

- Question: How to determine execution time of *next* CPU burst ?!
 - wild guess?
 - code inspection?
- Forecasting (i.e. estimation)

$$S_{n+1} = F(T_n, T_{n-1}, T_{n-2}, T_{n-3}, T_{n-4}, ...)$$

• Simple forecasting function: exponential average:

$$S_{n+1} = a T_n + (1-a) S_n$$

• Example: a = 0.8

$$S_{n+1} = 0.8T_n + 0.16T_{n-1} + 0.032T_{n-2} + 0.0064T_{n-3} + \dots$$

MFBS: Implementation (Unix System V) Clock handler generates 60 clock ticks per second. Each PCB contains a field CPU ("recent CPU usage"), which is incremented on every clock tick while process is running. Every 60 ticks scheduler is awakened and ajusts recent CPU usage according to a decay function: decay(CPU) = CPU/2 recalculates priorities according to following formula (higher priorities have lower priority values!): priority = CPU/2 + base_priority Decay rate controls aging. Priority recalculation controls demotion Note: This is a simplified view! (For a more detailed description refer to M.J.Bach, *The Design of the UNIX Operating System.*)

•	3 proce	sses, each	with base	e priority 6	0:	
	Process A		Process B		Process C	
time	priority	CPU count	priority	CPU count	priority	CPU count
1	60	0 1 60	60	0	60	0
2	75	30	60	0 1 	60	0
2	67	15	75	30	60	0 1
5	63	7 8 67	67	15	75	30
4 -	76	33	63	7 8 67	67	15
5	68	16	76	33	63	7