Adaptive Domain Environment for Operating Systems

Karim Yaghmour
Opersys inc.
WWW.0persys.com
karym@opersys.com

Abstract

Most modern operating systems have been designed to operate without restriction on the hardware
they use. This is a very limited environment for both application programmers and system administrators
as extension and operative modifications are impossible.

The Adaptive Domain Environment for Operating Systems (Adeos) introduced here provides an ex-
tensible and adaptive environment which can be used to enable the sharing of hardware resources among
multiple operating systems or among multiple instances of the same operating system.

The implementation details of Adeos on the ix86 using the Linux OS as the host are presented as are
fields of application. For each application field, a suggested deployment architecture is presented.

1 Introduction

Operating systems were born out of a desire to en-
compass system libraries and hardware abstraction
software in order to offer users with a standard-
ized application programming interface. In time,
operating systems came to automate the sharing of
hardware resources amongst multiple user programs.
Hence, users no longer had control or direct access
to the hardware they use. This has its advantages as
it becomes possible to write portable programs and
force users to abide by some rules imposed by the op-
erating system administrators. On the other hand,
all hardware accesses being channelled through the
operating system, programmers became trapped in
the operating system for which they programmed. In
turn, users became trapped in the operating system
they chose and could not use applications developed
for other operating systems.

As many different and incompatible operating
systems, both source-wise and binary- wise, became
adopted, the gap between the programmers and users
of one OS and the programmers and users of another
OS became wider and wider. The propagation of
computerized systems in different specialty fields did
nothing to alleviate this divide. In the current state
of the OS field this is somewhat unfortunate as there
are often cases where the functionalities or applica-
tions of a given OS may be very useful to the users

of another OS, but these users may not profit from
such capabilities as the OS they use has not been
designed to share its resources. The same can be
said about system developers as they have no way
to control the hardware outside of the capabilities
provided by the running OS. Although this level of
control may be desirable for debugging and perfor-
mance measurement.

Current solutions to provide such a capability
rely heavily on simulation or on limited-simulation
supported by run-time mechanisms. Hence, the sim-
ulated OS has no direct access to the hardware and is
treated as hostile by the simulator which, itself, runs
on top of another operating system. This stacking of
OSes becomes rapidly inefficient and limited. Other
solutions attempt to build a miniature OS on top of
which other OSes may come to be implemented and
offer user capabilities. This, though, is not a practi-
cal approach as most users and programmers don’t
want new OSes, they simply want their current ones
to interact more seamlessly.

What is desirable is to have an equal and trusted
status among already existing OSes that use the
same hardware in order to give control back to the
application programmers and system administrators.

In section 2, previous work is presented and dis-
cussed. Section 3 covers the architectural concepts
behind Adeos. Section 4 discusses the implementa-
tion details of Adeos on the ix86 using Linux as a



OSDomain 1 OS Domain 2
A C A D
A ! A
Adeos
B
Y Y
Hardware

Figure 1: Adeos architecture.

host to startup the hardware. Section 5 discusses

example applications of Adeos.

2 Previous work

As stated in the previous section, there are two cat-
egories of existing solutions that enable multiple op-
erating systems to run on the same system. The first
are simulation-based and provide a virtual environ-
ment for which to run additional operating systems.
The second suggest the usage of a nano-kernel layer
to enable hardware sharing.

In the simulation category we find tools such
as VMWare [1], Plex86 [2], VirtualPC [3] and
SimOS [10]. Both VMWare and Plex86 provide a
virtual environnement on which ix86-based OSes can
be used on top of other ix86-based OSes. VirtualPC
enables Macintosh users to run ix86-based applica-
tions. Although these solutions are useful for users
who desire to run applications foreign to their base
OS, they provide no control whatsoever over the base
OS to the user. SimOS was developed to analyze
the performance and behavior of commercial operat-
ing systems under realistic workloads. Hence, it was
never meant to be used in a production environment.

In the nano-kernel category we find projects such
as SPACE [9, 8, 7], Cache kernel [4] and Exoker-
nel [5]. All of these suggest building miniature hard-
ware management facilities which can thereafter be
used to build production operating systems. The
problem of this approach is that it does not address
the issue of currently existing operating systems and
their user base. That being said, SPACE bares an
important contribution to Adeos as it implements
the concept of domains where each domain has its
own set of characteristics.

