CPSC-410 Operating Systems CPU Scheduling

CPU Scheduling

Schedulers
Structure of a CPU scheduler
Criteria for scheduling

Scheduling Algorithms
— FCFS

— SPN

— SRT

— MLFQ

CPU scheduling in Unix

Schedulers

long-term scheduler

short-term scheduler
:I:H

(blocked

suspended
read

suspended
blocked

medium-term scheduler

CPSC-410 Operating Systems CPU Scheduling

Short-Term Scheduling

* Motivation for multiprogramming: Have multiple
processes in memory to keep CPU busy.

» Typical execution profile of a process:

start terminate

[t for]) et for 0] ST et for 0] EE]

CPU burst CPU burst CPU burst CPU burst
——P O—O O—P O—O O—P O—O O—o—
N_ N_ N_ 7 N_/ N_ S N_ N_ 7

» CPU scheduleris managing the execution of CPU bursts,
represented by processesaadyor running state.

Scheduling Decisions

* Who is going to use the CPU next?

@

» Scheduling decision points:

— 1. The running process changes framningto 1
waiting (current CPU burst of that process is ove

— 2. The running process terminates.

— 3. A waiting process becomes ready (new CPU
burst of that process begins).

— 4. The current process switches frommningto
ready. v

»

non-preemptive
1%4
=
€

preemptiv

CPSC-410 Operating Systems

SRR LTE

Structure of a Scheduler (1)

ready queueI

scheduler |:> dispatcher |:> CPU

select process start new proces

//l?

What Is a Good Scheduler? Criteria

e User oriented:

Turnaround time : time interval from submission of job
until its completion

Waiting time : sum of periods spent waiting in ready queue
Response time time interval from submission of job to first
response

Normalized turnaround time: ratio of turnaround time to
service time

- + System oriented:
— CPU utilization : percentage of time CPU is busy

Throughput : number of jobs completed per time unit

* Any good scheduler should:

maximizeCPU utilization and throughput
minimizeturnaround time, waiting time, response time

e Huh?

maximum/minimum valuegs. average valuegs.variance

CPU Scheduling

CPSC-410 Operating Systems CPU Scheduling

Scheduling Algorithms

* FCFS: First-come-first-served

» SPN: Shortest Process Next

[= . SI'?T:' Shortest Remaining Time

) * priority scheduling

% * RR : Round-robin

» Multilevel feedback queue schedulin
* Multiprocessor scheduling

=1

Structure of a Scheduler (II)
(conceptual structure)

| > determine location in queue I -

ST viid

head |

tail
i v —> | CPU

I N S S e

* Incoming process is put into right location in ready queue.
» Dispatcher always picks first element in ready queue.

CPSC-410 Operating Systems

First-Come-First-Served (FCFS)

I > append at the end of queue I I
head |"
tail
v I v ——=> | CPU
i Iy GT=T: o B o BN o B

* Advantages:
— very simple
» Disadvantages:
— long average and worst-case waiting times
— poor dynamic behavior (convoy effect)

Waiting Times for FCFS

Example: R=24, B=6, B=6
Pl I:)2 P3
Different arrival order:
I:)2 P3 Pl

W,y = (24+30)/3 = 18
W, = 30

Wiy = (6+12)/3 = 6
W, = 12

Average waiting times is not minimal.
Waiting times may substantially vary over time.
Worst-case waiting times can be very long.

CPU Scheduling

CPSC-410 Operating Systems CPU Scheduling

Convoy Effects

CPUI

P | e

I/0
empty!

CPUI

e empty! |
k - muuuuj

I/0-bound

|:| CPU-bound
]

A4

Shortest Process Next

| determine location in queue
> (compare next CPU burst lengths)
r'—'_‘—'_‘—'_‘—'_‘—'_‘—' |:> CPU
long jobs short jobs

* Whenever CPU is idle, picks process vattortest next CPU
burst

» Advantages: minimizes average waiting times.
* Problem: How to determine length rméxtCPU burst?
» Problem: starvation of jobs with long CPU bursts.

