
91

Chapter 3

3.Viewing

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• View ageometric model in any orientation by transforming it in three-dimensional
space

• Control the location in three-dimensional space from which the model is viewed

• Clip undesired portions of the model out of the scene that’s to be viewed

• Manipulate the appropriate matrix stacks that control model transformation for
viewing and project the model onto the screen

• Combine multiple transformations to mimic sophisticated systems in motion, such
as a solar system or an articulated robot arm

• Reverse or mimic the operations of the geometric processing pipeline

92 Chapter 3: Viewing

Chapter 2 explained how to instruct OpenGL to draw the geometric models you want
displayed in your scene. Now you must decide how you want to position the models in
the scene, and you must choose a vantage point from which to view the scene. You can
use the default positioning and vantage point, but most likely you want to specify them.

Look at the image on the cover of this book. The program that produced that image
contained a single geometric description of a building block. Each block was carefully
positioned in the scene: Some blocks were scattered on the floor, some were stacked on
top of each other on the table, and some were assembled to make the globe. Also, a
particular viewpoint had to be chosen. Obviously, we wanted to look at the corner of the
room containing the globe. But how far away from the scene—and where
exactly—should the viewer be? We wanted to make sure that the final image of the scene
contained a good view out the window, that a portion of the floor was visible, and that
all the objects in the scene were not only visible but presented in an interesting
arrangement. This chapter explains how to use OpenGL to accomplish these tasks: how
to position and orient models in three-dimensional space and how to establish the
location—also in three-dimensional space—of the viewpoint. All of these factors help
determine exactly what image appears on the screen.

You want to remember that the point of computer graphics is to create a two-dimensional
image of three-dimensional objects (it has to be two-dimensional because it’s drawn on
a flat screen), but you need to think in three-dimensional coordinates while making
many of the decisions that determine what gets drawn on the screen. A common mistake
people make when creating three-dimensional graphics is to start thinking too soon that
the final image appears on a flat, two-dimensional screen. Avoid thinking about which
pixels need to be drawn, and instead try to visualize three-dimensional space. Create
your models in some three-dimensional universe that lies deep inside your computer,
and let the computer do its job of calculating which pixels to color.

A series of three computer operations convert an object’s three-dimensional coordinates
to pixel positions on the screen.

• Transformations, which are represented by matrix multiplication, include
modeling, viewing, and projection operations. Such operations include rotation,
translation, scaling, reflecting, orthographic projection, and perspective projection.
Generally, you use a combination of several transformations to draw a scene.

• Since the scene is rendered on a rectangular window, objects (or parts of objects)
that lie outside the window must be clipped. In three-dimensional computer
graphics, clipping occurs by throwing out objects on one side of a clipping plane.

• Finally, a correspondence must be established between the transformed
coordinates and screen pixels. This is known as aviewport transformation.

Overview: The Camera Analogy 93

This chapter describes all of these operations, and how to control them, in the following
major sections:

• “Overview: The Camera Analogy” gives an overview of the transformation
process by describing the analogy of taking a photograph with a camera, presents a
simple example program that transforms an object, and briefly describes the basic
OpenGL transformation commands.

• “Viewing and Modeling Transformations” explains in detail how to specify and to
imagine the effect of viewing and modeling transformations. These
transformations orient the model and the camera relative to each other to obtain the
desired final image.

• “Projection Transformations” describes how to specify the shape and orientation
of theviewing volume. The viewing volume determines how a scene is projected
onto the screen (with a perspective or orthographic projection) and which objects
or parts of objects are clipped out of the scene.

• “Viewport Transformation” explains how to control the conversion of
three-dimensional model coordinates to screen coordinates.

• “Troubleshooting Transformations” presents some tips for discovering why you
might not be getting the desired effect from your modeling, viewing, projection,
and viewport transformations.

• “Manipulating the Matrix Stacks” discusses how to save and restore certain
transformations. This is particularly useful when you’re drawing complicated
objects that are built up from simpler ones.

• “Additional Clipping Planes” describes how to specify additional clipping planes
beyond those defined by the viewing volume.

• “Examples of Composing Several Transformations” walks you through a couple of
more complicated uses for transformations.

