications, importance is common to all the appli -

cations. We measure the importance of an application by a value-tuple, which is a tuple

with two components: priority and the biased virtual finishing time (BVFT). Priority is a

static quantity either supplied by the user or assigned the default value; BVFT is a dynamic

quantity the system uses to measure the degree to which each activity has been allotted its

proportional share of resources. The formal definition of the BVFT is given in Section 4.3.

We say that activity A has a higher value-tuple than activity B if A has a higher static pri-

ority or if both A and B have the same priority and A has an earlier BVFT. The value-tuple

effectively provides a way to express what would otherwise be a non-obvious utili ty func-

tion for capturing both the notions of prioritized and proportional sharing.

The SMART scheduling algorithm used to determine the next activity to run is as follows:

1. If the activity with the highest value-tuple is a conventional activity (an activity with-

out a deadline), schedule that activity.

2. Otherwise, create a candidate set consisting of all real-time activities with higher

value-tuple than that of thehighest value-tuple conventional activity. (If no conven-

tional activities are present, all the real-time activities are placed in the candidate set.) 

3. Apply the best-effort real-time scheduling algorithm [46] on the candidate set, using

the value-tuple as the priority in the original algorithm. By using the given deadlines

and service-time estimates, find the activity with the earliest deadline whose
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execution does not cause any activities with higher value-tuples to miss their

deadlines. This is achieved by considering each candidate in turn, starting with the

one with the highest value-tuple. The algorithm attempts to schedule the candidate

into a working schedule which is initially empty. The candidate is inserted in

deadline order in this schedule provided its execution does not cause any of the

activities in the schedule to miss its deadline. The scheduler simply picks the activity

with the earliest deadline in the working schedule. 

4. If an activity cannot complete its computation before its deadline, send a notification

to inform the respective application that its deadline cannot be met.

The following sections provide a more detailed description of the BVFT, and the best-effort

real-time scheduling technique.

4.3. Biased Vir tual Finishing Time

The notion of a virtual finishing time (VFT), which measures the degree to which the activ-

ity has been allotted its proportional share of resources, has been previously used in

describing fair queueing algorithms [6, 12, 57, 65, 69]. These proportional sharing algo-

rithms associate a VFT with each activity as a way to measure the degree to which an activ-

ity has received its proportional allocation of resources. We augment this basic notion of a

VFT in the following ways. First, our use of virtual finishing times incorporates activities

with different priorities. Second, we add to the virtual finishing time a bias, which is a

bounded offset used to measure the abili ty of conventional activities to tolerate longer and

more varied service delays. The biased virtual finishing time allows us to provide better

interactive and real-time response without compromising fairness. Finally and most impor-

tantly, fair queueing algorithms such as weighted fair queueing (WFQ) execute the activity

with the earliest virtual finishing time to provide proportional sharing. SMART only uses

the biased virtual finishing time in the selection of the candidates for scheduling, and real-

time constraints are also considered in the choice of the application to run. This modifica-

tion enables SMART to handle applications with aperiodic constraints and overloaded con-

ditions.
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Our algorithm organizes all the activities into queues, one for each priority. The activities

in each queue are ordered in increasing BVFT values. Each activity has a virtual time which

advances at a rate proportional to the amount of processing time it consumes divided by its

share. Suppose the current activity being executed has share S and was initiated at time τ.

Let v(τ) denote the activity’s virtual time at time τ. Then the virtual time v(t) of the activity

at current time t is

.  (1)

Correspondingly, each queue has a queue virtual time which advances only if any of its

member activities is executing. The rate of advance is proportional to the amount of pro-

cessing time spent on the activity divided by total number of shares of all activities on the

queue. To be more precise, suppose the current activity being executed has priority P and

was initiated at time τ. Let VP(τ) denote the queue virtual time of the queue with priority P

at time τ. Then the queue virtual time VP(t) of the queue with priority P at current time t is

,  (2)

where Sa represents the share of application a, and AP is the set of applications with priority

P.

Previous work in the domain of packet switching provides a theoretical basis for using the

difference between the virtual time of an activity and the queue virtual time as a measure

of whether the respective activity has consumed its proportional allocation of resources [12,

57]. If an activity’s virtual time is equal to the queue virtual time, it is considered to have

received its proportional allocation of resources. An earlier virtual time indicates that the

activity has less than its proportional share, and, similarly, a later virtual time indicates that

it has more than its proportional share. Since the queue virtual time advances at the same

rate for all activities on the queue, the relative magnitudes of the virtual times provide a rel-

ative measure of the degree to which each activity has received its proportional share of

resources.

v t( ) v τ( )
t τ–

S
----------+=

VP t( ) VP τ( )
t τ–

Sa

a AP∈
∑
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The virtual finishing time refers to the virtual time of the application, had the application

been given the currently requested quantum. The quantum for a conventional activity is the

unit of time the scheduler gives to the activity to run before being rescheduled. The quan-

tum for a real-time activity is the application-supplied estimate of its service time. A useful

property of the virtual finishing time, which is not shared by the virtual time, is that it does

not change as an activity executes and uses up its time quantum, but only changes when the

activity is rescheduled with a new time quantum. 

In the following, we step through all the events that lead to the adjustment of the biased

virtual finishing time of an activity. Let the activity in question have priority P and share S.

Let β(t) denote the BVFT of the activity at time t.

activity creation time. When an activity is created at time τ0, it acquires as its virtual time

the queue virtual time of the its corresponding queue. Suppose the activity has time quan-

tum Q, then its BVFT is

.  (3)

Completing a Quantum. Once an activity is created, its BVFT is updated as follows. When

an activity finishes executing for its time quantum, it is assigned a new time quantum Q.

As a conventional activity accumulates execution time, a bias is added to its BVFT when

it gets a new quantum. That is, let b represent the increased bias and τ be the time an activ-

ity’s BVFT was last changed. Then, the activity’s BVFT is

.  (4)

The bias is used to defer long running batch computations during transient loads to allow

real-time and interactive activities to obtain better immediate response time. The bias is

increased in a manner similar to the way priorities and time quanta are adjusted in UNIX

SVR4 to implement time-sharing [68]. The total bias added to an application’s BVFT is

bounded. Thus, the bias does not change either the rate at which the BVFT is advanced or

the overall proportional allocation of resources. It only affects the instantaneous propor-

tional allocation. User interaction causes the bias to be reset to its initial value. Real-time

activities have zero bias. 

β τ0( ) VP τ0( )
Q
S
----+=

β t( ) β τ( ) Q
S
---- b

S
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The idea of a dynamically adjusted bias based on execution time is somewhat analogous to

the idea of a decaying priority based on execution time which is used in multilevel-

feedback schedulers. However, while multi level-feedback affects the actual average

amount of resources allocated to each activity, bias only affects the response time of an

activity and does not affect its overall abili ty to obtain its proportional share of resources.

By combining virtual finishing times with bias, the BVFT can be used to provide both

proportional sharing and better system responsiveness in a systematic fashion. 

Blocking for I/O or events. A blocked activity should not be allowed to accumulate credit

to a fair share indefinitely while it is sleeping; however, it is fair and desirable to give the

activity a limi ted amount of credit for not using the processor cycles and to improve the

responsiveness of these activities.  Therefore, SMART allows the activity to remain on its

given priority queue for a limi ted duration which is equal to the lesser of the deadline of the

activity (if one exists), or a system default. At the end of this duration, a sleeping activity

must leave the queue, and SMART records the difference between the activity’s and the

queue’s virtual time. This difference is then restored when the activity rejoins the queue

once it becomes runnable. Let E be the execution time the activity has already received

toward completing its time quantum Q, B be its current bias, and v(t) denote the activity’s

virtual time. Then, the difference ∆ is

,  (5)

where 

.  (6)

Upon rejoining the queue, its bias is reset to zero and the BVFT is 

.  (7)

Reassigned user parameters. If an activity is given a new priority, it is reassigned to the

queue corresponding to its new priority, and its BVFT is simply calculated as in Equation

(3). If the activity is given a new share, the BVFT is calculated by having the activity leave

the queue with the old parameters used in Equation (6) to calculate ∆, and then join the

queue again with the new parameters used in Equation (7) to calculate its BVFT. 

∆ v t( ) VP t( )–=

v t( ) β t( ) Q E–
S

--------------–
B
S
---–=
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4.4. Best-effor t Real-time scheduling

SMART iteratively selects activities from the candidate set in decreasing value-tuple order

and inserts them into an initially empty working schedule in increasing deadline order. The

working schedule defines an execution order for servicing the real-time resource requests.

It is said to be feasible if the set of activity resource requirements in the working schedule,

when serviced in the order defined by the working schedule, can be completed before their

respective deadlines. It should be noted that the resource requirement of a periodic real-

time activity includes an estimate of the processing time required for its future resource

requests. 

To determine if a working schedule is feasible, let Qj be the processing time required by

activity j to meet its deadline, and let Ej be the execution time activity j has already spent

running toward meeting its deadline. Let Fj be the fraction of the processor required by a

periodic real-time activity; Fj is simply the ratio of an activity’s service time to its period if

it is a periodic real-time activity, and zero otherwise. Let Dj be the deadline of the activity.

Then, the estimated resource requirement of activity j at a time t such that  is:

.  (8)

A working schedule W is then feasible if for each activity i in the schedule with deadline

Di, the following inequality holds:

.  (9)

On each activity insertion into the working schedule, the resulting working schedule that

includes the newly inserted activity is tested for feasibility. If the resulting working sched-

ule is feasible and the newly inserted activity is a periodic real-time activity, its estimate of

future processing time requirements is accounted for in subsequent feasibil ity tests. At the

same time, lower value-tuple activities are only inserted into the working schedule if they

do not cause any of the current and estimated future resource requests of higher value-tuple

activities to miss their deadlines. The iterative selection process is repeated until SMART

runs out of activities or until i t determines that no further activities can be inserted into the

schedule feasibly. Once the iterative selection process has been terminated, SMART then

executes the earliest-deadline runnable activity in the schedule. 

t Dj≥

Rj t( ) Qj Ej– Fj t Dj–( )× t Dj≥,+=
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If there are no runnable conventional activities and there are no runnable real-time activities

that can complete before their deadlines, the scheduler runs the highest value-tuple runna-

ble real-time activity, even though it cannot complete before its deadline. The rationale for

this is that it is better to use the processor cycles than allow the processor to be idle. The

algorithm is therefore work conserving, meaning that the resources are never left idle if

there is a runnable activity, even if it cannot satisfy its deadline. 

4.5. Example

We now present a simple example to illustrate how the SMART algorithm works. Consider

a workload involving two real-time applications, A and B, and a conventional application

C. Suppose all the applications belong to the same priority class, and their proportional

shares are in the ratio of 1:1:2, respectively. Both real-time applications request 40 ms of

computation time every 80 ms, with their deadlines being completely out of phase, as

shown in Figure 4-1(a). The applications request to be notified if the deadlines cannot be

met; upon notification, the application drops the current computation and proceeds to the

computation for the next deadline. The scheduling quantum of the conventional application

C is also 40 ms and we assume that it has accumulated a bias of 100 ms at this point. Figure

4-1(b) and (c) show the final schedule created by SMART for this scenario, and the BVFT

values of the different applications at different time instants.

Figure 4-1. Example illustrating the behavior of the SMART algorithm

The initial BVFTs of applications A and B are the same; since C has twice as many shares

as A and B, the initial BVFT of C is half of the sum of the bias and the quantum length.
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Because of the bias, application C has a later BVFT and is therefore not run immediately.

The candidate set considered for execution consists of both applications, A and B; A is

selected to run because it has an earlier deadline. (In this case, the deadline is used as a tie-

breaker between real-time activities with the same BVFT; in general, an activity with an

early deadline may get to run over an activity with an earlier BVFT but a later deadline.)

When an activity finishes its quantum, its BVFT is incremented. The increment for C is half

of that for A and B because the increment is the result of dividing the time quantum by its

share. Figure 4-1(c) shows how the activities are scheduled such that their BVFT are kept

close together. 

This example ill ustrates several important characteristics of SMART. First, SMART

implements proportional sharing properly. In the steady state, C is given twice as much

resources as A or B, which reflects the ratio of shares given to the applications. Second, the

bias allows better response in temporary overload, but it does not reduce the proportional

share given to the biased activity. Because of C’s bias, A and B get to run immediately at

the beginning; eventually their BVFTs catch up with the bias, and C is given its fair share.

Third, the scheduler is able to meet many real-time constraints, while skipping tardy com-

putations. For example, at time 0, SMART schedules application A before B so as to satisfy

both deadlines. On the other hand, at time 120 ms into the execution, realizing that it cannot

meet the A2 deadline, it executes application B instead and notifies A of the missed dead-

line.

4.6. Complexity

The cost of scheduling with SMART consists of the cost of managing the value-tuple list

and the cost of managing the working schedule. The cost of managing the value-tuple list

in SMART is , where N is the number of active activities. This assumes a linear inser-

tion value-tuple list. The complexity can be reduced to  using a tree data structure.

For small N, a simple linear li st is li kely to be most eff icient in practice. The cost of man-

aging the value-tuple list is the same as WFQ.

The worst case complexity of managing the working schedule is , where NR is the

number of active real-time activities of higher value than the highest value conventional

O N( )

O Nlog( )

O NR
2( )
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activity. This worst case occurs if each real-time activity needs to be selected and feasibility

tested against all other activities when rebuilding the working schedule. It is unlikely for

the worst case to occur in practice for any reasonably large NR. Real-time activities typi-

cally have short deadlines so that if there are a large number of real-time activities, the

scheduler will determine that there is no more slack in the schedule before all of the activ-

ities need to be individually tested for insertion feasibility. The presence of conventional

activities in the workstation environment also prevents NR from growing large. For large

N, the cost of scheduling with SMART in practice is expected to be similar to WFQ.

A more complicated algorithm can be used to reduce the complexity of managing the work-

ing schedule. In this case, a new working schedule can be incrementally buil t from the

existing working schedule as new activities arrive. By using information contained in the

existing working schedule, the complexity of building the new working schedule can be

reduced to . When only deletions are made to the working schedule, the existing

working schedule can simply be used, reducing the cost to .