Adeos addresses the requirements of both cat-

egories of application by providing a simple layer
that is inserted under an unmodified running OS
and thereafter provides the required primitives and
mechanisms to allow multiple OSes to share the same
hardware environment. Adeos does not attempt to
impose any restrictions on the hardware’s usage, by
the different OSes, more than is necessary for Adeos’
own operation. Instead, the actual restrictions are to
be imposed by the system administrator or the sys-
tem programmer. This, of course, renders the sys-
tem subject to mismanagement, but the idea behind
Adeos is precisely to give back control to system ad-
ministrators and programmers. How this increased
level of control should be used is outside the scope
of this discussion.

3 Architectural concepts

As Adeos has to ensure equal and trusted access to
the hardware it must take control of some hardware
commands issued by the different OSes, but must
not intrude too much on the different OSes’ normal
behavior. In order to achieve this fragile equilib-
rium the architecture presented in figure 1 has been
adopted. It is a generalized form of the architecture
presented in [7] and is not limited to providing what
is referred to as portals in SPACE since it is also
used to insure that every OS has a safe environment
to operate in.

Each OS is encompassed in a domain over which
it has total control. This domain may include a pri-
vate address space and software abstractions such
as processes, virtual memory, file-systems, etc. As
will be covered shortly, these resources do not have
to be exclusive since OSes that recognize Adeos and
are able to interact with it may be able to share re-
sources with or access the resources of other domains.



Hardware __,|
Interrupt

OSDomain 1 -

OS Domain 2

OSDomainn » ldleDomain

) p—

Figure 2: Adeos’ interrupt pipe.

Again, Adeos does not attempt to impose any policy
on the usage of the hardware except as needed for its
own survival. The task of determining policy is left
to the system architect.

In the type of environment provided by Adeos
there are 4 broad categories of communication meth-
ods as illustrated in figure 1. Category A is a general
usage of the hardware made by the different domains.
This may involve any degree of memory access, hard-
ware access and traps. Since successful memory and
hardware accesses don’t cause any faults, each do-
main operates as if Adeos wasn’t present. Category
B involves Adeos receiving control from the hardware
because of a software or hardware interrupt (Adeos’
interrupt management is discussed below). It also
includes all hardware commands issued by Adeos to
control the hardware. Category C involves invoking
an OS’s interrupt handler upon the occurrence of a
trap while providing it the required information re-
garding the interrupt. If the domain is not aware
of Adeos’ presence, this may involve setting up the
stack to resemble what the OS’s interrupt handler ex-
pects. Category D involves two-way communication
between a domain and Adeos. This is only possible
if the OS in the domain is aware of Adeos’ presence.
This type of communication provides for maximum
usage of Adeos’ capabilities as it can be asked by
a domain OS to grant it complete or partial access
to resources belonging to other domains or even to
grant it priority over other domains during interrupt
handling. This may be used to provide cross-domain
communication facilities as provided by SPACE.

Figure 2 presents the way interrupt handling is
done in Adeos. Adeos uses an interrupt pipe to prop-
agate interrupts through the different domains run-
ning on the hardware. As some domains may pre-
fer to be the first to receive hardware interrupts,
Adeos provides a mechanism for domains to have
access to priority interrupt dispatching. In effect,
Adeos places the requesting domain’s interrupt han-
dler and accompanying tables, which may be called
as an interrupt mechanism in SPACE terminology,
at the first stages of the interrupt pipeline. This,
again, resembles SPACE’s handling of interrupts as
shown in figure 2 of [8], but behaves differently as

to the way domains can control the interrupts they
receive. That is, domains can control whether they
accept, ignore, discard or terminate interrupts. Each
of these has a different effect and is controlled differ-
ently.

