Building a Real-Time Operating System on top of the Adaptive
Domain Environment for Operating Systems

Karim Yaghmour
Opersys inc.
WWW.opersys.com
karym@opersys.com

Abstract

The Adaptive Domain Environment for Operating Systems (Adeos) was designed to offer the capability
of sharing the hardware between multiple operating systems. This can in turn be used to create a real-time
domain which has priority on all other domains. Leveraging Adeos’ capabilities, the real-time operating
system would share the hardware with the other execution domains but would have the advantage to be

the first in the interrupt pipeline.

Architectural overview!

Once Adeos is running on an operating system,
it becomes easy to obtain deterministic real-time
behavior from the underlying hardware. On the
Linux/ix86 host, this amounts to creating a kernel
module that upon loading interacts with Adeos to
obtain priority status in the interrupt pipe. Once
that is done, it can provide all the deterministic fa-
cilities necessary for the operation of real-time tasks.

Since it is capable of recognizing and interacting
with Adeos, it should not interfere with Adeos’ nor-
mal behavior and call any system-modifying instruc-
tions. This includes the ix86 cli/sti couple. Rather,
it should use the stall/unstall primitives provided by
Adeos. This will guaranty that Adeos still has a cer-
tain degree of control over all that is happening in
the system.

It is possible to have a system where Adeos may
have the following 4 stages in its pipeline, starting
from stage 0 which is the hardware’s interrupt issue:

1. Real-Time OS

2. Kernel Debugger
3. Low-latency driver
4. Linux kernel

The same thing may be viewed for any BSD
derivative:

1. Real-Time OS

2. Kernel Debugger
3. Low-latency driver
4. BSD Kernel

To offer its services to the real-time tasks, the
RTOS may either provide a software- interrupt based
facility or enable modules to directly call its services
either through call gates or direct calling.

Again this real-time operating system may be
built as a kernel module. In future versions of Adeos,
it may be foreseeable to enable user-level processes to
become domains of their own and have direct access
to the hardware as other domains do.

L As this is only an architectural brief, please refer to the document entitled “Adaptive Domain Environment for Operating

System” by Karim Yaghmour for further details about Adeos.



