
CPSC-410 Operating Systems CPU Scheduling

1

CPU Scheduling

• Schedulers

• Structure of a CPU scheduler

• Criteria for scheduling

• Scheduling Algorithms
– FCFS

– SPN

– SRT

– MLFQ

• CPU scheduling in Unix

Schedulers

start

suspended
ready

suspended
blocked

blocked

ready running

long-term scheduler

medium-term scheduler

short-term scheduler

CPSC-410 Operating Systems CPU Scheduling

2

Short-Term Scheduling

• Motivation for multiprogramming: Have multiple
processes in memory to keep CPU busy.

• Typical execution profile of a process:

CPU burst

wait for I/O

CPU burst

wait for I/O

CPU burst

wait for I/O

CPU burst

start terminate

• CPU scheduler is managing the execution of CPU bursts,
represented by processes in ready or running state.

Scheduling Decisions

• Who is going to use the CPU next?

ready running

waiting
3 1

2
4

• Scheduling decision points:

– 1. The running process changes from running to
waiting (current CPU burst of that process is over).

– 2. The running process terminates.

– 3. A waiting process becomes ready (new CPU
burst of that process begins).

– 4. The current process switches from running to
ready .

no
n-

pr
ee

m
pt

iv
e

pr
ee

m
pt

iv
e

CPSC-410 Operating Systems CPU Scheduling

3

Structure of a Scheduler (I)

scheduler dispatcher CPU

select process start new process

ready queue

?

What Is a Good Scheduler? Criteria

• User oriented:
– Turnaround time : time interval from submission of job

until its completion

– Waiting time : sum of periods spent waiting in ready queue

– Response time : time interval from submission of job to first
response

– Normalized turnaround time: ratio of turnaround time to
service time

• System oriented:
– CPU utilization : percentage of time CPU is busy

– Throughput : number of jobs completed per time unit

• Any good scheduler should:
– maximize CPU utilization and throughput

– minimize turnaround time, waiting time, response time

• Huh?
– maximum/minimum values vs. average values vs. variance

CPSC-410 Operating Systems CPU Scheduling

4

Scheduling Algorithms

• FCFS : First-come-first-served

• SPN: Shortest Process Next

• SRT: Shortest Remaining Time

• priority scheduling

• RR : Round-robin

• Multilevel feedback queue scheduling

• Multiprocessor scheduling

Structure of a Scheduler (II)
(conceptual structure)

• Incoming process is put into right location in ready queue.

• Dispatcher always picks first element in ready queue.

PCB
CPU

determine location in queue

head
tail

CPSC-410 Operating Systems CPU Scheduling

5

First-Come-First-Served (FCFS)

PCB
CPU

append at the end of queue

head
tail

• Advantages:

– very simple

• Disadvantages:

– long average and worst-case waiting times

– poor dynamic behavior (convoy effect)

Waiting Times for FCFS

P1 P2 P3
Wawg = (24+30)/3 = 18
Wwc = 30

P1P2 P3
Wawg = (6+12)/3 = 6
Wwc = 12

• Example: P1 = 24, P2 = 6, P3 = 6

• Average waiting times is not minimal.

• Waiting times may substantially vary over time.

• Worst-case waiting times can be very long.

Different arrival order:

CPSC-410 Operating Systems CPU Scheduling

6

Convoy Effects

empty!

CPU

I/O

CPU-bound

I/O-bound

empty!
CPU

I/O

Shortest Process Next

• Whenever CPU is idle, picks process with shortest next CPU
burst.

• Advantages: minimizes average waiting times.

• Problem: How to determine length of next CPU burst?

• Problem: starvation of jobs with long CPU bursts.

CPU

short jobslong jobs

determine location in queue
(compare next CPU burst lengths)

CPSC-410 Operating Systems CPU Scheduling

7

Pshort

SJF Minimizes Average Waiting Time

Plong Pshort

dW = tshort - tlong < 0

• Provably optimal: Proof: swapping of jobs

Plong

• Example:

6 812 4 W = 6+18+26 = 50

6 8 12 4 W = 6+14+26 = 46

6 8 124 W = 6+14+18 = 38

6 8 124 W = 6+10+18 = 34

6 8 124 W = 4+10+18 = 32

• Question: How to determine execution time of
next CPU burst ?!