4.7. Analysis of the Behavior of the Algor ithm

In the following, we describe how the scheduling algorithm follows the principles of oper-

ations as laid out in Section 4.1.

4.7.1. Pr ior ity 

Our principle of operation regarding priority is that the performance of high priority activ-

ities should not be affected by the presence of low priority activities. As the performance

of a conventional activity is determined by its completion time, a high priority conventional

activity should be run before any lower priority activity. Step 1 of the algorithm guarantees

this behavior because a high priority activity always has a higher value-tuple than any lower

priority activity. 

On the other hand, the performance metric of a real-time application is the number of

deadlines satisfied, not how early the execution takes place. The best-effort scheduling

algorithm in Step 3 wil l run a lower priority activity with an earlier deadline first, only if it

can determine that doing so does not cause the high priority activity to miss its deadline. In

O NR( )

O 1( )
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this way, the system delivers a better overall value to the user. Note that the scheduler uses

the timing information supplied by the applications to determine if a higher priority

deadline is to be satisfied. It is possible for a higher priority deadline to be missed if its

corresponding time estimate is inaccurate.

4.7.2. Proportional shar ing 

Having described how time is apportioned across different priority classes, we now

describe how time allocated to each priority class is apportioned between applications in

the class. If the system is populated with only conventional activities, we simply divide the

cycles in proportion to the shares across the different applications. As noted in Table 4-1,

interactive and real-time applications may not use up all the resources that they are entitled

to. Any unused cycles are proportionally distributed among those applications that can con-

sume the cycles. 

4.7.3. Conventional Activities

Let us first consider conventional activities whose virtual finishing time has not been

biased. We observe that even though real-time activities may not execute in the order dic-

tated by WFQ, the scheduler will run a real-time activity only if it has an earlier VFT than

any of the conventional activities. Thus, by considering all the real-time activities with an

earlier VFT as one single application with a correspondingly higher share, we see the

SMART treatment of the conventional activities is identical to that of a WFQ algorithm.

From the analysis of the WFQ algorithm, it is clear that conventional activities are given

their fair shares.

A bias is added to an activity’s VFT only after it has accumulated a significant computation

time. As a fixed constant, the bias does not change the relative proportion between the allo-

cation of resources. It only serves to allow a greater variance in instantaneous fairness, thus

allowing a better interactive and real-time response in transient overloads. 

4.7.4. Real-time Activities

We say that a system is underloaded if there are sufficient cycles to give a fair share to the

conventional activities in the system while satisfying all the real-time constraints. When a
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system is underloaded, the conventional activities wil l be serviced often enough with the

left-over processor cycles so that they will have later BVFTs than real-time applications.

The conventional applications wil l therefore only run when there are no real-time applica-

tions in the system. The real-time activities are thus scheduled with a strict best-effort

scheduling algorithm. It has been proven that in underload, the best-effort scheduling algo-

rithm degenerates to an earliest-deadline scheduling algorithm [45], which has been shown

to satisfy all scheduling constraints, periodic or aperiodic, optimally [13]. 

In an underloaded system, the scheduler satisfies all the real-time applications’ requests.

CPU time is given out according to the amounts requested, which may have a very different

proportion from the shares assigned to the applications.  The assigned proportional shares

are used in the management of real-time applications only if the system is oversubscribed.

A real-time application whose request exceeds its fair share for the current loading condi-

tion will eventually accumulate a BVFT later than other applications’ BVFTs. Even if it has

the earliest deadline, it will not be run immediately if there is a conventional application

with a higher value, or if running this application will cause a higher valued real-time appli -

cation to miss its deadline. If the application accepts notification, the system will inform

the application when it determines that the constraint will not be met. This interface allows

applications to implement their own degradation policies. For instance, a video application

can decide whether to skip the current frame, skip a future frame, or display a lower quality

image when the frame cannot be fully processed in a timely fashion. The application adjusts

the timing constraint accordingly and informs the system. If the application does not accept

notification, however, eventually all the other applications will catch up with their BVFT,

and the scheduler will allow the now late application to run. 

Just as the use of BVFT regulates the fair allocation of resources for conventional activities,

it scales down the real-time activities proportionally. In addition, the bias introduced in the

algorithm, as well as the use of a best-effort scheduler among real-time activities with suf-

ficiently high values, allows more real-time constraints to be met.
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4.8. Compar ison with Related Work

Recognizing the need to provide better scheduling to support the needs of modern applica-

tions such as multimedia, a number of resource management approaches have been pro-

posed. These approaches can be loosely classified as real-time scheduling, fair queueing,

and hierarchical scheduling.

4.8.1. Real-time Scheduling

Real-time schedulers such as rate-monotonic scheduling [41, 45] and earliest-deadline

scheduling [13, 45] are designed to make better use of hardware resources in meeting real-

time requirements. In particular, earliest-deadline scheduling is optimal in underload. How-

ever, they do not perform well when the system is overloaded, nor are they designed to sup-

port conventional applications.

Resource reservations are commonly combined with real-time scheduling in an attempt to

run real-time activities with conventional activities [10, 34, 42, 47]. Reservations are used

to allow each application to request a percentage of the processor. These approaches are

used with admission control to allow real-time activities to reserve a fixed percentage of

the resource in accordance with their resource requirement. Any leftover processing time

is allocated to conventional activities using a standard timesharing or round-robin sched-

uler. 

Several differences in these reservation approaches are apparent. While the approaches in

[10, 42] take advantage of earliest-deadline scheduling to provide optimal real-time perfor-

mance in underload, the rate monotonic util ization bound used in [47] and the time interval

assignment used in Rialto [34] are not optimal, resulting in lower performance than earliest-

deadline approaches. In contrast with SMART, these approaches are more restrictive, espe-

cially in the level of control provided for conventional activities. They do not provide a

common mechanism for sharing resources across real-time and conventional activities. In

particular, with conventional activities being given leftover processing time, their potential

starvation is a problem. This problem is exacerbated in Rialto [34] in which even in the

absence of reservations, applications with time constraints buried in their source code are

given priority over conventional applications [33].
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Note that the use of reservations relies on inflexible admission control policies to avoid

overload. This is usually done on a first-come-first-serve basis, resulting in later arriving

applications being denied resources even if they are more important. To be able to execute

later arriving applications, an as yet undetermined higher-level resource planning policy,

or worse yet, the user, must renegotiate the resource reservations via what is at best a trial-

and-error process.

Unlike reservation mechanisms, best-effort real-time scheduling [46] provides optimal per-

formance in underload while ensuring that activities of higher priority can meet their dead-

lines in overload. However, it provides no way of scheduling conventional activities and

does not support common resource sharing policies such as proportional sharing.

By introducing admission control, SMART can also provide resource reservations with

optimal real-time performance. In addition, SMART subsumes best-effort real-time sched-

uling to provide optimal performance in meeting time constraints in underload even in the

absence of reservations. This is especially important for common applications such as

MPEG video whose dynamic requirements match poorly with static reservation abstrac-

tions [3, 24].

4.8.2. Fair Queueing

Fair queueing provides a mechanism which allocates resources to activities in proportion

to their shares. It was first proposed for network packet scheduling in [12], with a more

extensive analysis provided in [57], and later applied to processor scheduling in [69] as

stride scheduling. Recent variants [6, 65] provide more accurate proportional sharing at the

expense of additional scheduling overhead. The share used with fair queueing can be

assigned in accordance with user desired allocations [69], or it can be assigned based on the

activity’s resource requirement to provide resource reservations [57, 66]. When used to

provide reservations, an admission control policy is also used.

When shares are assigned based on user desired allocations, fair queueing provides more

accurate proportional sharing for conventional activities than previous fair-share schedul-

ers [27, 28]. However, it performs poorly for real-time activities because it does not account
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for their time constraints. In underload, time constraints are unnecessarily missed. In over-

load, all activities are proportionally late, potentially missing all time constraints. 

When shares are assigned based on activity resource requirements to provide reservations,

fair queueing can be effective in underload at meeting real-time requirements that are

strictly periodic in their computation and deadline. However, its performance is not optimal

in underload and suffers especially in the case of aperiodic real-time requirements. To

avoid making all activities proportionally late in overload, admission control is used. 

Unlike real-time reservation schedulers, fair queueing can integrate reservation support for

real-time activities with proportional sharing for conventional activities [66]. However,

shares for real-time applications must then be assigned based on their resource require-

ments; they cannot be assigned based on user desired allocations.

By providing time constraints and shares, SMART not only subsumes fair queueing, but it

can also more effectively meet real-time requirements, with or without reservations. Unlike

fair queueing, it can provide optimal real-time performance while allowing proportional

sharing based on user desired allocations across both real-time and conventional applica-

tions. Furthermore, SMART also supports simultaneous prioritized and proportional

resource allocation.

4.8.3. Hierarchical Scheduling

Because creating a single scheduler to service both real-time and conventional resource

requirements has proven diff icult, a number of hybrid schemes [7, 11, 23, 24, 68] have been

proposed. These approaches attempt to avoid the problem by having statically separate

scheduling policies for real-time and conventional applications, respectively. The policies

are combined using either priorities [11, 23, 68] or proportional sharing [7, 24, 27] as the

base level scheduling mechanism.

With priorities, all activities scheduled by the real-time scheduling policy are assigned

higher priority than activities scheduled by the conventional scheduling policy. This causes

all real-time activities, regardless of whether or not they are important, to be run ahead of

any conventional activity. The lack of control results in experimentally demonstrated
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pathological behaviors in which runaway real-time computations prevent the user from

even being able to regain control of the system [50].

With proportional sharing, a real-time scheduling policy and a conventional scheduling

policy are each given a proportional share of the machine to manage by the underlying pro-

portional share mechanism, which then time-slices between them. Real-time applications

will not take over the machine, but they also cannot meet their time constraints effectively

as a result of the underlying proportional share mechanism taking the resource away from

the real-time scheduler at an inopportune and unexpected time in the name of fairness [25]. 

The problem with previous mechanisms that have been used for combining these schedul-

ing policies is that they do not explicitl y account for real-time requirements. These sched-

ulers rely on different policies for different classes of computations, but they encounter the

same diff iculty as other approaches in being unable to propagate these decisions to the

lowest-level of resource management where the actual scheduling of processor cycles takes

place. 

SMART behaves like a real-time scheduler when scheduling only real-time requests and

behaves like a conventional scheduler when scheduling only conventional requests. How-

ever, it combines these two dimensions in a dynamically integrated way that fully accounts

for real-time requirements. SMART ensures that more important activities obtain their

resource requirements, whether they be real-time or conventional. In addition to allowing

a wide range of behavior not possible with static schemes, SMART provides more efficient

utili zation of resources, is better able to adapt to varying workloads, and provides dynamic

feedback to support adaptive real-time applications that is not found in previous

approaches. 
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5 Implementation in a Commercial 
Operating System

To demonstrate the effectiveness of the SMART scheduler in a realistic general-purpose

computing environment, we have implemented SMART in a commercial operating system,

the Solaris operating system from Sun Microsystems. This is a UNIX SVR4 conformant

operating system that is shipped with hundreds of thousands of computers each year. We

used the most recent version of the operating system at the time of the prototype implemen-

tation, which was Version 2.5.1 of the operating system. The scheduling framework in this

version of the operating system is largely the same as the improved Solaris scheduling

framework that resulted from the work described in Chapter 2.

Our choice of using the Solaris operating system for our implementation was based on a

few factors. First, it is a widely used general-purpose operating system, which gave us the

opportunity to examine the impact of our scheduler on the performance of real applications

in a commonly used computing environment. Second, the Solaris operating system is rep-

resentative of other commercial operating systems in its structure and scheduling frame-

work. Third, we had access to complete source code for the entire Solaris operating system.

In addition, our previous experience with the operating system and the availability of

kernel-level debugging tools were very helpful. Finally, the Solaris operating system was

designed with some consideration for real-time requirements in mind. For instance, pro-

cesses executing in kernel mode are usually executed at their respective user-level priorities

and can be preempted, reducing the likelihood of priority inversion.

While there were a number of advantages to using a commercial operating system as the

basis of our prototype implementation, there was also an implementation cost. Solaris is a

full -featured operating system that is optimized for performance, not implementation ease.
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Like many commercial operating systems, it is a large monolithic software system with

hundreds of thousands of lines of code and li ttle documentation. The interface between the

scheduling framework and other aspects of the operating system was not always well -

defined and parts of the system do not fully implement the interface for performance rea-

sons. Furthermore, the system was not designed with a scheduler such as SMART in mind.

As a result, the implementation of some aspects of SMART could not be done in the most

straightforward and intuitive manner. Learning enough about this system to create the nec-

essary interfaces between SMART and the Solaris operating system was a substantial cost

in designing our prototype implementation.

This chapter discusses a number of the implementation issues in creating the SMART pro-

totype in the Solaris operating system. Section 5.1 provides some necessary background

about the Solaris scheduling framework. Section 5.2 describes our implementation meth-

odology, which was to replace the existing Solaris dispatcher and introduce a new sched-

uling class. Section 5.3 describes the implementation of the SMART dispatcher, including

improvements to the timer functionality of the operating system. Section 5.4 describes the

implementation of the SMART scheduling class.

5.1. Solar is Scheduling Framework

The Solaris operating system is a multithreaded UNIX SVR4 conformant operating system.

Unlike older UNIX systems which only provide kernel support for UNIX processes, Solaris

scheduling is based on threads. These lightweight objects are less expensive to create and

use than UNIX processes, and they can be independently scheduled. Threads are used in

Solaris for executing applications, as well as for interrupt handling and other internal kernel

functions. They are fully preemptible even when executing kernel code, allowing for better

real-time responsiveness. In this section, we give an overview of the structure of the Solaris

scheduler and describe some of the core thread scheduling mechanisms.