CPSC-410 Operating Systems

dw = 1‘shon' tIong <0

W =6+18+26 =50
W = 6+14+26 = 46
W =6+14+18 = 38

W =6+10+18 = 34

SJF Minimizes Average Waiting Time
* Provably optimal: Proof: swapping of jobs

I L I

___________ O

____________ {_Paon_| Piong .
* Example:

L6 | 12 [8 [4]

L6 | 8 | 12 [4]

Lo | 8 [4f] 12 |

Lo [4] 8 [12 |

(el e [8 [12 |

W =4+10+18 = 32

nextCPU burst ?!

— wild guess?
— code inspection?

Forecasting (i.e. estimation)

Swi= aT,+(1a)§,
Example: a=0.8

S,.; = 0.8T, + 0.16T,, + 0.032T , +

Question: How to determine execution time of

31+1 = F(Tn’ Tn-li Tn-2’ Tn-3’ Tn-4’)

Simple forecasting function: exponential average:

0.0064T 5+ ...

CPU Scheduling

CPSC-410 Operating Systems

Exponential Averaging: Example
16
14
b a=0.2 .
108 / 2o =
g §<ﬁ a=08 a//ij/@
NINN | S
B J
= |
1

Preemptive SPN: ShorteRemaining-Timd-irst

P, is preempted

P, resumes execution

* SPN:
P, and R arrive here
17 r P, arrives here
Pl I:)2 P3
P. P. nil
[P | P2 [P,] <«— ready queue
3
* SRT:
P, and R arrive here
17 r P, arrives here
Pl I:)2 Pl P3
[P] #[P [P] i
P3

CPU Scheduling

CPSC-410 Operating Systems CPU Scheduling

Priority Scheduling

Selector
: .k (compare priorities) I]
@¢ VoY ov v
r'—'_‘—'_‘—'_‘—'_‘—'_‘—' |_:} CPU
|E)W priority high priority

Whenever CPU is idle, picks process witghest priority
Priority:

— process class, burst length, urgency, pocket depth.
Unbounded blocking: Starvation

— Increase priority over time: aging

» Conceptually: * Priority Queues
priority queue
low priority priority
— j low priority
(a=1(p) =2
g2 ™ 58
o a © g
5]
=3 2 =2 |29 =3
n g_ n g_
high priority
high priority
ﬂ ﬂ

CPSC-410 Operating Systems

Round-Robin

* FIFO with preemption after
time quantum

* Method for time sharing
» Choice of time quantum:
— large: FCFS
— small: Processor sharing

» Time quantum also defines
context-switching overhead

» Response time smaller with

end of large time quantums
time quantum

FIFO queue

.

(O V) | mm—t

terminate

I

Multilevel Queue Scheduling

low priority

U

batch processes

P
USEr Processes QI_Q

Selector
(compare priorities)

B
7
=]
=.
o
=.
—
<
c
wn
)
®
=]
=
o
o
2
n A
D :
o

P
kernel processes OI_Q

4 high priority

separate queues, perhaps with
different scheduling policies I—h-;> CPE]

CPU Scheduling

10

CPSC-410 Operating Systems

Multilevel Feedback Queue Scheduling

(conceptually)

low priority
’ | FCFS (quantum = infinity) I \
8 .] N
IS} 5 ~*|quantum = 16 ms
3 ; «— aging
gy
8 ~—»| quantum = 4ms I: /
: N\ J
/ guantum =2 ms

demotion high priority

MFBS: Implementation (Unix System V)

Clock handler generates 60 clock ticks per second.
Each PCB contains a fieldPU(“recent CPU usage”), which
is incremented on every clock tick while process is running.
Every 60 ticks scheduler is awakened and
— ajusts recent CPU usage according to a decay function:
decayCPU = CPU2
— recalculates priorities according to following formula
(higher priorities have lower priority values!):
priority = CPU2 + base_priority
Decay rate controls aging.
Priority recalculation controls demotion

Note: This is a simplified view{For a more detailed description
refer to M.J.BachThe Design of the UNIX Operating Sysfem.

CPU Scheduling

11

CPSC-410 Operating Systems

MFBS on UNIX System V: Example

» 3 processes, each with base priority 60:

Process A Process B Process C
time priority CPU count . priority CPU count: priority CPU count
60 0 60 0 60 0

1

. 50
75 30 60 0 60 0
1
-
67 15 75 30 60
1

3 —
63 7 67 15 75 30
8
4 67
76 33 63 7 67 15
8
5 6
68 16 76 33 63 7

CPU Scheduling

12