– wild guess?

– code inspection?

• Forecasting (i.e. estimation)

Sn+1 = F(Tn, Tn-1, Tn-2, Tn-3, Tn-4, ...)

• Simple forecasting function: exponential average:

Sn+1 = a Tn + (1-a) Sn

• Example: a = 0.8

Sn+1 = 0.8Tn + 0.16Tn-1 + 0.032Tn-2 + 0.0064Tn-3 + ...

CPSC-410 Operating Systems CPU Scheduling

8

Exponential Averaging: Example

4

6

8

10

12

14

16

a = 0.2

a = 0.5

a = 0.8

2

1

Preemptive SPN: Shortest-Remaining-Time-First

• SPN:

P1 P3

P2 arrives here

• SRT:

P3

P1 and P3 arrive here

P2

P3

P3
nil

ready queue

P1 P3

P2 arrives here

P3 P1

P3

P3
nil

P1 and P3 arrive here

P1

P1 is preempted
P1 resumes execution

P2

P2

CPSC-410 Operating Systems CPU Scheduling

9

Priority Scheduling

• Whenever CPU is idle, picks process with highest priority.

• Priority:

– process class, burst length, urgency, pocket depth.

• Unbounded blocking: Starvation

– Increase priority over time: aging

CPU

high prioritylow priority

Selector
(compare priorities)

S
el

e
ct

or
(c

o
m

pa
re

 p
ri
o

ri
tie

s)

• Conceptually:

low priority

high priority

• Priority Queues

S
el

e
ct

or
(c

o
m

pa
re

 p
ri
o

ri
tie

s)

q=f(p)

priority queue
priority

CPU CPU

low priority

high priority

CPSC-410 Operating Systems CPU Scheduling

10

Round-Robin

• FIFO with preemption after
time quantum

• Method for time sharing

• Choice of time quantum:

– large: FCFS

– small: Processor sharing

• Time quantum also defines
context-switching overhead

• Response time smaller with
large time quantums

CPU

terminate

end of
time quantumF

IF
O

 q
u

eu
e

S
el

e
ct

or
(c

o
m

pa
re

 p
ri
o

ri
tie

s)

CPU

low priority

high priority

Multilevel Queue Scheduling

batch processes

user processes

kernel processes

high-priority user processes

separate queues, perhaps with
different scheduling policies

CPSC-410 Operating Systems CPU Scheduling

11

S
el

e
ct

or
(c

o
m

pa
re

 p
ri
o

ri
tie

s)

low priority

high priority

Multilevel Feedback Queue Scheduling

FCFS (quantum = infinity)

quantum = 16 ms

quantum = 2 ms

quantum = 4ms

aging

demotion

(conceptually)

MFBS: Implementation (Unix System V)
• Clock handler generates 60 clock ticks per second.
• Each PCB contains a field CPU (“recent CPU usage”), which

is incremented on every clock tick while process is running.

• Every 60 ticks scheduler is awakened and

– ajusts recent CPU usage according to a decay function:
decay(CPU) = CPU/2

– recalculates priorities according to following formula
(higher priorities have lower priority values!):

priority = CPU/2 + base_priority

• Decay rate controls aging.

• Priority recalculation controls demotion

• Note: This is a simplified view! (For a more detailed description
refer to M.J.Bach, The Design of the UNIX Operating System.)

CPSC-410 Operating Systems CPU Scheduling

12

MFBS on UNIX System V: Example
• 3 processes, each with base priority 60:

time

1

2

3

4

5

60 0
1

60
...

75 30

67

63

76

68

15

7

33

16

8

67
...

Process A
priority CPU count

60 0

60

75

67

63

76

30

Process B
priority CPU count

60

60

60

75

67

63

Process C
priority CPU count

0
1
...

15

7

33

8

67
...

0

30

0
1
...

15

7

0