As previously mentioned in Chapter 2, the Solaris scheduler is a two-level UNIX SVR4

priority scheduling framework consisting of a set of scheduling classes and a dispatcher.

Each thread is assigned to a single scheduling class. The job of each scheduling class is to

make its own policy decisions regarding how to schedule threads assigned to the class. The
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job of the dispatcher is to merge the policy decisions of the different scheduling classes. It

determines a global ordering in which to execute threads from all of the scheduling classes,

and then performs the actual work of executing the threads according to that global order-

ing.

The scheduling classes and the dispatcher use priorities to perform their functions. When a

thread is assigned to a scheduling class, a set of class scheduling parameters are associated

with that thread. Associated with each scheduling class is a continuous range of class pri-

orities. Using the class scheduling parameters of the thread and information about the exe-

cution history of the thread, the scheduling class determines a class priority for the thread.

The class priority of a thread can change as the class scheduling parameters for the thread

change, or as the execution history of the thread changes. Consider for instance the time-

sharing (TS) class that comes as the default scheduling class for any UNIX SVR4 sched-

uler. A thread is assigned to the TS class with some nice value. The TS class determines a

class priority for a thread by using the thread’s nice value and information about how much

processing time the thread has consumed recently. The TS class wil l periodically adjust the

class priority of a thread depending on how much processing time the thread has consumed

recently.

The policy decisions of the scheduling classes are merged by mapping their respective

ranges of class priorities onto a continuous range of global priorities. The dispatcher then

schedules threads based on these global priorities. Consider for instance two of the default

scheduling classes that come with any UNIX SVR4 scheduler, the real-time (RT) class and

the TS class. Since it is a UNIX SVR4 scheduler, the Solaris scheduler has global priorities

0-159. The class priorities of the RT class and the TS class each range from 0-59. However,

the RT class priorities are mapped to global priorities 100-159 while the TS class priorities

are mapped to global priorities 0-59. As a result, threads from the TS class are only exe-

cuted if there are no threads from the RT class to execute. 

The dispatcher uses a set of run queues to select threads for execution based on their global

priorities. Each global priority value has a run queue associated with it. Since there are 160

global priorities in the Solaris scheduler, there are a corresponding set of 160 run queues.
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When a thread is runnable, it is assigned to the run queue corresponding to its global prior-

ity. The dispatcher is called whenever the processor becomes available to execute a thread.

To select a thread to execute, the dispatcher scans the run queues from highest to lowest

priority and chooses the thread at the front of the first nonempty queue for execution. In

other words, the highest priority runnable thread is selected for execution. Note that where

the thread is placed on the run queue will impact when the thread is selected for execution

by the dispatcher. The scheduling framework allows scheduling classes to determine where

a thread should be placed on the run queue when it is runnable. A scheduling class can

choose to place a thread at the back of a run queue or at the front of a run queue. For exam-

ple, if a scheduling class always inserts threads at the back of run queues, then threads that

were inserted earlier wil l run before threads that were inserted later. This wil l result in a

First-In-First-Out scheduling policy. 

In addition to determining the priority assignment of threads, the scheduling classes control

how long a thread should be allowed to execute. A scheduling class may assign a time

quantum to each thread. The time quantum defines the maximum amount of time that a

thread can execute before the scheduler will preempt the thread and make another schedul-

ing decision. Like other UNIX systems, this is enforced through the use of a periodic inter-

rupt generated by a hardware clock. The interrupt calls a clock function for the respective

scheduling class of the currently running thread. The function checks the execution time of

the running thread and preempts the thread if it has used up its time quantum. If a scheduler

class does not assign time quanta to its threads and does not support a clock function,

threads belonging to the respective scheduling class will only be preempted by the dis-

patcher when a higher priority thread is available to run. Note that a thread will continue to

run if it is higher priority than all other threads even if it has used up its time quantum.

While the scheduling framework provides several default scheduling classes, the frame-

work is extensible. New scheduling classes can be implemented that are mapped to differ-

ent global priority ranges. To support this extensible framework, an extensible system call

is provided that allows users and applications to assign and change scheduling class param-

eters. These parameters can be assigned on a per thread basis. Each scheduling class takes
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the set of class parameters for a given thread and reduces it to a class priority and time quan-

tum assignment for the thread.

5.2. Implementation Methodology

There are three basic implementation possibil ities for the SMART prototype afforded by

the Solaris scheduling framework. They are to implement SMART as a user-level process,

to implement SMART just as a scheduling class in the existing Solaris scheduling frame-

work, or to implement SMART as a replacement for the existing scheduling framework.

We consider each of these possibili ties in turn and describe the reasons behind our eventual

choice of approach.

The easiest to implement would be to build the SMART prototype simply as a user-level

process that runs at the highest priority defined by the scheduling framework. By running

such a user-level scheduler process at the highest priority, the underlying scheduling frame-

work simply hands control over to the user-level process. The process could then select a

thread to execute based on the SMART scheduling algorithm, raise the priority of that

thread to just below that of the scheduler process itself, then block itself for a period of time

to allow the selected thread to execute. Not only would this approach be easier to imple-

ment because no kernel development is required, but it would be more portable as it could

run on other priority-based schedulers, including other variants of UNIX and Windows NT.

The primary problem with this approach is that scheduling events that are presented to the

operating system would often not be known by the user-level process. For instance, the

thread that is scheduled may run for less than the amount of time that the scheduler is

blocked, in which case the scheduler would not be able to run when the scheduled thread

completes its execution. The default Solaris dispatcher would then select a thread to run

based on just priorities as opposed to the SMART algorithm. 

Another implementation approach would be to build SMART as a new scheduling class in

the Solaris scheduling framework. The framework provides a well defined interface for

allowing developers to create their own scheduling policies which can be loaded on

demand into the kernel. However, the framework does not allow the scheduling policies to

directly select which thread to execute when the processor becomes available. Scheduling
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policies must indirectly impact this decision by the priorities they assign to their threads and

the order in which they place those threads on the respective run queues. Furthermore, the

framework only allows scheduling policies to insert threads at the front or the back of the

run queues. These characteristics of the scheduling framework make it impossible to imple-

ment SMART as a scheduling class in an efficient manner. A key aspect of the SMART

algorithm is its use of dynamic timing requirements in deciding which thread should be

executed. This does not map well to the static priorities of the Solaris scheduling frame-

work. In addition, SMART uses biased virtual finishing times for ordering threads of equal

priority. This ordering function does not map well to the limited run queue ordering oper-

ations provided with the Solaris scheduling framework.

In light of the disadvantages of these other approaches, the approach that we choose for

implementing our SMART prototype in the Solaris operating system was to replace the

existing scheduling framework. Unlike a user-level implementation, this provided our pro-

totype the same amount of access to information about scheduling events as the existing

scheduling framework. Unlike a scheduling class implementation, this allowed us to define

new run queue operations as necessary to support the scheduling mechanisms in SMART.

In particular, we replaced the existing priority dispatcher with a SMART dispatcher that

incorporates information about a thread’s deadlines and shares as well as priorities. Two

challenges that we faced in this approach were providing interfaces between SMART and

existing operating system code, and designing the SMART implementation in such a way

to be backwards compatible with the existing scheduling framework. The latter goal is

important for the purposes of providing an easy transition path for users of the existing

scheduling framework to move to the SMART scheduling framework.

To provide a natural mapping to the structure of the Solaris operating system, threads are

used as the basic schedulable entity in our SMART framework. For the SMART frame-

work, we replaced the existing dispatcher and created a new scheduling class to provide

access for users and applications to the new functionali ty of our system. These two aspects

of the system are described in the next two sections.
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5.3. Dispatcher Implementation

The SMART scheduler exploits a greater amount of information in making a scheduling

decision than the existing Solaris scheduling framework. In particular, the SMART dis-

patcher makes use of more than just the single priority value associated with each thread in

the Solaris scheduling framework. In addition to a priority, the dispatcher assumes that each

thread is assigned a share, a bias, a deadline, and a time quantum. These parameters are

determined by the scheduling classes and passed to the dispatcher. Default values are ini-

tially assigned for each parameter associated with a thread.

Our SMART dispatcher implementation maintains the same set of run queues as the Solaris

scheduling framework, but uses them in a different way. Like Solaris, each run queue cor-

responds to a priority, and there are 160 priorities numbered 0-159. However, the run

queues in SMART are not used directly for selecting which thread should execute. Instead,

they are used for maintaining an importance ordering of all threads based on the respective

thread priorities and biased virtual finishing times. Threads are assigned to the respective

run queues based on priorities. Threads on the same run queue are ordered based on their

biased virtual finishing times. When a thread needs to be selected for execution, the dis-

patcher starts from this importance ordered list of threads and uses the SMART algorithm

to create a working schedule. The first runnable thread in the generated working schedule

is then selected for execution.

Our SMART prototype uses the same function prototypes for inserting and removing

threads from the run queues, but changes the underlying semantics of the functions. In the

original framework, there were two queue insertion functions which respectively placed a

thread at the front or back of a run queue. For our SMART framework, we need to be able

to places threads in a run queue such that they are ordered by their respective biased virtual

finishing times. To achieve this, we change the semantics of the queue insertion functions

such that both functions now insert a thread in a run queue in biased virtual finishing time

order. In the event that multiple threads have the same biased virtual finishing time, ties are

broken based on the original semantics of the queue insertion functions. The queue

insertion function that originally inserted at the front of the run queue will break ties by

inserting a thread in front of any threads with the same biased virtual finishing time. The
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queue insertion function that originally inserted at the back of the run queue will break ties

by inserting a thread in back of any threads with the same biased virtual finishing time. We

will show later that this feature is used for backwards compatibilit y with the original Solaris

scheduling framework.

The SMART dispatcher may run less important threads before more important threads

when it determines that there is excess slack in the system. When a thread is selected for

execution, the dispatcher should ensure that the thread only runs for an amount of time that

still allows less urgent but more important threads to meet their timing requirements. As a

result, the dispatcher must enforce a bound on the execution time given to a thread. This is

done in our implementation by having the dispatcher set its own time quantum for a thread

when the thread is selected to execute. The dispatcher itself will check to see that whether

the time quantum of the thread has expired, in which case it will preempt the thread. This

dispatcher time quantum is internal to the dispatcher and is separate from the time quantum

used by the scheduling classes. 

The standard UNIX SVR4 scheduling framework upon which the Solaris operating system

is based employs a periodic 10 ms clock tick. It is at this granularity that scheduling events

can occur, which can be quite limiting in supporting real-time computations that have time

constraints of the same order of magnitude. In particular, the granularity of the time quan-

tum parameter can be no smaller than the timer resolution. To allow a much finer resolution

for scheduling events, we added a high resolution timeout mechanism to the kernel and

reduced the time scale at which timer based interrupts can occur. The exact resolution

allowed is hardware dependent, but was typically 1 ms for the hardware platforms we con-

sidered.

In our SMART implementation, the dispatcher is given the share and bias of each thread

by the scheduling classes and uses that information to compute the biased virtual finishing

time as each thread executes. The biased virtual finishing time is computed by the

dispatcher because it serves as a global ordering function for threads from different

scheduling classes that are at the same priority. This allows the SMART dispatcher to
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provide a proportional share abstraction to the scheduling classes, allowing for the creation

of scheduling classes with different proportional share scheduling policies. 

In addition to providing SMART functionality, the SMART dispatcher is designed to sup-

port legacy scheduling classes as well. This is done through a legacy scheduling class test

function and proper definition of the default thread dispatcher parameters. All l egacy

scheduling classes are listed in an array provided to the legacy scheduling class test func-

tion. When a thread is assigned to a scheduling class, the test functions checks if the sched-

uling class is a legacy scheduling class. If so, it assigns the thread a set of default dispatcher

parameters. These are the same defaults that are assigned when a thread is created. The pri-

ority is set to the same default as used with the original Solaris dispatcher, the share is set

to zero, the bias is set to zero, the deadline is set to a maximum value, and the time quantum

is set to a maximum value. If a thread has zero share, its biased virtual finishing time is set

to a maximum value. As a result, all threads with nonzero shares will be enqueued in front

of all threads with zero shares. More importantly, since all threads with zero shares will

have the same maximum biased virtual finishing time, the tie breaking rules of the queue

insertion functions wil l be used for those threads, reducing those functions to the original

Solaris queue insertion functions. If a thread has a deadline set to the maximum value, the

thread is considered a conventional thread. In particular, if all threads are conventional, the

SMART dispatcher reduces to selecting the first runnable thread on the highest priority

non-empty run queue. If a thread has a time quantum set to the maximum value, the time

quantum is effectively ignored by the dispatcher. In summary, a thread with default values

for its dispatcher parameters is scheduled in exactly the same way as the original Solaris

dispatcher. This ensures that the SMART scheduling framework is backwards compatible

with the original Solaris scheduling framework.

Legacy scheduling classes can be used at the same time as new scheduling classes written

for the SMART scheduling framework. If all scheduling classes are mapped to nonoverlap-

ping ranges of global priorities, the interaction of the scheduling classes in the SMART

scheduling framework is similar to the standard UNIX SVR4 framework. If a new sched-

uling class and a legacy scheduling class are mapped to overlapping ranges of global pri-

orities, the SMART framework gives preference to the new scheduling class over the
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legacy scheduling class for threads at the same priority. This is because threads in legacy

scheduling classes were each assigned zero shares with a corresponding maximum biased

virtual finishing time. This causes such threads to be considered after threads in new sched-

uling classes which are each assigned non-zero shares and a smaller biased virtual finishing

time. The choice of favoring new scheduling classes over legacy scheduling classes at the

same priority level was to some degree an arbitrary one; the reverse could also have been

done. Both choices would provide support for new SMART functionality and legacy sched-

uling class functionali ty.

5.4. Class Implementation

In addition to supporting legacy scheduling classes, the SMART dispatcher provides new

functionality that can be exploited through the creation of new scheduling classes. For our

SMART prototype, we also created a SMART scheduling class. The primary purpose of

this class is to support the SMART scheduling interface for users and applications. The

class not only ensures that scheduling parameters provided from users and applications are

valid, but it also sets default parameters when such information is not provided. The user

and application interfaces are based on the Solaris priocntl system call , an extensible inter-

face for setting and reading scheduling class parameters. 