• “Reversing or Mimicking Transformations” shows you how to take a transformed
point in window coordinates and reverse the transformation to obtain its original
object coordinates. The transformation itself (without reversal) can also be
emulated.

Overview: The Camera Analogy

The transformation process to produce the desired scene for viewing is analogous to
taking a photograph with a camera. As shown in Figure 3-1, the steps with a camera (or
a computer) might be the following.

94 Chapter 3: Viewing

1. Set up your tripod and pointing the camera at the scene (viewing transformation).

2. Arrange the scene to be photographed into the desired composition (modeling
transformation).

3. Choose a camera lens or adjust the zoom (projection transformation).

4. Determine how large you want the final photograph to be—for example, you might
want it enlarged (viewport transformation).

After these steps are performed, the picture can be snapped or the scene can be drawn.

Overview: The Camera Analogy 95

Figure 3-1 The Camera Analogy

Note that these steps correspond to the order in which you specify the desired
transformations in your program, not necessarily the order in which the relevant
mathematical operations are performed on an object’s vertices. The viewing

model modeling

positioning the models
in the world

lens projection

determining shape of viewing volume

photograph viewport

tripod viewing

positioning the viewing volume
in the world

With a Camera With a Computer

96 Chapter 3: Viewing

transformations must precede the modeling transformations in your code, but you can
specify the projection and viewport transformations at any point before drawing occurs.
Figure 3-2 shows the order in which these operations occur on your computer.

Figure 3-2 Stages of Vertex Transformation

To specify viewing, modeling, and projection transformations, you construct a 4×4
matrix M, which is then multiplied by the coordinates of each vertexv in the scene to
accomplish the transformation

v’=Mv

(Remember that vertices always have four coordinates (x, y, z, w), though in most cases
w is 1 and for two-dimensional dataz is 0.) Note that viewing and modeling
transformations are automatically applied to surface normal vectors, in addition to
vertices. (Normal vectors are used only ineye coordinates.) This ensures that the normal
vector’s relationship to the vertex data is properly preserved.

The viewing and modeling transformations you specify are combined to form the
modelview matrix, which is applied to the incomingobject coordinates to yield eye
coordinates. Next, if you’ve specified additional clipping planes to remove certain
objects from the scene or to provide cutaway views of objects, these clipping planes are
applied.

After that, OpenGL applies the projection matrix to yieldclip coordinates. This
transformation defines a viewing volume; objects outside this volume are clipped so that
they’re not drawn in the final scene. After this point, theperspective division is
performed by dividing coordinate values byw, to producenormalized device
coordinates. (See Appendix F for more information about the meaning of thew
coordinate and how it affects matrix transformations.) Finally, the transformed
coordinates are converted towindow coordinates by applying the viewport
transformation. You can manipulate the dimensions of the viewport to cause the final
image to be enlarged, shrunk, or stretched.

VERTEX
Modelview

Matrix
Projection

Matrix
Viewport

Transformation
Perspective

Division

x

y

z

w window
coordinates

object
coordinates

normalized device
coordinates

clip
coordinates

eye
coordinates

Overview: The Camera Analogy 97

You might correctly suppose that thex andy coordinates are sufficient to determine
which pixels need to be drawn on the screen. However, all the transformations are
performed on thez coordinates as well. This way, at the end of this transformation
process, thez values correctly reflect the depth of a given vertex (measured in distance
away from the screen). One use for this depth value is to eliminate unnecessary drawing.
For example, suppose two vertices have the samex andy values but differentz values.
OpenGL can use this information to determine which surfaces are obscured by other
surfaces and can then avoid drawing the hidden surfaces. (See Chapter 10 for more
information about this technique, which is calledhidden-surface removal.)

As you’ve probably guessed by now, you need to know a few things about matrix
mathematics to get the most out of this chapter. If you want to brush up on your
knowledge in this area, you might consult a textbook on linear algebra.

A Simple Example: Drawing a Cube

Example 3-1 draws a cube that’s scaled by a modeling transformation (see Figure 3-3).
The viewing transformation, gluLookAt(), positions and aims the camera towards where
the cube is drawn. A projection transformation and a viewport transformation are also
specified. The rest of this section walks you through Example 3-1 and briefly explains
the transformation commands it uses. The succeeding sections contain the complete,
detailed discussion of all OpenGL’s transformation commands.