Accepting interrupts is the normal state of a do-
main’s interrupt mechanism. When Adeos encoun-
ters a domain who is accepting interrupts it summons
its interrupt handler after having set the required
CPU environment and stack content for the inter-
rupt handler to operate correctly. The OS then may
decide to operate any number of operations including
task scheduling. Once the OS is done, the pipeline
proceeds as planned by propagating interrupts down
the pipeline. As some OSes do not recognize Adeos,
their idle task is modified to call on Adeos when it
becomes scheduled. This is possible since the process
tables of most operating systems are accessible from
a device driver or module standpoint. Taking control
of the idle task is done by way of loading a device
driver or a module, finding the idle task’s entry in
the task table and replacing it with a function that
issues a special trap that Adeos recognizes as a signal
from the OS in the domain that it is done using the
CPU. Of course, this special interrupt isn’t propa-
gated in the pipeline and is therefore invisible to all
domains. If the OS recognizes Adeos, then he only
needs to tell Adeos that he is now dormant. This
informs Adeos that the interrupt can proceed onto
the other stages of the pipeline. Of course from one
pipeline stage to the next, Adeos needs to save the
state of the domain that was running so as to restore
it in the next pipeline traverse.

When an OS in a domain does not want to be
interrupted, for any type of reason, it asks Adeos
to stall the stage its domain occupies in the inter-
rupt pipeline. By doing so, interrupts go no further
in the pipeline and are stalled at the stage occu-
pied by the domain. When the OS is done want-
ing to be uninterrupted, it asks Adeos to unstall
the pipeline and thereafter all the interrupts that
were stalled at the corresponding stage follow their
route to the other stages of the pipeline. Note that if
new interrupts make their way through the pipeline
while a stage is stalled they will remain at that



stage and will be provided as new interrupts to the
domain occupying that stage once the stage is un-
stalled. As some OSes do not recognize Adeos’ pres-
ence, a way must be found to communicate the usual
“disable interrupt” / “enable interrupt” or “lower in-
terrupt level” /”’raise interrupt level” instructions to
calls of “stall stage” /”unstall stage”.

When a domain is discarding interrupts, the in-
terrupt passes over the stage occupied by the domain
and continues onto the other stages. When a do-
main terminates interrupts then the interrupts that
are terminated by it are not propagated to latter
stages. Interrupt discarding and termination is only
possible when the OS in a domain recognizes Adeos.
The interrupt behavior for each domain and for in-
dividual interrupts may be changed dynamically.

Since some OSes do not recognize Adeos, it is
possible to create a domain which only serves as a
handler for that OS. Hence, during interrupt pipelin-
ing, this stage always precedes the handled domain’s
stage and may take actions for that domain with
Adeos in order to provide the handled domain’s OS
with the illusion of normal system operation.

Once Adeos is done traversing the pipeline it
checks if all domains are dormant. If that is case
it then calls on its idle task. This task remains ac-
tive until the occurrence of the next interrupt. If all
the domains aren’t dormant it restores the processor
to the state it had prior the interrupt entering the
pipeline and execution continues where it had left.

Since Adeos is very much hardware dependent,
many details pertain to one of its particular imple-
mentations. The next section covers these details for
the ix86 using Linux as the base OS.

4 Implementation details

Implementing an OS from scratch is a long and risky
process. There are many design philosophies avail-
able, many programming languages, many tools and
other parameters that may be taken into account
when wanting to design and implement an operating
system starting from nothing. Implementing Adeos
in such a context would require making many choices
and spend more time getting the system to a func-
tional state than actually implementing the com-
ponents necessary to obtain the required behavior.
Hence, the decision was made to use an unmodified
already functional OS as a host for Adeos’ imple-
mentation. As Linux is an OS that is widely avail-
able and for which source code is available it was
chosen as the host to be used by Adeos and since

Loffer a virtual environment in Plex86 nomenclature.

Linux is well supported on the ix86 and that that
architecture is widely available, ix86 was chosen as
Adeos’ hardware platform. That being said, the fol-
lowing discussion may apply to any other OS and any
other platform, with the required changes to adapt
to the environment composed of the chosen OS and
the chosen hardware platform. In any case, a good
knowledge of the hardware’s operation and the OS’s
architecture will be fundamental since the main task
of Adeos will be to take control of the hardware while
the OS is running and without it sensing any differ-
ence.