In our implementation, the SMART scheduling class is also responsible for automatically

adjusting the bias associated with conventional threads. This is done in a table-driven

manner using a UNIX SVR4 scheduler mechanism that is supported in the Solaris operat-

ing system. This mechanism was originally designed to support the multi -level feedback

discipline used by the TS scheduling class. The TS class reads in a scheduling table with

entries corresponding to priority levels. Each entry specifies a priority, a time quantum that

is to be assigned to a thread at the given priority, and the priority to assign a thread at the

given priority when its time quantum is used up. As a thread executes and completes its

time quanta, it is reassigned a new priority after each time quantum completion, with the

assigned priorities monotonically decreasing. Instead of using this scheduling table to

adjust priorities, the SMART scheduling class uses a scheduling table to adjust biases. Each

entry in the SMART scheduling table specifies a bias, a time quantum that is to be assigned
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to a thread at the given bias, and the bias to assign a thread at the given priority when its

time quantum is used up. As a thread executes and completes its time quanta, it is reas-

signed an increasing bias after each time quantum completion.

For real-time threads, the SMART scheduling class implements the notification mechanism

that is used for informing real-time applications when their deadlines cannot be met. This

is done using the basic timeout and signal mechanism in standard UNIX SVR4 systems.

When a thread specifies a notify-time with its time constraint, the scheduler sets a timeout

corresponding to the notify time. The timeout causes a clock interrupt to go off at the pre-

scribed time. A flag is set once the notify time expires. Once the flag is set, then each time

the thread is selected for execution, the scheduling class checks to see if the thread will

meet its deadline. This requires that the scheduling class be informed when a thread belong-

ing to the class is selected for execution by the dispatcher. The original UNIX SVR4 sched-

uling framework had no such way of doing this, so a new class function was added in the

SMART scheduling framework. This class function is called when a thread from the

respective scheduling class is selected for execution. The function can be used for perform-

ing necessary operations on the thread that has been selected for execution, including

checking to see if the deadline will be met. If the thread will not be able to meet its deadline,

a signal is sent to the process indicating that the deadline wil l not be satisfied. A previously

unused signal number is used to distinguish the notification signal from other signals that

the process may receive. If the process does not have a signal handler installed, the notifi-

cation signal is ignored.

5.5. Summary

Although the Solaris scheduling framework was not designed to support the demands of

multimedia applications, we have been able to extend the framework to implement the

SMART scheduler in the Solaris operating system. This prototype implementation demon-

strates that it is possible to include SMART support for multimedia applications in the con-

text of currently available general-purpose operating systems. It also demonstrates that

SMART functionality can be implemented in a way that continues to provide backwards

compatibility for legacy scheduling policies.
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We note that while the SMART Solaris prototype is not commercially available, its imple-

mentation has been quite robust and supports all the same applications and system func-

tions as the standard Solaris operating system. We have run the SMART Solaris prototype

on a day to day basis, and have used it to run many of the applications that were needed for

writing this dissertation itself.
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6 Measurement and Per formance

To evaluate the effectiveness of the SMART scheduler, we conducted a number of experi-

ments on our SMART prototype, running microbenchmarks as well as real, commercial

applications. Because of the complex interactions between applications and operating sys-

tems in general-purpose computer systems, we placed an emphasis on evaluating SMART

with real applications in a fully functional system environment. Our experiments included

quantitative measurements of application and system performance for multimedia, interac-

tive, and batch applications running on SMART in head-to-head comparisons with other

schedulers used in commercial and research settings.

This chapter describes our experimental results and is organized as follows. Section 6.1

describes the experimental testbed which was used for our experiments. Section 6.2

describes experiments with various microbenchmarks that demonstrate the range of behav-

ior possible with the scheduler in a real system environment. Section 6.3 examines the per-

formance of a set of commercially available multimedia video applications running on

SMART versus UNIX SVR4, focusing particularly on the benefits that result from the

SMART interface. Section 6.4 compares the performance of SMART against other sched-

ulers commonly used in practice and research by running real applications and measuring

the resulting behavior. This comparison considers not only real-time multimedia applica-

tion performance, but also quantitatively measures the performance of interactive and batch

applications. 

6.1. Exper imental Testbed

The experiments were performed on a standard, production SPARCstation 10 worksta-

tion with a single 150 MHz hyperSPARC processor, 64 MB of primary memory, and 3
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GB of local disk space. The testbed system included a standard 8-bit pseudo-color frame

buffer controller (i.e., GX). The display was managed using the X Window System. The

Solaris 2.5.1 operating system was used as the basis for our experimental work. In particu-

lar, the high resolution timing functionality described in Section 5.3 was used for all of the

schedulers in our experiments to ensure a fair comparison. On the testbed workstation used

for these experiments, the timer resolution was 1 ms.

All measurements were performed using a minimally obtrusive tracing facil ity that logs

events at significant points in application, window system, and operating system code. This

is done via a light-weight mechanism that writes timestamped event identifiers into a

memory log. The timestamps are at 1 µs resolution. We measured the cost of the mecha-

nism on the testbed workstation to be 2-4 µs per event. We created a suite of tools to post-

process these event logs and obtain accurate representations of what happens in the actual

system. 

All measurements were performed on a fully functional system to represent a realistic

workstation environment. By a fully functional system, we mean that all experiments were

performed with all system functions running, the window system running, and the system

connected to the network. At the same time, an effort was made to eliminate variations in

the test environment to make the experiments repeatable. To this end, the testbed system

was restarted prior to each experimental run. 

6.2. Microbenchmarks

We highlight some performance results for various mixes of real-time and conventional

resource requests. These requests were generated using a set of simple applications that

allow us to vary their resource requirements to demonstrate the effectiveness of SMART

under a variety of workloads. We look at conventional activities, real-time activities, and a

combination of both in Sections 6.2.1, 6.2.2, and 6.2.3 respectively. In particular, we focus

on the proportional sharing aspects of SMART. We demonstrate that proportional sharing

is achieved for all the cases, regardless of whether the real-time requests present (if any)

have overloaded the system. We show in both Sections 6.2.2 and 6.2.3 that the scheduler

drops the minimum number of deadline requests to achieve fair sharing, in the case of
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overload. Finally, we also show in Section 6.2.3 that latency tolerance helps minimize the

number of deadlines dropped.

6.2.1. Conventional Applications

The first case presented is based on the execution of three identical conventional com-

pute-oriented appli cations, C1, C2, and C3, with relative shares of the ratio 3 : 2 : 1. The

appli cations were started at approximately the same time and have a running time of

about 338 seconds. We logged the cumulative execution time of each appli cation versus

wall clock time. The results are shown by the solid li ne curves in Figure 6-1. We note

that Figure 6-1 as well as all of the other figures simply present the raw sampled data with

no interpolation between sample points. 

Figure 6-1. Execution times for conventional applications when proportional sharing with
SMART shares 3:2:1

If the system were perfect, we would expect the following finishing times:

Activity C1:  seconds

Activity C2:  seconds
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Activity C3:  seconds.

The corresponding ideal performance curves are also plotted as dotted lines in Figure 6-1.

However, the dotted ideal curves are hardly visible because of the close match with the

actual experimental results. The results match the expected behavior very well , with activ-

ities C1, C2, and C3 finishing at times 678, 848, and 1018 seconds, respectively. Further-

more, the slopes of the graphs, indicating the resource consumption rates, show that the

activities are serviced in a proportionally fair manner throughout the execution. As

expected, the slopes of C1, C2, and C3 are of the ratio 3.00 : 2.00 : 1.00 in the first stage of

the computation when all the programs are running. The slopes of C2 and C3 are of the ratio

2.00 : 1.00 in the second stage when activities C2 and C3 are running.

6.2.2. Real-time Applications

6.2.2.1. Optimal Per formance in Underload

To demonstrate the performance of SMART for real-time applications in underload, we

executed two real-time applications, R1 and R2, with periodic resource requests. The

resource requests were event-driven, with the event arrival interval determining the dead-

line of the respective request. All of the real-time applications used in these experiments

employed the time constraint interface in SMART and were notified immediately if their

deadlines could not be met. If a deadline could not be met, the application discarded the

corresponding resource request and waited until the arrival of the next event to be pro-

cessed. We note that for the particular real-time applications used in these experiments,

there was a small amount of execution time variation for each resource request when mul-

tiple real-time applications were executed together. This was caused by cache conflicts

between the applications, which depended on the exact order in which the resource requests

were processed. 

R1 required 28-30 ms of execution time to complete each resource request, with each

resource request having a 40 ms deadline from its instantiation. R2 required 18-20 ms of

execution time to complete each resource request, with each resource request having a 90

ms deadline from its instantiation. R1 was given 2000 events to process and R2 was given

676 170 338 676 1 6⁄×( )– 170 1 3⁄×–( )+ + 1014=
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888 events to process. Given these resource requirements, the system can be kept busy

about 97% of the time running R1 and R2 during a period of about 80000 ms. R1 and R2

were both assigned equal shares, though the assignment of shares makes no difference in

this case. We logged the number of missed deadlines and the cumulative execution time

obtained by each activity, which is illustrated by the solid line curves in Figure 6-2.

Figure 6-2. Execution times for real-time applications when using SMART in system
underload

If the system were perfect, we would expect all deadlines to be satisfied; both activities

should be able to obtain their requested resources. Therefore, each activity should be able

to obtain resources proportional to their respective resource requests. If R1 required exactly

30 ms of execution time for each 40 ms deadline and R2 required exactly 20 ms of execu-

tion time for each 90 ms deadline, we would expect both activities to finish in roughly 800

seconds with the following cumulative execution times and percentages of processing time:

Activity R1:  ms, %,

Activity R2:  ms, %.
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The corresponding ideal performance curves are represented by the respective dotted lines

in Figure 6-2. We can see in Figure 6-2 that both applications obtained nearly their ideal

resource consumption rates, with the slight deviation from ideal being due to each activity

on average requiring slightly less than their respective ideal execution times to complete

their resource requests. Activity R1 obtained 57,066 ms of execution time and activity R2

obtained 17,426 ms of execution time. This translates into R1 receiving 71% of the process-

ing time and R2 receiving 22% of the processing time. The slopes of the plots Figure 6-2

shows that each activity receives their respective processing time in a consistent manner

throughout their execution. More importantly, because SMART is optimal in underload,

there were no missed deadlines for either application.

To show that the optimal performance of SMART in underload translates well into practice,

we also demonstrate that SMART performs well i n meeting the deadlines of real-time

applications when the system utilization is nearly 100%. We executed two periodic real-

time applications, R1 and R3, but this time the applications together consumed nearly 100%

of the machine. R1 again required 28-30 ms of execution time to complete each resource

request, with each resource request having a 40 ms deadline from its instantiation. R3

required 18-20 ms of execution time every 80 ms. R1 was given 2000 events to process and

R3 was given 1000 events to process. R1 and R3 were both assigned equal shares, though

the assignment of shares makes no difference in this case. We logged the number of missed

deadlines and the cumulative execution time obtained by each activity, which is il lustrated

by the solid line curves in Figure 6-3. 

If the system were perfect and the actual processing time required in any given interval

never exceeds 100% utili zation, we would expect all deadlines to be satisfied in this case

as well; both activities should be able to obtain their requested resources. Furthermore, if

R1 required exactly 30 ms of execution time for each 40 ms deadline and R3 required

exactly 20 ms of execution time for each 80 ms deadline, we would expect both activities

to finish in roughly 800 seconds with the following cumulative execution times:

Activity R1:  ms

Activity R3:  ms.

2000 30× 60000=

1000 20× 20000=
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Figure 6-3. Execution times for real-time applications when using SMART on a nearly
100% loaded system

The corresponding ideal performance curves are represented by the respective dotted lines

in Figure 6-3. We can see in Figure 6-3 that both applications obtained nearly their ideal

resource consumption rates, with the slight deviation from ideal being due to each activity

on average requiring slightly less than their respective ideal execution times to complete

their resource requests. Activity R1 obtained 57,178 ms of execution time and activity R3

obtained 19,673 ms of execution time. SMART met all  but 3 of the 1999 deadlines of R1

and met all of the deadlines of R3. Even with nearly 100% average resource utili zation and

some variabili ty in the execution times of these applications, SMART was able to meet

over 99% of the deadlines.

6.2.2.2. Proportional Shar ing in Over load

To demonstrate the unique abil ity of SMART to allow real-time applications to proportion-

ally share resources in overload, we executed three identical real-time applications, R1, R2,

and R3, with relative shares of the ratio 3 : 2 : 1. Each application takes 18-20 ms of exe-

cution time to complete each resource request, and each resource request has a 40 ms dead-

line from its instantiation. To show the dynamic behavior of these applications when the
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application mix changes, the applications are started at approximately the same time, but

each application is executed for a different number of iterations. R1 processed a sequence

of 1000 real-time requests, R2 processed a sequence of 1500 real-time requests, and R3 pro-

cessed a sequence of 2000 real-time requests. We logged the cumulative execution time and

number of deadlines missed for each application. These measurements are il lustrated by the

solid line curves in Figures 6-4 and 6-5.

Figure 6-4. Execution times for real-time applications when proportional sharing with
SMART shares 3:2:1 in system overload and underload

If the system were perfect, we would expect the three activities to accumulate processing

time in accordance with their shares during the first 40,000 ms, then at the completion of

R1, R2, and R3 should be able to complete the remainder of their deadlines since the system

is no longer overloaded. In particular, the ideal total cumulative execution times would be:

Activity R1:  ms

Activity R2:  ms

Activity R3:  ms.
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The corresponding ideal performance curves showing cumulative execution time for each

activity are plotted as dotted lines in Figure 6-4. As the system is overloaded during the first

40,000 ms, not all deadlines can be met. Based on their respective resource requirements

and shares, we would expect the total number of deadlines met by each activity to be:

Activity R1:  out of 1000 deadlines met

Activity R2:  out of 1500 deadlines met

Activity R3:  out of 2000 deadlines met.

