Appendix F

Homogeneous Coordinates and
Transformation Matrices

This appendix presents a brief discussion of homogeneous coordinates. It also lists the
form of the transformation matrices used for rotation, scaling, translation, perspective
projection, and orthographic projection. These topics are introduced and discussed in
Chapter 3. For a more detailed discussion of these subjects, see almost any book on
three-dimensional computer graphics—for exam@lanputer Graphics: Principles

and Practiceby Foley, van Dam, Feiner, and Hughes (Reading, MA: Addison-Wesley,
1990)—or a text on projective geometry—for examplee Real Projective Planby

H. S. M. Coxeter, 2nd ed. (Cambridge: Cambridge University Press, 1961). In the
discussion that follows, the tetnomogeneous coordinatabvays means
three-dimensional homogeneous coordinates, although projective geometries exist for
all dimensions.

This appendix has the following major sections:
¢ “Homogeneous Coordinates”

¢ “Transformation Matrices”
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Homogeneous Coordinates

OpenGL commands usually deal with two- and three-dimensional vertices, but in fact
all are treated internally as three-dimensional homogeneous vertices comprising four
coordinates. Every column vectot, §/, z, ' represents a homogeneous vertex if at
least one of its elements is nonzero. If the real nuatsemonzero, therx(y, z, W' and

(ax, ay, az,aw)" represent the same homogeneous vertex. (This is just like frasfipns:

= (ax)/(ay).) A three-dimensional euclidean space poiny(3' becomes the
homogeneous vertex with coordinatesy( z 1.0)', and the two-dimensional euclidean
point (x, J)T becomesx| y; 0.0, 1.0}.

As long asw is nonzero, the homogeneous vertexy( z, W' corresponds to the
three-dimensional poink{w, y/w, zA)". If w= 0.0, it corresponds to no euclidean point,

but rather to some idealized “point at infinity.” To understand this point at infinity,
consider the point (1, 2, 0, 0), and note that the sequence of points (1, 2, 0, 1), (1, 2, 0,
0.01), and (1, 2.0, 0.0, 0.0001), corresponds to the euclidean points (1, 2), (100, 200),
and (10000, 20000). This sequence represents points rapidly moving toward infinity
along the line =y. Thus, you can think of (1, 2, 0, 0) as the point at infinity in the
direction of that line.

Note: OpenGL might not handle homogeneous clip coordinateswvtt®d correctly.
To be sure that your code is portable to all OpenGL systems, use only
nonnegativav values.

Transforming Vertices

Vertex transformations (such as rotations, translations, scaling, and shearing) and
projections (such as perspective and orthographic) can all be represented by applying an
appropriate 44 matrix to the coordinates representing the vertex. If v represents a
homogeneous vertex and M is @4ransformation matrix, then Mv is the image of v
under the transformation by M. (In computer-graphics applications, the transformations
used are usually nonsingular—in other words, the matrix M can be inverted. This isn’t
required, but some problems arise with nonsingular transformations.)

After transformation, all transformed vertices are clipped soxtlyatindz are in the
range fFw, w] (assumingv > 0). Note that this range corresponds in euclidean space to
[-1.0, 1.0].

Transforming Normals

Normal vectors aren't transformed in the same way as vertices or position vectors.
Mathematically, it's better to think of normal vectors not as vectors, but as planes
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perpendicular to those vectors. Then, the transformation rules for normal vectors are
described by the transformation rules for perpendicular planes.

A homogeneous plane is denoted by the row veatds,(c, §, where at least one af

b, ¢ ordis nonzero. Ifyis a nonzero real number, then b, ¢, d and @a, gb, qc, gil
represent the same plane. A pointy z, W' is on the planea( b, c, Jl if ax+by+cz+dw

=0. (Ifw= 1, this is the standard description of a euclidean plane.) In ordes forq|

d) to represent a euclidean plane, at least oaglpforc must be nonzero. If they're all
zero, then (0, 0, @) represents the “plane at infinity,” which contains all the “points at
infinity.”

If p is a homogeneous plane and v is a homogeneous vertex, then the statement “v lies
on plane p” is written mathematically as pv = 0, where pv is normal matrix
multiplication. If M is a nonsingular vertex transformation (that issamatrix that has

an inverse M), then pv = 0 is equivalent to piv = 0, so Mv lies on the plane pi

Thus, pM! is the image of the plane under the vertex transformation M.

If you like to think of normal vectors as vectors instead of as the planes perpendicular to
them, let v and n be vectors such that v is perpendicular to n. Then, Thus, for

an arbitrary nonsingular transformation MMitMv = 0, which means that'm is

the transpose of the transformed normal vector. Thus, the transformed normal vector is
(M'l)Tn. In other words, normal vectors are transformed by the inverse transpose of the
transformation that transforms points. Whew!

Transformation Matrices

Although any nonsingular matrix M represents a valid projective transformation, a few
special matrices are particularly useful. These matrices are listed in the following
subsections.

Translation

The call glTranslate’(, y, 2 generates T, where

100x 100 -x
_ 010y -1_ (010-y
T=1o01z| @T°= |g01-2
0001 0001

Transformation Matrices
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Scaling

The call glScale*, y, 2 generates S, where

1
%000
x000 oloo
s= |9Y001 qgst= |7V
0001 4
0001

Notice that S is defined only ik, y, andz are all nonzero.

Rotation

The call glRotate*q, x, y, 2 generates R as follows:

Letv=(,Y, 3", and u=v/||v|]| 2y, z)".

Also let
0-Zy
S= |Z 0-X| andM =uuT + (cosa) (I -uuT) +(sina) S
-y' X' 0
Then
mmmoO
R= [MMmOp . | from M, which is a 3x3 matri
= | mmmo| Where m represents elements from M, which is a 3x3 matrix.
0001

The R matrix is always defined.Xfy=z=0, then R is the identity matrix. You can
obtain the inverse of R, R by substituting-a for a, or by transposition.

The glRotate*() command generates a matrix for rotation about an arbitrary axis.
Often, you're rotating about one of the coordinate axes; the corresponding matrices are
as follows:
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1 0 0 0

. . |0 cosa -sina 0
glRotate*(a, 1,0,0): | 5 g5 cosa 0
0 0 0 1

[cosa 0 sina O]

. ) 1 0 0
glRotate*(a, 0,1, 0): | 400 cosa O
0 0 0 1

[cosa-sina 0 O]

. . |sinacosa 0 O
glRotate*(a, 0,0, 1): | 777 47 1
0 0 0 1

As before, the inverses are obtained by transpositi

Perspective Projection

The call glFrustum(r, b, t, n, f) generates R, where

20, r+ | r-1 r+ 1]
r-1 0 r-| 0 2n 0 0 2n

2n t+b t-b t+b

R= 0 t-b t-b 0 andR'lz 0 2n 0 2n
o o :txrm 2m o 0o 0 -1

B -(f-n) f+n
_O 0 1 O_ _O 2fn  2fn

R is defined as long & r, t # b, andn # f.

on.

Transformation Matrices
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Orthographic Projection

The call glOrthd( r, b, t, n, f) generates R, where

r-I
2
R = 0 t-b 0
-2
0 0 —n
0 0 0

R is defined as long &< r,t £ b, andn # f.
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