In the chosen platform, Linux on an ix86, the
task will be quite straightforward. In order to have
the capability of even touching the hardware with-
out Linux knowing, we need to use loadable modules.
Hence, Adeos is a loadable module that is dynami-
cally loaded and that will take control of the hard-
ware. Taking control of the hardware on an unmod-
ified Linux kernel on the ix86 may seem impossible
since the kernel was compiled with ix86 instructions
such as cli/sti which are the “disable interrupt”/ “en-
able interrupt” respectively on the ix86. Hence, even
if we were to modify the interrupt descriptor table
register using the “lidt” instruction, Linux would still
be able to stop Adeos from operating in the intended
fashion.

To bypass this shortcoming we use one of the
ix86’s own capabilities against the OS. Remember
that the ix86 posses 4 privilege levels, 0 being the
highest and 3 being the lowest. Linux normally op-
erates at PL 0 with its applications running at PL
3. With these privilege levels come different capabil-
ities. Most importantly, software running at PL 0,
often called ring-zero, will be able to do what it may
wish to do with the hardware. On the other end,
software running at ring 3 is not permitted to do
certain operations that may modify the overall sys-
tem’s behavior and hinder the OS’s job of protecting
the different processes running on the system. The
privileges provided to a level or another may be con-
trolled using the I/O privilege level (IOPL) mecha-
nisms provided on the ix86.

4

An example of interest, Plex86 runs the “virtu-
alized 1”7 OS at ring 3, as explained in [6]. In the
same document, K. Lawton speculates that it may
be possible to virtualize an OS at ring 1 instead of
ring 3. This would enable for more native execution
of the different page protection mechanisms used on
the ix86, hence accelerating system virtualization. In
our case, virtualization is of no interest since we trust
the OSes we are running on top of Adeos.



The solution therefore is to push Linux out of
ring-zero and into ring-one. By doing so, all privi-
leged instructions such as cli and sti aren’t permitted
and will generated a fault by the processor. These
instructions will then be caught by a Linux han-
dling domain (LHD), that precedes the Linux do-
main (LD) in the interrupt pipeline and that will
convert these instructions into a stall/unstall LD
pipeline stage. Using this technique, Linux is still
in control of all the page management and Adeos
doesn’t necessarily need to take it away unless we
plan to run another general-purpose OS side-by-side
with Linux. This will be covered in section 5.

The downside to this technique is that other im-
portant instructions that we would like Linux to pro-
ceed with will be caught. The following instructions
will not be permitted to Linux once it is placed in
ring-one (as in the ix86 manuals provided by intel):

e clts, clear task-switched flag

e hlt, halt processor

o cli, clear interrupt flag

e sti, set interrupt flag

e in, input from port

e out, output to port

e ins, input string from port

e outs, output string from port

e invd, invalidate cache

e invlpg, invalidate

e lgdt, load GDT register

e lidt, load IDT register

e lldt, load LDT register

e Imsw, load machine status register

e ltr, load task register

e mov to/from CRn, move to control register n
e mov to/from DRn, move to debug register n
e whinvd, writeback and invalidate cache

e rdmsr, read model-specific registers

e wrmsr, write model-specific registers

e rdpmc, read performance-monitoring counter

e rdtsc, read time-stamp counter

Most of these instructions do not execute very of-
ten. The critical ones are in/out/ins/outs as these
may be heavily used by device drivers. In order not
to generate faults each time these instructions are
called, the task state segment bitmaps may be al-
tered in order to permit ring-one I0. That done, de-
vice drivers will be able to operate as designed with-
out Adeos seeing any traps for the in/out/ins/outs
instructions.

Still, there remains a substantial amount of other
instructions that still need to be taken care of. There
are two ways to take care of those: emulation and
single-stepping. With emulation, the contents of
the memory and registers are modified to let Linux
believe that he actually executed the instruction.
Single-stepping involves setting the single-stepping
bit for Linux and lowering the IOPL to 1. Hence,
when Linux goes to run, he gets to run the instruc-
tion but is cutoff right afterwards and the LHD resets
the IOPL back to 0 and removes the single-stepping
bit. With this, Linux can continue operating at will.