Figure 6-5. Deadlines met by real-time applications when proportional sharing with
SMART shares 3:2:1 in system overload and underload

The performance curves showing the ideal number of deadlines met for each activity are

plotted as dotted lines in Figure 6-5. These ideal numbers assume not only that each activity

receives the ideal amount of resources, but also that all of that processing time can be effec-

tively used toward meeting deadlines; processing time is not wasted on deadlines that will

not be met. To do this, it is important to not only allocate processing time in the right sized

quanta for each activity, but also that the quanta be provided at the right time to be synchro-

nized with the deadlines.
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We can see there is a close match between the measured results and the ideal curves. The

total cumulative execution times of R1, R2, and R3 were 19,045, 23,061, and 25,094 ms,

respectively. The total number of deadlines met by R1, R2, and R3 were 999 out of 1000,

1100 out of 1500, and 1331 out of 2000, respectively. The difference between the total

number of expected deadlines met and the actual number of deadlines met is less than 2%.

We divide the results into the overloaded and underloaded periods. During the first 40 sec-

onds of elapsed wall clock time, all three applications are executing. The slopes of the left

graph show the respective measured resource consumptions of R1, R2, and R3 to be in the

ratio 2.80 : 2.02 : 1.00. Note that the resource consumption of R1 is a bit less than its pro-

portional share because it does not require its proportional share to complete its deadlines.

If the system were perfect and that there are no variability in the activities’ execution time,

we expect applications R1, R2, and R3 to meet roughly 100%, 66%, and 33% of their

respective deadlines. During this period, each application had 1000 deadlines that it desired

to have satisfied. Figure 6-5 shows the number of deadlines met. During the first 40 second

period, R1 met 999 deadlines, R2 met 604 deadlines, and R3 met 345 deadlines. They cor-

relate well with the ideal values.

R1 completes its execution at the beginning of the next 20 seconds of wall clock time while

R2 and R3 continue to compete for resources. Note that the remaining activities are no

longer requesting more than their proportional shares. The slopes of Figure 6-4 show the

respective measured resource consumptions of R2 and R3 during this period to be in the

ratio 1.02 : 1.00. Both activities miss a couple of deadlines as R1 is completing its execu-

tion, but then are able to satisfy all of their remaining deadlines. This example shows

SMART automatically adjusts to the load condition and transitions between overload and

underload gracefully.

6.2.3. Conventional and Real-time Applications

6.2.3.1. Real-time Requests Using Less than Proportional Share

In mixing conventional and real-time applications, we first consider the case when the real-

time applications require less than their proportional share of resources to satisfy their
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deadlines. We show two examples of this case in Figures 6-6 and 6-7 using applications

with different resource requirements and different share assignments.

Figure 6-6. Execution times for real-time and conventional applications when
proportional sharing with equal SMART shares

Figure 6-6 shows two equal-share applications, R1 and C1, of which R1 is real-time and C1

is conventional. In particular, R1 required 18-20 ms of execution time for each of its

resource requests, and has a 40 ms deadline from its instantiation. If the system were perfect

and R1 required exactly 20 ms to process each 40 ms deadline request, we would expect R1

not to miss any deadlines and for each application to use 50% of the system, as il lustrated

by the dotted line in Figure 6-6. Our measured results correspond well with the ideal and

indicate that R1 did not miss any of its deadlines. Since R1 actually required slightly less

than its proportional share of resources, C1 was allowed to consume more than its propor-

tional share and make better progress. In total, R1 consumed roughly 48% of the system

while C1 consumed the remaining 52% of the system.

Figure 6-7 shows a periodic real-time application R2 and a conventional application C2

whose respective shares are in the ratio 3 : 1. R2 required 28-30 ms of processing time with

a periodic deadline every 40 ms. If the system were perfect and R2 required exactly 30 ms
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to process each 40 ms deadline request, we would expect R2 not to miss any deadlines and

for R2 and C2 to consume resources in proportion to their shares, 75% and 25%, respec-

tively, as ill ustrated by the dotted lines in Figure 6-7. Our measured results correspond well

with the ideal and indicate that R2 did not miss any of its deadlines. R2 consumed roughly

72% of system while C2 consumed the remaining 28% of the system. The slight difference

from ideal is due to the fact that R2 consumes a litt le bit less than the stated ideal.

Figure 6-7. Execution times for real-time and conventional applications when
proportional sharing with SMART shares 3:1

6.2.3.2. Latency Tolerance

To show some of the benefit of latency tolerance, we again consider the case of two equal-

share applications, R1 and C1, of which R1 is real-time and C1 is conventional. In this case

however, while each resource request of R1 still has a 40 ms deadline from its instantiation,

the work required for each resource request varies with an even distribution between 10-30

ms of execution time, with an average of 20 ms. While the resource consumption graph in

this case remains similar to Figure 6-6 given the time scales involved, the number of dead-

lines that are missed by R1 depends on the latency tolerance of C1. If C1 cannot tolerate

any latency, then R1 misses 192 out of 1999 deadlines. However, if C1 is given a latency
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tolerance of just 100 ms, R1 can execute without missing any of its deadlines, despite the

fact that its desired resource consumption for any given resource request varies from 25%

to 75% of the machine.

6.2.3.3. Proportional Shar ing with Latency Tolerance in Overload

We demonstrate that SMART is able to share resources proportionally even for mixes of

conventional and real-time applications in which the set of real-time resource requests is

overloaded. Figures 6-8 and 6-9 show the results of executing three equal-share applica-

tions, R1, R2, and C1, of which R1 and R2 are real-time and C1 is conventional. In partic-

ular, R1 and R2 are identical applications, each requiring roughly 38-41 ms of execution

time for each resource request, and each resource request having a 60 ms deadline from its

instantiation. Each real-time activity processed a sequence of 2000 resource requests. C1 is

a conventional activity with a latency tolerance of 200 ms and takes 40,000 ms of process-

ing time to complete.

Figure 6-8. Execution times for real-time and conventional applications when
proportional sharing with equal SMART shares in system overload
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Figure 6-9. Deadlines met by real-time applications when proportional sharing with
conventional applications with equal SMART shares in system overload

If the system were perfect, we expect activities to share resources based on their shares

since the system is overloaded. As a result, each activity should be allocated 1/3 of the

resources. All three activities should complete in 120,000 ms. Their ideal performance

curves fall on the dotted line in Figure 6-8. Given 1/3 of the resources, each real-time activ-

ity should be able to complete half of its deadlines:

Activities R1, R2:  out of 2000 deadlines met.

Figure 6-8 shows that all three applications consume nearly identical proportions of the

resource, in close correspondence with the ideal. C1 was able to consume a slightly larger

portion of the processing time because it was always able to run if there were available

resources. R1 and R2 were only able to make valuable use of the processing time when it

was possible to satisfy their respective deadlines. For instance, if R1 still had to run 40 ms

to meet its deadline and the deadline was only 30 ms away, it would be useless to run R1.

Figure 6-9 shows that the number of deadlines met by R1 and R2 correspond well with their

expected values. Out of 2000 deadlines, R1 met 985 deadlines while R2 met 998 deadlines.
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The number of respective deadlines that each of them completed is in the ratio 1.00 : 1.01,

which very closely corresponds to their shares. Over the course of 120 seconds of execu-

tion, the total amount of time spent by both R1 and R2 in processing deadlines that could

not be met was less than 1 second. The SMART scheduler is able to make efficient use of

processor cycles to devote the processor allocations of both real-time applications almost

entirely toward resource requests whose deadlines can be met.

The abil ity of the conventional application C1 to tolerate latency was a contributing factor

in the ability of both real-time applications to meet such a large percentage of their dead-

lines, given their proportional shares, variances in execution times, and the overloaded con-

dition. At the same time, the conventional application was still able to consume slightly

more than its proportional share of processor cycles due to its ability to run whenever there

were cycles that could not be used effectively by the real-time applications. When the

latency tolerance of C1 was instead zero, the number of deadlines missed increased by

10%.

6.2.4. Summary of Microbenchmark Results

Our measurements of microbenchmark real-time and conventional applications running on

SMART demonstrate that SMART can provide proportional sharing across both real-time

and conventional applications, even as the load on the system changes from underload to

overload. Our empirical measurements correlate well with expected behavior, with each

application obtaining nearly its ideal resource allocation in each experiment. Furthermore,

our results also demonstrate that SMART is able to make effective use of the proportional

share allocation given to a real-time application in meeting the deadlines of the application,

even when the system is overloaded.

6.3. Commercial Multimedia Video Applications

While microbenchmark performance is commonly used as a basis for evaluating a

scheduler, the real test of the effectiveness of a scheduler is its performance on mixes of

real applications. Real applications are much more complex than microbenchmarks. This

is especially the case with multimedia video applications, which often require intensive
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processor as well as memory operations. They also often need access to specialized input

and output devices in conjunction with their need for processor cycles. 

To provide an evaluation of SMART with real applications, we conducted experiments on

a mix of commercial multimedia video applications. We present actual measurements from

these experiments to demonstrate how the performance of multimedia applications can be

improved using the SMART interface. Because UNIX SVR4 serves as a common basis for

workstation operating systems, we have compared the performance of multimedia applica-

tions when using SMART against the performance of these applications when using the

standard UNIX SVR4 schedulers. In particular, our experiments evaluate three different

schedulers: SMART, UNIX SVR4 time-sharing (TS) scheduling, and UNIX SVR4 real-

time (RT) scheduling.

As a representative multimedia video application, we used the SLIC-Video player, a low-

cost video product that captures and displays video images in real-time. As a baseline, we

measure the performance of the application when running on an otherwise quiescent sys-

tem. We then measure the performance of multiple SLIC-Video players running under

UNIX TS and UNIX RT with a dynamically changing load. To improve the video perfor-

mance, we describe a few simple modifications to the application that allow it to take

advantage of the SMART interface, then present results to quantify the performance

improvement achieved.

6.3.1. Application Descr iption and Quali ty Metr ic

SLIC-Video is a hardware/software video product used in Sun Microsystems workstations.

The SLIC-Video hardware consists of an SBus I/O adaptor that permits the decoding and

digitization of analog video streams into a sequence of video frames. This video digitizing

unit appears as a memory-mapped device in an application’s address space and allows a

user-level application to acquire video frames. The SLIC-Video player software consists of

an application that captures the video data from the digitizer board, dithers to 8-bit pseudo-

color in the case of a system with a standard 8-bit pseudo-color frame buffer controller, and

directly renders the pixels to the frame buffer while coordinating with the X window server

for window management. The resolution of the image rendered is configurable by the
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application. For our experiments, the image rendered was selected to be a standard size of

320 x 240 pixels. 

The digitizer board has a limited amount of buffering that allows the hardware to continue

to process an analog video stream into video frames while the software captures video data

from the digitizer board. The buffer has three slots that are organized as a ring; when it is

full , the hardware wraps around to the beginning of the buffer and overwrites its contents.

Each slot is assigned a timestamp when it is written. Locking is used to ensure that the hard-

ware does not overwrite a buffer slot that is being read by the software and the software

does not read a buffer slot that is in the middle of being written by the hardware. In normal

playback mode, the hardware digitizer cooperates with the software capture by sending a

signal each time the hardware completes digitizing a frame. The signal is synchronized with

the arrival rate of frames and occurs one full frame time after the capture board first begins

digitizing a frame. Upon receiving the signal, the software follows a policy of reading from

the buffer slot with the earliest timestamp. For our experiments, the arrival rate of frames

from the hardware to the software is 29.97 frames per second (fps). As a result, the software

begins processing each digitized frame roughly 33 ms after the hardware first begins digi-

tizing the corresponding frame of analog video. 

To describe the performance of the video application, we first discuss a metric for measur-

ing the quality of its results. In video playback, the first goal in delivering the highest qual-

ity video is to preserve the temporal alignment of the incoming video stream. The time

delay between frame arrival and frame display should be fairly constant. In addition to con-

stant time delay, it is desirable to have constant interdisplay times between displayed

frames. We would like to have all of the incoming frames rendered if possible. If many of

the incoming frames cannot be rendered on time, it is desirable to discard frames in a reg-

ularly spaced fashion for more constant interdisplay times as opposed to discarding them

unevenly. This provides better video quality especially for high-motion scenes. In particu-

lar, uncertainty is worse than latency; users would rather have a 10 fps constant frame rate

as opposed to a frame rate that varied noticeably from 2 fps to 30 fps with a mean of 15 fps.

Finally, for a mix of video players, it is desirable to allow the user to bias the performance

of the applications in accordance with his preferences.
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For our experiments, three SLIC-Video capture cards were added to the test system to

permit the execution of three video players showing three different video sources at the

same time. The video sources used were a video camera and television programming from

a Sun Tuner. Video was displayed to the standard 8-bit pseudo-color frame buffer used on

the testbed system. As described earlier, the display was managed using the X Window

System.

6.3.2. Baseline Per formance

In preparation for our discussion on the performance of multiple SLIC-Video players run-

ning on different schedulers, we first measured the performance of the SLIC-Video player

running by itself on an otherwise quiescent system. The application was executed and mea-

sured for a 300 second time period. The application characteristics measured were the per-

centage of CPU used, the percentage of frames displayed, the average and standard

deviation in the delay between the arrival and display of each frame, and the average and

standard deviation in the time delta between frames being displayed. The standard devia-

tion in the delay between frame arrival and frame display is the primary measure of quality.

It is indicative of how well the temporal alignment in the video stream is preserved. The

standard deviation in the time delta between frame displays is a secondary measure of qual-

ity. It measures the variabil ity in the interdisplay times. Separate measurements were made

for each 100 second execution interval of the application. These measurements are shown

in Table 6-1. We performed these measurements using the UNIX SVR4 TS scheduler, the

UNIX SVR4 RT scheduler, and the SMART scheduler. There was no significant difference

in the baseline measurements for different schedulers running the single video application.

Table 6-1. Baseline application performance

The measurements show that SLIC-Video uses up nearly 90% of the CPU to display video

at 29.97 320x240 pixel fps. It displays over 99% of the frames that arrive, and it does so in

elapsed time CPU usage frames played avg delay std delay avg delta std delta

0-100s 87.28% 99.73% 64.15 ms 1.84 ms 33.43 ms 2.48 ms

100-200s 87.32% 99.80% 65.17 ms 1.93 ms 33.41 ms 1.80 ms

200-300s 87.35% 99.83% 66.19 ms 1.27 ms 33.40 ms 1.98 ms
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a timely manner that preserves the temporal alignment in the video stream. Both the delay

between frame arrival and frame display, and the time delta between frames displayed have

minimal variation. The delay between frame arrival and frame display is roughly two frame

times, corresponding to the application policy of processing the frame in the digitizer hard-

ware buffer with the earliest timestamp. This delay is due to the software not receiving the

frame from the hardware digitizer until at least one frame time after the frame arrives to the

hardware, and the software requiring roughly one frame time to process each video frame.

The time delta between displayed frames is one frame time, corresponding to the fact that

over 99% of the frames that arrive are displayed.

6.3.3. Scheduler Exper iments and Measurements

We examine the impact of different schedulers on the performance of multiple SLIC-Video

players running under a dynamically changing load. The scenario we used was to first run

two video players V1 and V2 for 100 seconds, then start the execution of a third video

player V3 and run all three video players for the next 100 seconds, then terminate the exe-

cution of V3 and continue running V1 and V2 for 100 seconds. In this scenario, we assume

that V1 and V2 are simply executed by default with no user parameters with the expectation

that they deliver similar performance. In addition, we would like V3 to have twice the per-

formance of V1 and V2.

Using the baseline performance measurements, we first describe what the expected ideal

performance should be for this scenario. Since a single SLIC-Video player consumes

nearly the entire machine, it is not possible to execute two video players at 30 fps. Given

the baseline processing requirements for this application, it would be possible for each

video player to sometimes display every frame and sometimes display every other frame,

but it would be better for each video player to maintain a more constant time delta between

the frames it displays. As a result, we would ideally expect that during the first 100 seconds

of execution, V1 and V2 would each reduce their frame rate by skipping half of their

respective frames and displaying the other half. Note that this does not require consuming

100% of the CPU. Ideally, this will result in the a 66.73 ms time delta between displayed

frames for each application. In addition, since each digitizer still captures frames at 29.97
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fps and its respective video player application processes the frame with the earliest

timestamp that is stored in the digitizer’s buffers, the delay between frame arrival and

display should be 100.10 ms. By the same token when V3 begins, we would expect V1 and

V2 to reduce their frame rate further, displaying only 25% of their frames, with delay and

time delta of 166.83 ms and 133.47 ms, respectively. V3 should be able to display 50% of

its frames, with delay and time delta of 100.10 ms and 66.73 ms, respectively. Upon

termination of V3, we would ideally expect that the performance of V1 and V2 would be

the same as during the first 100 seconds of their execution. In all cases, there should ideally

be zero variation in the time delay between frame arrival and display and the time delta

between frame displays. 

We compare the ideal CPU allocations and application performance results with the actual

CPU allocations and application performance results obtained when running the mix of

video players on different schedulers. We considered five scheduler scenarios, which are

discussed in further detail in Sections 6.3.4 through 6.3.7:

• UNIX TS: The three video applications are run using the TS scheduling class in UNIX

SVR4, as discussed in Section 6.3.4.

• UNIX RT: The three video applications are run using the RT scheduling class in

UNIX SVR4, as discussed in Section 6.3.5.

• UNIX TS2: The three video applications are again run as in the UNIX TS case, but the

applications are modified to do a better job of synchronizing the video frame process-

ing with the arrival of video frames. The modifications are discussed in detail i n Sec-

tion 6.3.6. 

• SMART: The three video applications are run using SMART, as discussed in Section

6.3.7.

The CPU allocations obtained on the different schedulers are shown in Figure 6-10. The

application performance results obtained on different schedulers are shown in Figures 6-11

through 6-15. Figure 6-11 shows the percentage of frames displayed. Figures 6-12 and 6-

13 show the average and standard deviation in the delay between the arrival and display of
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each frame. Figures 6-14 and 6-15 show the average and standard deviation in the time

delta between frames being displayed. 

Figure 6-10. CPU allocations obtained by video players V1, V2, and V3 on different
schedulers during three different time intervals

6.3.4. UNIX SVR4 Time-shar ing Performance

We ran the experimental scenario described in Section 6.3.3 under standard UNIX TS

scheduling. To give V3 roughly twice the performance of V1 and V2 under UNIX TS,

extensive trial and error was required to find a suitable “nice” setting for V3 to bias the allo-

cation of resources in accordance with the proportions desired. The nice setting for V3 was

+15. The “UNIX TS” bars in Figure 6-10 show the resulting CPU allocations for this exper-

iment. Despite extensive trial and error, there is a noticeable difference between the ideal

CPU allocations and the CPU allocations obtained under UNIX TS for all of the video

applications. 

The second bar in Figures 6-12 and 6-14 show the average delay and time delta measure-

ments for the video applications running under UNIX TS, and Figures 6-13 and 6-15 show

the standard deviations in those measurements, respectively. While the average delay and

average time delta measurements were quite acceptable, the standard deviation in those
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measurements was not. During the first 100 seconds of execution with just V1 and V2 run-

ning, the standard deviation in the delay between frame arrival and frame display for V1

and V2 was more than 45 ms, and ballooned to more than 100 ms with V3 also running.

The standard deviation in the time delta between frame displays with just V1 and V2 run-

ning was more than 50 ms, and grew to more than 100 ms with V3 also running. The per-

formance of V3, while better than V1 or V2 during the same time interval, exhibited a large

amount of video jitter as well. Its standard deviation in the delay between frame arrival and

frame display, as well as its standard deviation in the time delta between frame displays,

was over 65 ms, nearly two frame times of variation. The performance is far from ideal.
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Figure 6-11. Percentage of frames displayed by video players V1, V2, and V3 when
running on different schedulers during three different time intervals
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6.3.5. UNIX SVR4 Real-time Per formance

We ran the same experimental scenario of three video players under standard UNIX RT

scheduling. V1 and V2 are both assigned the same default priority, while V3 is assigned a

higher priority than either V1 or V2. The CPU allocations and application measurements

for this experiment are contrasted with the results under UNIX TS in Figures 6-10 through

6-15.

While the standard deviations in the quality metrics are better than those under UNIX TS,

UNIX RT suffers from two major problems. The first problem is evident by the

        

|	 |
0

|
30

|
60

|
90

|
120

|
150

|
180

 

 A
ve

ra
ge

 fr
am

e 
de

la
y 

(m
s)

�

Time range 0 - 100 s�

Id
ea

l

U
N

IX
 T

S

U
N

IX
 R

T

U
N

IX
 T

S
2

S
M

A
R

T

V1



Id
ea

l

U
N

IX
 T

S

U
N

IX
 R

T

U
N

IX
 T

S
2

S
M

A
R

T

V2



        

|	 |
0

|
30

|
60

|
90

|
120

|
150

|
180

 

 A
ve

ra
ge

 fr
am

e 
de

la
y 

(m
s)

�

Time range 200 - 300 s

Id
ea

l

U
N

IX
 T

S

U
N

IX
 R

T

U
N

IX
 T

S
2

S
M

A
R

T

V1



Id
ea

l

U
N

IX
 T

S

U
N

IX
 R

T

U
N

IX
 T

S
2

S
M

A
R

T

V2



        

|� |�0

|�30
|�60

|�90

|�120

|�150

|�180

 

 A
ve

ra
ge

 fr
am

e 
de

la
y 

(m
s) Time range 100 - 200 s

Id
ea

l

U
N

IX
 T

S

U
N

IX
 R

T

U
N

IX
 T

S
2

S
M

A
R

T

V1

Id
ea

l

U
N

IX
 T

S

U
N

IX
 R

T

U
N

IX
 T

S
2

S
M

A
R

T

V2

Id
ea

l

U
N

IX
 T

S

U
N

IX
 R

T

U
N

IX
 T

S
2

S
M

A
R

T

V3

Figure 6-12. Average frame delay for video players V1, V2, and V3 when running on
different schedulers during three different time intervals
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performance measurements on V3. Since V3 has a higher priority than either V1 or V2, its

performance should be better that of V1 or V2. However, the performance of V3 is actually

somewhat worse than either of the other video players. The problem is that the signaling

mechanism used to inform the user-level application of the arrival of a frame is a system-

level function that therefore executes at a system-level priority. In UNIX SVR4, processes

that are scheduled by the real-time scheduler are given higher priority than even system

functions. The result is that the signal mechanism does not get to execute until all of the

real-time video players finish processing their respective frames and block waiting to be

informed of the arrival of a new frame to be processed. This serializes the execution of all
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Figure 6-13. Standard deviation in the frame delay for video players V1, V2, and V3 when
running on different schedulers during three different time intervals
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of the video applications, irrespective of their assigned priority. The result for the end user

is a complete lack of control in biasing the allocation of resources according to his

preferences.

A more fundamental problem with running video under UNIX RT is that because the video

applications are given the highest priority, they are able to take over the machine and starve

out even the processing required to allow the system to accept user input. The result is that

the user is unable to regain control of the system without restarting the system. Clearly

UNIX RT is an unacceptable solution for multimedia applications.
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Figure 6-14. Average time delta between frames for video players V1, V2, and V3 when
running on different schedulers during three different time intervals
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6.3.6. Managing Time in UNIX SVR4 Time-shar ing

The SLIC-Video production code used in the previous experiments does not explicitl y

account for the frame arrival times, nor does it explicitly attempt to adjust its rate of execu-

tion when many of the frames cannot be processed. Instead, it simply processes video

frames as fast as possible. In particular, when the application finishes processing its current

frame, if another frame has already arrived, the application simply processes the new frame

immediately irrespective of when the frame arrived. This results in a substantial variance
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Figure 6-15. Standard deviation in the time delta between frames for video players V1, V2,
and V3 when running on different schedulers during three different time
intervals
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in the time delay between the arrival of the frame and its display. Rather than discarding

frames that cannot be processed in time at a regularly spaced interval, the application hap-

hazardly attempts to render whatever frames it can, implicitly discarding those frames

cannot be processed before they are overwritten by the hardware.

In an attempt to address these problems and improve the performance under UNIX TS, the

video application was modified to account for the frame arrival times in determining which

frames it should render and when it should render each of those frames. The application

selects a time delay in which to render its video frames. It measures the amount of wall

clock time that elapses during the processing of each frame. Then, it uses an exponential

average of the elapsed wall clock time of previously displayed frames as an estimate of how

long it will t ake to process the current frame. This estimate is used in conjunction with the

frame arrival time to determine if the given frame can be displayed on time. If the video

player is ready to display its frame early, then it delays until the appropriate time; but if it

is late, it discards its current frame. The application defines early and late as more than

16.68 ms (half of the time delta between arriving frames) early or late with respect to the

selected time delay.

The selected time delay is used by the application to determine which frames to discard.

The application will t ry to render 1 out of N frames, where N is the ratio of the selected time

delay over the time delta between arriving frames. The application attempts to change its

discard rate based on the percentage of frames that are rendered on time. If a large percent-

age of the frames rendered are late, the application will reduce its frame rate and increase

its selected time delay accordingly. If the frames are all being rendered on time, the appli -

cation will increase its frame rate and reduce its selected time delay to improve its quality

of service. Note that the burden of these application modifications is placed squarely on the

application developer; no assistance is provided by the scheduler.

We ran the same experimental scenario of three video players under standard UNIX TS

with the above mentioned code modifications. The CPU allocations and application results

are shown in Figures 6-10 through 6-15 as “UNIX TS2”. We see that the performance is

better than UNIX TS without explicit time management in the application, and does not
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have the pathological behavior found with UNIX RT. However, the standard deviation in

time delay for V1 and V2 while V3 is running is still more than 40 ms, which is far beyond

the modest 16.83 ms threshold of timeliness used by the application. This is the result of

two problems. One is that the scheduler, having no knowledge of the timing requirements

of the application, does not allocate resources to each application at the right time. The

other problem is that the application has a difficult time of selecting the best time delay and

frame rate to use for the given loading condition. Without scheduler information, it must

guess at when the load changes based on its own estimates of system load. The result is that

its selected time delay and frame rate oscil late back and forth due to inaccurate knowledge

of the allocation of processing time that the scheduler will give the application under the

given system load. Guessing is not good enough.

6.3.7. SMART UNIX SVR4 Performance

To enable the SLIC-Video application to take advantage of SMART, three simple modifi-

cations were made to the code described in Section 6.3.6. First, rather than having the appli -

cation rely on its own estimates of whether or not a frame is late and should be discarded,

the application sets a time constraint that informs the scheduler of its deadline and cpu-esti-

mate. The deadline is set to be 16.68 ms after the selected time delay. The cpu-estimate is

calculated in the same manner as the average elapsed wall clock time: the application mea-

sures the execution time required for each frame and then uses an exponential average of

the execution times of previously displayed frames as the cpu-estimate. 

Second, upon setting the given time constraint, the application sets its notify-time equal to

zero, thereby requesting the scheduler to notify the application right away if early estimates

predict that the time constraint cannot be met. When a notification is sent to the application,

the application’s notify-handler simply records the fact that the notification has been

received. If the notification is received by the time the application begins the computation

to process and display the respective video frame, the frame is discarded; otherwise, the

application simply allows the frame be displayed late.

Third, rather than having to guess what the system loading condition is at any given

moment, the application obtains its availabili ty from the scheduler. It reduces its frame rate
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if frames cannot be completed on time and the required computational rate to process

frames on time at the current frame rate is greater than its allocation rate. It increases its

frame rate if the availability indicates that the consumption rate is less than its allocation

rate.