There are cases that plex86 takes care of which
we don’t need to take care of or that we omit vol-
untarily to treat because we know Linux’s behavior.
Self-modifying code is one of these cases. Here, we
assume that Linux will not attempt to modify its
own binary code. This is a safe assumption given
the current kernel components.

There’s the case where we want additional loaded
modules to have access to Adeos and we may even
want some modules loaded by a ring-one Linux to be-
come ring-zero elements. This may be provided for
using a special software interrupt which traps into
Adeos and which Adeos may use to modify the map-
pings of these modules to become part of ring-zero.
This is possible since Linux’s module mappings are
accessible in kernel space.

This whole scheme means that Adeos itself needs
to be running at ring-zero. This is achievable by
adding extra entries in the GDT which can be used
by Adeos and all other modules who want to become
ring-zero. The inverse of this is that removing Linux
from ring-zero is done by modifying the GDT entries
that pertain to its code and data to have descriptor
privilege levels of 1 instead of 0. Hence, the GDT
register isn’t modified, only the content of the global
descriptor table pointed to by the GDT register is
modified. The IDT register, on the other hand, is
completely overwritten by Adeos to point to its own
tables. Prior to overwriting it, though, Adeos keeps a
pointer to Linux’s initial table in order to invoke the
correct entry when Linux’s turn comes while going
through the interrupt pipeline.



These modifications are then propagated to the
rest of the elements recognized by the hardware in
order to reflect the change of privilege level. This
may involve changing the task-state segments main-
tained by Linux for every task it runs. As Linux may
create new tasks while Adeos is active, he may create
TSSes that are not expected by Adeos. This may be
detected because of traps caused by the unexpected
behavior and then fixed by the LHD.

The rest of the implementation is not hardware
specific and may be implemented as described in sec-
tion 3.

“Bootstrapping” Adeos on Linux/ix86 would in-
volve loading the Adeos module first. This mod-
ule’s init_module() would not do much except re-
turn a value to inform the caller that loading suc-
ceeded. The reason Adeos can’t go any further is
that the Linux domain handler isn’t loaded yet. It
is this module’s loading that will generate the chain-
reaction that will result in Linux loosing control of
the hardware. Once loaded, the LHD will initialize
itself and call on Adeos to complete hardware hijack-
ing.

Unloading Adeos involves unloading all modules
that use it and returning Linux to ring-zero. Un-
loading ring-zero modules may be done using an-
other special software interrupt recognized by Adeos.
Thereafter the Adeos kernel module may be un-
loaded. Notice that a similar discussion may have
been done with FreeBSD instead of Linux on the
same hardware platform with the same end result.

5 Applicability

Having explained the architectural details of Adeos
and provided details about its implementation, this
section will cover some applications which can be de-
veloped under Adeos.

5.1 General-purpose operating sys-
tem resource sharing

This is one of the main objectives of Adeos, to pro-
vide an environment which enables multiple general-
purpose OSes to share the same hardware. As such,
the implementation details provided in section 4 only
explain how to install Adeos under Linux. In order to
run another OS side-by-side with Linux some other
implementation details will have to be covered. It
remains that whichever OS gets to run with Linux
it too will be trusted. In the following we will take
an example where we’d like to run NetBSD beside
Linux. Choosing an OS for which we do not have

the source code may be a risky business though.

The first step to get an OS going is to boot it.
Since this process involves probing and initializing all
the hardware, we cannot permit NetBSD to boot in
any form on Adeos since Linux has already booted an
initialized all the hardware. Although once booted, a
Linux and a NetBSD may be made to share the same
hardware granted they don’t reside in the same phys-
ical space and use different I/O devices. Some of the
latter may be hard to share, but using appropriate
domain handlers, this should be feasible. The divi-
sion of physical memory may be made by instructing
Linux at boot time to use only a portion of the physi-
cal memory for its operation, the rest being intended
for NetBSD.

We still need to obtain a booted image of
NetBSD. This may be performed in one of two ways.
First, we may use plex86 to boot NetBSD in a vir-
tualized mode and then transfer the booted OS into
physical memory under control of Adeos. Second,
we may boot NetBSD and then obtain an image of
the running system which will thereafter be loaded
beside Linux on top of Adeos. Both methods rep-
resent a fair amount of work, but the first solution
is very close to K. Lawton’s discussion in [6] about
virtualization of OS operation at ring-one.