We ran the same experimental scenario of three video players under SMART, taking

advantage of its real-time API. The CPU allocation and application results of this experi-

ment are shown in Figures 6-10 through 6-15, respectively. Not only does SMART effec-

tively allocate CPU time in accordance with the user preferences for the experiment,

SMART provides application results that are closest to the ideal performance figures. 

In particular, SMART provides the smallest variation of any scheduler in the delay between

frame arrival and frame display. The delay is well under 10 ms for all of the video players.

Discounting the UNIX RT scheduler which ignores the user preferences, SMART also

gives the smallest variation of any scheduler in the time delta between frames. The superior

performance obtained by using the SMART interface can be attributed to two factors. One

factor is that the scheduler accounts for the time constraints of the applications in managing

resources. The second factor is that the application is able to adjust its frame rate more

effectively because the SMART interface allows it to obtain availability information from

the scheduler.

6.4. Multimedia, Interactive, and Batch Applications

While many multimedia application studies focus exclusively on audio or video applica-

tions, multimedia encompasses a much broader range of activities. In addition, it is impor-

tant to realize that audio and video applications must co-exist with conventional interactive

and batch applications in a general-purpose computing environment. We believe it is

important to understand the interactions of these different classes of applications and pro-

vide good performance for all classes of applications. 

To evaluate SMART in this context, we have conducted experiments on an application

workload with a wide range of classes of applications in a fully-functional workstation

environment. We describe two sets of experiments with a mix of real-time, interactive and
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batch applications executing in a workstation environment. The first experiment compares

SMART with two existing schedulers: the UNIX SVR4 scheduler, both real-time (UNIX

RT) and time-sharing (UNIX TS) policies, and a WFQ processor scheduler. These sched-

ulers were chosen as a basis of comparison because of their common use in practice and

research. UNIX SVR4 is a common basis of workstation operating systems used in prac-

tice, and WFQ is a popular scheduling technique that has been the basis of much recent

scheduling research. The second experiment demonstrates the abilit y of SMART to provide

the user with predictable resource allocation controls, adapt to dynamic changes in the

workload, and deliver expected behavior when the system is not overloaded. 

Three applications were used to represent batch, interactive and real-time computations:

• Dhrystone (batch) — This is the Dhrystone benchmark (Version 1.1), a synthetic

benchmark that measures CPU integer performance. 

• Typing (interactive) — This application emulates a user typing to a text editor by

receiving a series of characters from a serial input line and using the X window server

[60] to display them to the frame buffer. To enable a realistic and repeatable sequence

of typed keystrokes for interactive applications, a hardware keyboard simulator was

constructed and attached via a serial li ne to the testbed workstation. This device is

capable of recording a sequence of keyboard inputs, and then replaying the sequence

with the same timing characteristics.

• Integrated Media Streams Player (real-time) — The Integrated Media Streams (IMS)

Player from Sun Microsystems Laboratories is a timestamp-based system capable of

playing synchronized audio and video streams. As described in Section 3.5, the appli -

cation was developed and tuned for the UNIX SVR4 time-sharing scheduler in the

Solaris operating system. For the experiment with the SMART scheduler, we have

inserted additional system calls to the application to take advantage of the features pro-

vided by SMART. The details of the modifications were described in Section 3.5. We

use this application in two different modes: 
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News (real-time) — This application displays synchronized audio and video streams

from local storage. Each media stream flows under the direction of an independent

thread of control. The audio and video threads communicate through a shared memory

region and use timestamps to synchronize the display of the media streams. The video

input stream contains frames at 320x240 pixel resolution in JPEG compressed format

at roughly 15 frames/second, though there is some variation in the time between suc-

cessive timestamps. The audio input stream contains standard 8-bit µ-law monaural

samples. The captured data is from a satelli te news network. As described in Section

3.5, the audio and video streams were defined by the application to be synchronized if

the respective video frame was displayed within 20 ms of the corresponding block of

audio samples. A video frame is considered too early or too late if it is displayed more

than 20 ms early or late with respect to the audio.

Entertain (real-time) — This application processes video from local storage. The

video input stream contains frames at 320x240 pixel resolution in JPEG compressed

format at roughly 15 frames/second. The application scales and displays the video at

640x480 pixel resolution. The captured data contains a mix of television program-

ming, including sitcom clips and commercials. The video stream is not displayed in

synchrony with any audio, so the timestamps on the video input stream determine

when to display each frame. A video frame is considered too early or too late if it is

displayed more than 20 ms early or late with respect to its associated timestamp.

6.4.1. Application Character istics and Quali ty Metr ics

Representing different classes of applications, Typing, Dhrystone, News and Entertain have

very different characteristics and measures of quality. For example, we care about the

response time for interactive activities, the throughput of batch activities and the number of

deadlines met in real-time activities. Before discussing how a combination of these appli -

cations executes on different schedulers, this section describes how we measure the quality

of each of the different applications, and how each would perform if it were to run on its

own.
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Table 6-2 shows the execution time of each application on an otherwise quiescent system

using the UNIX SVR4 scheduler, measured over a time period of 300 seconds. We note

that there is no significant difference between the performance of different

schedulers when running only one application. The execution times include user time and

system time spent on behalf of an application. The Dhrystone batch application can run

whenever the processor is available and can thus fully utili ze the processor. The execution

of other system functions (fsflush, window system, etc.) takes less than 1% of the CPU

time. The measurements on the real-time applications are taken every frame, and those for

Typing are taken every character. None of the real-time and interactive applications can

take up the whole machine on its own, with both News audio and Typing taking hardly any

time at all. The video for News takes up 42% of the CPU, whereas Entertain, which dis-

plays scaled video, takes up almost 60% of the processor time.

Table 6-2. Standalone execution times of applications

For each application, the quality of metric is different. For Typing, it is desirable to mini-

mize the time between user input and system response to a level that is faster than what a

human can readily detect. This means that for simple activities such as typing, cursor

motion, or mouse selection, system response time should be less than 50-150 ms [62]. As

such, we measured the Typing character latency and determine the percentage of characters

processed with latency less than 50 ms, with latency between 50-150 ms, and with latency

greater than 150 ms. For News audio, it is desirable not to have any artifacts in audio output.

As such, we measured the number of News audio samples dropped. For News video and

Entertain, it is desirable to minimize the difference between the desired display time and

the actual display time, while maximizing the number of frames that are displayed within

their time constraints. As such, we measured the percentage of News and Entertain video

frames that were displayed on time (displayed within 20 ms of the desired time), displayed

Name Basis of 
Measurement

No. of 
Measurements

CPU Time 
Avg.

CPU Time 
Std. Dev.

% CPU Avg.

News audio per segment 4700 1.54 ms 0.79 ms 2.42%

News video per frame 4481 28.35 ms 2.19 ms 42.34%

Entertain per frame 4487 39.16 ms 2.71 ms 58.55%

Typing per character 1314 1.96 ms 0.17 ms 0.86%

Dhrystone per execution 1 298.73 s N/A 99.63%
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early, displayed late, and the percentage of frames dropped not displayed. Finally, for batch

applications such as Dhrystone, it is desirable to maximize the processing time devoted to

the application to ensure as rapid forward progress as possible. As such, we simply mea-

sured the CPU time Dhrystone accumulated. To establish a baseline performance, Table 6-

3 shows the performance of each application when it was executed on its own.

Table 6-3. Standalone application quality metric performance

While measurements of accumulated CPU time are straightforward, we note that several

steps were taken to minimize and quantify any error in measuring audio and video perfor-

mance as well as interactive performance. For News and Entertain, the measurements

reported here are performed by the respective applications themselves during execution.

We also quantified the error of these internal measurements by using a hardware device to

externally measure the actual user perceived video display and audio display times [61].

External versus internal measurements differed by less than 10 ms. The difference is due to

the refresh time of the frame buffer. For Typing, we measured the end-to-end character

latency from the arrival of the character to the system in the input device driver, through

the processing of the character by the application, until the actual display of the character

by the X window system character display routine.

6.4.2. Scheduler Character istics

To provide a characterization of scheduling overhead, we measured the context switch

times for the UNIX SVR4, WFQ, and SMART schedulers. Average context switch times

for UNIX SVR4, WFQ, and SMART are 27 µs, 42 µs, and 47 µs, respectively. These mea-

surements were obtained running the mixes of applications described earlier in this section.

Name Quality Metric On Time Early Late Dropped Avg. Std. 
Dev.

News audio Number of audio dropouts 100.00% 0.00% 0.00% 0.00% 0 0

News video Actual display time minus 
desired display time

99.75% 0.09% 0.13% 0.02% 1.50 ms 2.54 ms

Entertain Actual display time minus 
desired display time

99.58% 0.22% 0.13% 0.07% 1.95 ms 3.61 ms

Typing Delay from character input 
to character display

100.00% N/A 0% N/A 26.40 ms 4.12 ms

Dhrystone Accumulated CPU time N/A N/A N/A N/A 298.73 s N/A
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Similar results were obtained when we increased the number of real-time multimedia appli -

cations in the mix up to 15, at which point no further multimedia applications could be run

due to there being no more memory to allocate to the applications.

The UNIX SVR4 context switch time essentially measures the context switch overhead for

a scheduler that takes almost no time to decide what activity it needs to execute. The sched-

uler simply selects the highest priority activity to execute, with all activities already sorted

in priority order. Note that this measure does not account for the periodic processing done

by the UNIX SVR4 timesharing policy to adjust the priority levels of all activities. Such

periodic processing is not required by WFQ or SMART, which makes the comparison of

overhead based on context switch times more favorable for UNIX SVR4. Nevertheless, as

activities are typically scheduled for time quanta of several milli seconds, the measured con-

text switch times for all of the schedulers were not found to have a significant impact on

application performance.

For SMART, we also measured the cost to an application of assigning scheduling parame-

ters such as time constraints or reading back scheduling information. The cost of assigning

scheduling parameters to an activity is 20 µs while the cost of reading the scheduling infor-

mation for an activity is only 10 µs. The small overhead easily allows application develop-

ers to program with time constraints at a fine granularity without much penalty to

application performance.

6.4.3. Compar ison of Default Scheduler Behavior

Our first experiment is simply to run all four applications (News, Entertain, Typing, and

Dhrystone) with the default user parameters for each of the schedulers:

• UNIX RT: The real-time News and Entertain applications are put in the real-time class,

leaving Typing and Dhrystone in the time-sharing class.

• UNIX TS: All the applications are run in time-sharing mode. (We also experimented

with putting Typing in the interactive application class and obtained slightly worse per-

formance.)
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• WFQ: All the applications are run with equal share.

• SMART: All the applications are run with equal share and equal priority.

Because of their computational requirements, the execution of these applications results in

the system being overloaded. In fact, the News video and the Entertain applications alone

will fully occupy the machine. Both the Typing and News audio applications hardly use any

CPU time, taking up a total of only 3-4% of the CPU time. It is thus desirable for the sched-

uler to deliver short latency on the former application and meet all the deadlines on the

latter application. With the default user parameters in UNIX TS, WFQ, and SMART, we

expect the remainder of the computation time to be distributed evenly between News video,

Entertain, and Dhrystone. Even with an ideal scheduler, we expect the percentages of the

frames dropped to be 25% and 45% for News video and Entertain, respectively. 

Figure 6-16. CPU allocations obtained by applications when run with default behavior on
different schedulers

Figure 6-16 presents the CPU allocation across different applications by different schedul-

ers. It includes the percentage of the CPU used for executing other system functions such

as the window system (labeled Other). The figure also includes the expected result of an

ideal scheduler for comparison purposes. For the real-time applications, Figures 6-17 and

6-18 show the percentage of media units that are displayed on-time, early, late, or dropped.
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For the interactive Typing application, Figure 6-19 shows the number of characters that take

less than 50 ms to display, take 50-150 ms to display, and take longer than 150 ms to dis-

play. Figures 6-20 through 6-23 present more detail by showing the distributions of the data

points. We have also included the measurements for each of the applications running by

itself (labeled Standalone) in the respective figures. We observe that every scheduler han-

dles the News audio application well with no audio dropouts. Thus we will only concentrate

on discussing the quality of the rest of the applications. 

Figure 6-17. News application performance on different schedulers as measured by
percentage of audio and video samples delivered on time

Unlike the other schedulers, the UNIX RT scheduler gives higher priority to applications

in the real-time class. It devotes most of the CPU time to the video applications, and thus

drops the least number of frames. (Nevertheless, SMART is able to deliver more on-time

frames than UNIX RT for the News video, while using less resources.) Unfortunately,

UNIX RT runs the real-time applications almost to the exclusion of conventional applica-

tions. Dhrystone gets only 1.6% of the CPU time. More disturbingly, the interactive Typing

application does not get even the little processing time requested, receiving only 0.24% of

the CPU time. Only 635 out of the 1314 characters typed are even processed within the 300

second duration, and nearly all the characters processed have an unacceptable latency of

greater than 150 ms. Note that putting Typing in the real-time class does not alleviate this
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problem as the system-level I/O processing required by the application is stil l not able to

run, because system functions are run at a lower priority than real-time activities. Clearly,

it is not acceptable to use the UNIX RT scheduler.

Figure 6-18. Entertain application performance on different schedulers as measured by
percentage of video frames delivered on time

All the other schedulers spread the resources relatively evenly across the three demanding

applications. The UNIX TS scheduler has less control over the resource distribution than

WFQ and SMART, resulting in a slight bias towards  Entertain over Dhrystone. The basic

principles used to achieve fairness across applications are the same in WFQ and SMART.

However, we observe that WFQ scheduler devotes slightly more (3.8%) CPU time to Dhry-

stone at the expense of News video. This effect can be attributed to the standard implemen-

tation of WFQ processor scheduling whereby the proportional share of the processor

obtained by an activity is based only on the time that the activity is runnable and does not

include any time that the activity is sleeping.

Since the video applications either process a frame or discard a frame altogether from the

beginning, the number of video frames dropped is directly correlated with the amount of

time devoted by the scheduler to the applications, regardless of the scheduler used. The dif-

ference in allocation accounts for the difference in the number of frames dropped between

the schedulers. We found that in each instance the scheduler drops about 6-7% more frames
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than the ideal computed using average computation times and the scheduler’s specific allo-

cation for the application.

Figure 6-19. Typing application performance on different schedulers as measured by
character latency

The schedulers are distinguished by their abili ty to meet the time constraints of those

frames processed. SMART meets a significantly larger number of time constraints than the

other schedulers, delivering over 250% more video frames on time than UNIX TS and over

60% more video frames on time than WFQ. SMART’s effectiveness holds even for cases

where it processes a larger total number of frames, as in the comparison with WFQ. More-

over, as shown in Figures 6-20 and 6-21, the late frames are handled soon after the dead-

lines, unlike the case with the other schedulers. As SMART delivers a more predictable

behavior, the applications are better at determining how long to sleep to avoid displaying

the frames too early. As a result, there is a relatively small number of early frames. It deliv-

ers on time 57% and 37% of the total number of frames in News video and Entertain,

respectively. They represent, respectively, 86% and 81% of the frames displayed.

To understand the significance of the bias introduced to improve the real-time and interac-

tive application performance, we have also performed the same experiment with all biases

set to zero. The use of the bias is found to yield a 10% relative improvement on the sched-

uler’s ability in delivering the Entertain frames on time.
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Figure 6-20. Distributions of frame display times for the News application on different
schedulers

Figure 6-21. Distributions of frame display times for the Entertain application on different
schedulers
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In contrast, the WFQ delivers 32% and 26% of the total frames on time, which represents

only 53% and 58% of the frames processed. There are many more late frames in the WFQ

case than in SMART. The tardiness causes the applications to initiate the processing earlier,

thus resulting in a correspondingly larger number of early frames. The UNIX TS performs

even more poorly, delivering 15% and 11% of the total frames, representing only 22% and

21% of the frames processed. Some of the frames handled by UNIX TS are extremely late,

causing many frames to be processed extremely early, resulting in a very large variance in

display time across frames.

Figure 6-22. Distributions of character latency for the Typing application on different
schedulers

Finally, as shown in Figure 6-22, SMART is superior to both SVRT-TS and WFQ in

handling the Typing application. SMART has the least average and standard deviation in

character latency and completes the most number of characters in less than 50 ms, the

threshold of human detectable delay.
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forms worse with WFQ because an activity does not accumulate any credit at all when it

sleeps. We performed an experiment where the WFQ algorithm is modified to allow the

 

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

C
um

ul
at

iv
e 

pe
rc

en
t o

f t
ot

al
 c

ha
ra

ct
er

s 
ty

pe
d

Character latency (ms)

Typing

Standalone
UNIX RT
UNIX TS

WFQ
SMART



117

blocked activity to accumulate limited credit just as it would when run on the SMART

scheduler. The result is that Typing improves significantly, and the video application gets

a fairer share of the resources. However, even though the number of dropped video frames

is reduced slightly, the modified WFQ algorithm has roughly the same poor performance

as before when it comes to delivering the frames on time.

Figure 6-23. Cumulative execution time for the Dhrystone application on different
schedulers

6.4.4. Adjusting the Allocation of Resources

Besides being effective for real-time applications, SMART has the ability to support arbi-
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by running the same set of applications from before with different priority and share assign-

ments under different system loads. In particular, News is given a higher priority than all

the other applications, Entertain is given the default priority and twice as many shares as

any other application, and all other applications are given the same default priority and
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• Phase 1: Run all the applications for the first 120 seconds of the experiment. News

exits after the first 120 seconds of the experiment, resulting in a load change.

• Phase 2: Run the remaining applications for the remaining 180 seconds of the experi-

ment.

Besides News and Entertain, the only other time-consuming application in the system is

Dhrystone. Thus, in the first part of the experiment, News should be allowed to use as much

of the processor as necessary to meet its resource requirements since it has a higher priority

than all other applications. Since News audio uses less than 3% of the machine and News

video uses only 42% of the machine on average, over half of the processor’s time should

remain available for running other applications. As Typing consumes very lit tle processing

time, it should be handled perfectly and almost all of the remaining computation time

should be distributed between Entertain and Dhrystone in the ratio 2:1. The time allotted

to Entertain can service at most 62% of the deadlines on average. When News finishes,

however, Entertain is allowed to take up to 2/3 of the processor, which would allow the

application to run at full rate. The system is persistently overloaded in Phase 1 of the exper-

iment, and on average underloaded in Phase 2, though transient overloads may occur due

to fluctuations in processing requirements.

Figures 6-24 through 6-27 show the CPU allocation and quality metrics of the different

applications run under SMART as well as an ideal scheduler. The figures show that

SMART’s performance comes quite close to the ideal. First, it implements proportional

sharing well i n both underloaded and overloaded conditions. Second, SMART performs

well for higher priority real-time applications and real-time applications requesting less

than their fair share of resources. In the first phase of the computation, it provides perfect

News audio performance, and delivers 97% of the frames of News video on time and meets

99% of the deadlines. In the second phase, SMART displays 98% of the Entertain frames

on time and meets 99% of the deadlines. Third, SMART is able to adjust the rate of the

application requesting more than its fair share, and can meet a reasonable number of its

deadlines. In the first phase for Entertain, SMART drops only 5% more total number of

frames than the ideal, which is calculated using average execution times and an allocation
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of 33% of the processor time. Finally, SMART provides excellent interactive response for

Typing in both overloaded and underloaded conditions. 99% of the characters are displayed

with a delay unnoticeable to typical users of less than 100 ms [8].

Figure 6-24. CPU allocations for different applications under a changing load when using
SMART end user controls

Figure 6-25. News application performance under a changing load when using SMART
end user controls
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Figure 6-26. Entertain application performance under a changing load when using
SMART end user controls

Figure 6-27. Typing application performance under a changing load when using SMART
end user controls

6.4.5. Summary

Our experiments in the context of a full featured, commercial, general-purpose operating

system show that SMART: (1) reduces the burden of writing adaptive real-time

applications, (2) has the ability to cooperate with applications in managing resources to

meet their dynamic time constraints, (3) provides resource sharing across both real-time
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and conventional applications, (4) delivers improved real-time and interactive performance

over other schedulers without any need for users to reserve resources, adjust scheduling

parameters, or know anything about application requirements, (5) provides flexible,

predictable controls to allow users to bias the allocation of resources according to their

preferences. SMART achieves this range of behavior by differentiating between the

importance and urgency of real-time and conventional applications. This is done by

integrating priorities and weighted fair queueing for importance, then using urgency to

optimize the order in which tasks are serviced based on earliest-deadline scheduling. Our

measured performance results demonstrate SMART’s effectiveness over that of other

schedulers in supporting multimedia applications in a realistic workstation environment.



122

7 Conclusion

We are at the dawn of an era in which many everyday applications will use multimedia.

Tomorrow’s multimedia applications will do much more than just playback pre-recorded

audio and video; we expect that such applications will employ sophisticated image process-

ing techniques and integrate complex computer graphics, all delivered with high interactiv-

ity and real-time response. However, multimedia applications have very different

characteristics from the conventional non-real-time applications that populate desktop

computers today. They are typically highly resource intensive, and often have dynamic and

adaptive application-specific time constraints associated with their execution. To integrate

these applications into the general-purpose computing environment, multitasking software

environments must be able to support the demands of real-time multimedia applications in

conjunction with the demands of existing conventional applications. To allow this combi-

nation of real-time and conventional activities to co-exist, general-purpose operating sys-

tems must effectively manage computing resources to meet the real-time demands of

multimedia applications while still providing good performance for conventional interac-

tive and batch applications. Operating systems have so far been unable to effectively

manage resources to support this combination of real-time and conventional activities. To

enable the wide-spread use of multimedia, operating systems must evolve beyond their cur-

rent resource management limitations.

This dissertation represents a step towards enabling the wide-spread use of multimedia in

general-purpose computing environments. In this dissertation, we have developed a proces-

sor scheduler that supports the co-existence of dynamic, adaptive real-time applications

with conventional non-real-time applications. We have shown that this scheduler can be

implemented in a commercial operating system and deliver significant performance
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improvements for both real-time and conventional applications over other schedulers used

in research and practice. This dissertation makes the following contributions:

• We have conducted the first experimental studies that quantitatively evaluated UNIX

SVR4’s ability to support multimedia applications. UNIX SVR4 serves as a common

basis of commercial workstation operating systems and claims to provide support for

multimedia applications. We demonstrated that UNIX SVR4 processor scheduling is

inadequate, resulting in pathological behaviors in which the video would freeze and

the system would even stop accepting user input. 

• We have created a new scheduler interface that enables users and applications to coop-

erate with the operating system in managing resources to support multimedia users and

applications. This interface facili tates a greater flow of information among users,

applications, and the operating system. It allows an operating system to account for

both application and user information in managing resources, yet in no way imposes

draconian demands on either application developers or end users for information they

cannot or choose not to provide.

• We have developed a novel asynchronous notification mechanism to provide dynamic

feedback to real-time applications to inform them if their time constraints cannot be

met and enables applications to define their own policies for adapting their quality of

service to the current system load. Possible adaptation policies that can take advantage

of the notification mechanism include discarding a computation that will miss its dead-

line, progressively refining a computation until its deadline, continuing a computation

after its deadline, and simply defining a new deadline for a computation.

• We have developed a scheduler interface and algorithm that is the first to support pro-

portional share control at different priority levels across both real-time and conven-

tional activities. These priority and proportional share controls give end users simple

predictable controls that can be used to bias the allocation of resources according to

their preferences.
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• We have created a unified approach to scheduling real-time and conventional activi-

ties. We show that our SMART scheduler is the first to provide optimal performance

for real-time applications when the system is underloaded while simultaneously pro-

viding proportional share control across real-time and conventional activities. Our

scheduling algorithm is able to provide good combined real-time and conventional

application performance even in the absence of admission control policies.

• We have introduced the notion of latency tolerance as a mechanism to improve the

response time of interactive applications by adjusting the instantaneous allocation of

resources that an application receives. However unlike multi-level feedback schedul-

ers, our latency tolerance mechanism does not change the overall allocation of

resources that an application receives.

• We have implemented a prototype of SMART in a commercial operating system envi-

ronment. We have shown that is possible to implement SMART in such a way that pro-

vides effective support for multimedia applications while being completely backwards

compatible with a UNIX SVR4 scheduling framework. Our implementation in fact

supports all of the default scheduling classes in UNIX SVR4. We have demonstrated

the robustness of our implementation in running real multimedia, interactive, and

batch applications in a fully-functional workstation environment.

• We have demonstrated the effectiveness of our unified approach to scheduling by

quantitatively comparing it with other schedulers used in research and practice. By

measuring the performance of actual real-time multimedia, interactive, and batch

applications in a fully-functional workstation environment, we show that SMART pro-

vides better performance and control than other schedulers. In fact, SMART can

deliver almost a factor of two better performance than schedulers used in practice and

research in meeting real-time requirements when the system is overloaded.

We have shown that SMART provides effective processor scheduling for real multimedia

applications in a general-purpose computing environment.
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7.1. Future Work

Effective uniprocessor scheduling is crucial for multimedia applications, but multiproces-

sor scheduling support for multimedia applications is becoming increasingly important.

While some previous work has attempted to address the problem of real-time multiproces-

sor scheduling [14][19][21], little work has been done to address the problem of how to

allow both real-time and conventional applications to share resources and co-exist together

in a multiprocessor environment. Scheduling multimedia applications on multiprocessors

poses challenges that do not arise in scheduling single processor systems. A single dispatch

queue from which tasks are scheduled is suff icient for the uniprocessor case. However,

experience with commercial operating systems suggests that scheduling multiple proces-

sors with a centralized dispatch queue is a synchronization bottleneck that can limit the

scalabilit y of multiprocessor systems [18][72]. If a dispatch queue should be associated

with each processor, how should tasks be assigned to those dispatch queues in the first

place? In particular, the operating system must effectively balance the load across multiple

processors. As multimedia application workloads often have dynamically varying resource

demands, the operating system must decide when to migrate tasks from one processor to

another for load balancing. On the other hand, the operating system may want to reduce

task migration through some form of cache affinity to reduce cache misses that occur when

a task migrates among processors. 

The SMART scheduler prototype implemented in the Solaris operating system is capable

of scheduling activities in multiprocessor systems, but it does not currently address a

number of multiprocessor scheduling issues such as scheduling real-time activities across

multiple processors, load balancing among processors, and accounting for possible cache

effects in determining which processor to use for executing a given activity. Nevertheless,

our experience with SMART leads us to believe that the basic ideas in SMART can be

extended to address these multiprocessor scheduling issues in supporting multimedia appli -

cations. In fact, we have begun experimenting with a new multiprocessor scheduler along

these lines. Key features of our approach are: (1) decouples the assignment of which pro-

cessor to use to run a given task (processor task assignment) from the scheduling of tasks

already assigned to a processor (per processor scheduling), (2) accounts for cache effects
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in the processor task assignment by recognizing that conventional applications often have

good cache locality but multimedia applications that stream large amounts of data often

have poor cache locality, (3) explicitly accounts for application time constraints in both the

processor task assignment and the per processor scheduling to make eff icient use of

resources in meeting real-time requirements, (4) provides flexible prioritized and propor-

tional resource sharing across both real-time and conventional activities. In particular for

our multiprocessor scheduler, we take advantage of SMART’s flexible usage model and

interface and employ the SMART scheduling algorithm for per processor scheduling.

While effective processor scheduling is crucial to support multimedia applications, proces-

sors are just one set of components in an overall system. Other resources that require effec-

tive resource management include I/O bandwidth, memory, networks, and the network/host

interface. Meeting the demands of future multimedia applications will require coordinated

resource management across all criti cal resources in the system. Providing resource man-

agement mechanisms and policies across multiple resources that effectively support adap-

tive and interactive multimedia applications remains a key challenge. We believe that the

ideas discussed here for processor scheduling will serve as a basis for future work in

addressing the larger problem of managing system-wide resources to support multimedia

applications.
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