5.2 Operating system development

Developing OSes is usually a complicated process
which sometimes requires extra hardware such as In-
Circuit Emulators to probe the hardware on which
the OS is running. Using Adeos, OS development
is eased since any undesired behavior may be con-
trolled by an appropriate domain handler. It would
even be conceivable to provide a default domain han-
dler for OS development under which developers may
have controlled direct access to the hardware they
are meant to control. As Adeos is itself a kernel-
module, such development domain handlers may be
developed independently from Adeos.

To start OS development under a Linux/ix86-
operated Adeos, one would load a Linux kernel mod-
ule which would request its own domain. Thereafter,
it would have full unrestricted access to the hard-
ware available. Since developers may wish to use a
safe environment for such development, the loading
of such a module may be preceded by the loading
of appropriate domain handler. As development ad-
vances, it should be possible to reduce the checking
of the domain handler in order to provide more con-
trol over to the developed OS and its domain. At
the latest stages of OS development, the interaction
between the developed OS, Adeos and the host OS



would resemble more and more closely the process
described in the previous subsection to finally yield
a fully functional OS.

5.3 Patch-less kernel debuggers and
probers

The subject of kernel debuggers has been a very
pointy one on the Linux kernel development mail-
ing list. Each time it has been raised, it has caused a
lot of tumult but no debugger ever made it into the
kernel. Alleviating all these troubles, Adeos provides
for a way for kernel debuggers and probers to take
control of Linux without it ever being modified. As
other Adeos domains, these facilities would load as
normal kernel modules and would thereafter request
a ring-zero domain from Adeos. Once that is done,
they may request priority interrupt dispatching in
the interrupt pipeline. Hence, before Linux gets to
handle any interrupts, they will be able to intercept
those interrupts and carry out the requested debug-
ging tasks. This can also be extended to performance
profilers and other such development tools.

6 Conclusion

In this paper we have presented the Adaptive Do-
main Environment for Operating Systems as a solu-
tion for sharing hardware resources amongst multiple
operating systems. We have presented its architec-
ture and suggested an implementation method for
the ix86 using Linux as the base OS. We have also
defined areas of applicability. Although the imple-
mentation discussion has centered around on the ix86
using Linux, the concepts presented may be extended
to other architectures and other base operating sys-
tems in order to provide the same capabilities.
Given the current state of the operating system
market and the research field, Adeos may be used to
provide a bridge between both fields and promote the
development of more flexible and cooperative oper-
ating systems. This would provide system adminis-
trators and programmers with the flexibility needed
to develop user-friendly operating environments and

applications that are not limited by the choice of a
single operating system.

References

[1] VMWare, http://www.vmware.com/.
[2] Plex86, http://www.plex86.org/.

[3] Virtual PC, http://www.connectix.com/products/
vpc.html.

[4] David R. Cheriton and Kenneth J. Duda. A
caching model of operating system kernel func-
tionality. In Proc. Symp. on Operating Sys-
tems Design and Implementation, pages 179—
194, Monterey CA (USA), 1994.

[5] D. Engler, M. Kaashoek, and J. Jr. Exok-
ernel: an operating system architecture for
application-specif ic resource management. De-
cember 1995.

[6] K. Lawton. Running multiple operating systems
concurrently on an ia32 pc using virtualization
techniques, November 1999. Plex86 documen-
tation: plex86/docs/txt/paper-19991129a.txt.

[7] D. Probert and J. Bruno. Efficient cross-domain
mechanisms for building kernel-less operating
systems.

[8] D. Probert and J. Bruno. Building funda-
mentally extensible application-specific operat-
ing systems in space, March 1995.

[9] D. Probert, J. Bruno, and M. Karzaorman.
Space: a new approach to operating system ab-
straction. In International Workshop on Object
Orientation in Operating Systems, pages 133—
137, October 1991.

[10] M. Rosenblum, E. Bugnion, S. Devine, and
S. Herrod. Using the SimOS Machine Simulator
to Study Complex Computer Systems. In ACM
Transactions on Modeling and Computer Simu-
lation, volume 7, pages 78-103, January 1997.