Figure 3-3 Transformed Cube

98 Chapter 3: Viewing

Example 3-1 Transformed Cube: cube.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);
 glLoadIdentity (); /* clear the matrix */
 /* viewing transformation */
 gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
 glScalef (1.0, 2.0, 1.0); /* modeling transformation */
 glutWireCube (1.0);
 glFlush ();
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 glFrustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
 glMatrixMode (GL_MODELVIEW);
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMainLoop();
 return 0;
}

Overview: The Camera Analogy 99

The Viewing Transformation

Recall that the viewing transformation is analogous to positioning and aiming a camera.
In this code example, before the viewing transformation can be specified, thecurrent
matrix is set to the identity matrix with glLoadIdentity(). This step is necessary since
most of the transformation commands multiply the current matrix by the specified
matrix and then set the result to be the current matrix. If you don’t clear the current
matrix by loading it with the identity matrix, you continue to combine previous
transformation matrices with the new one you supply. In some cases, you do want to
perform such combinations, but you also need to clear the matrix sometimes.

In Example 3-1, after the matrix is initialized, the viewing transformation is specified
with gluLookAt(). The arguments for this command indicate where the camera (or eye
position) is placed, where it is aimed, and which way is up. The arguments used here
place the camera at (0, 0, 5), aim the camera lens towards (0, 0, 0), and specify the
up-vector as (0, 1, 0). The up-vector defines a unique orientation for the camera.

If gluLookAt() was not called, the camera has a default position and orientation. By
default, the camera is situated at the origin, points down the negativez-axis, and has an
up-vector of (0, 1, 0). So in Example 3-1, the overall effect is that gluLookAt() moves
the camera 5 units along the z-axis. (See “Viewing and Modeling Transformations” for
more information about viewing transformations.)

The Modeling Transformation

You use the modeling transformation to position and orient the model. For example, you
can rotate, translate, or scale the model—or perform some combination of these
operations. In Example 3-1, glScalef() is the modeling transformation that is used. The
arguments for this command specify how scaling should occur along the three axes. If
all the arguments are 1.0, this command has no effect. In Example 3-1, the cube is drawn
twice as large in they direction. Thus, if one corner of the cube had originally been at
(3.0, 3.0, 3.0), that corner would wind up being drawn at (3.0, 6.0, 3.0). The effect of this
modeling transformation is to transform the cube so that it isn’t a cube but a rectangular
box.

Try This

Change the gluLookAt() call in Example 3-1 to the modeling transformation
glTranslatef() with parameters (0.0, 0.0, -5.0). The result should look exactly the same
as when you used gluLookAt(). Why are the effects of these two commands similar?

Note that instead of moving the camera (with a viewing transformation) so that the cube
could be viewed, you could have moved the cube away from the camera (with a
modeling transformation). This duality in the nature of viewing and modeling
transformations is why you need to think about the effect of both types of

100 Chapter 3: Viewing

transformations simultaneously. It doesn’t make sense to try to separate the effects, but
sometimes it’s easier to think about them one way rather than the other. This is also why
modeling and viewing transformations are combined into themodelview matrix before
the transformations are applied. (See “Viewing and Modeling Transformations” for
more detail on how to think about modeling and viewing transformations and how to
specify them to get the result you want.)

Also note that the modeling and viewing transformations are included in the display()
routine, along with the call that’s used to draw the cube, glutWireCube(). This way,
display() can be used repeatedly to draw the contents of the window if, for example, the
window is moved or uncovered, and you’ve ensured that each time, the cube is drawn in
the desired way, with the appropriate transformations. The potential repeated use of
display() underscores the need to load the identity matrix before performing the viewing
and modeling transformations, especially when other transformations might be
performed between calls to display().

The Projection Transformation

Specifying the projection transformation is like choosing a lens for a camera. You can
think of this transformation as determining what the field of view or viewing volume is
and therefore what objects are inside it and to some extent how they look. This is
equivalent to choosing among wide-angle, normal, and telephoto lenses, for example.
With a wide-angle lens, you can include a wider scene in the final photograph than with
a telephoto lens, but a telephoto lens allows you to photograph objects as though they’re
closer to you than they actually are. In computer graphics, you don’t have to pay $10,000
for a 2000-millimeter telephoto lens; once you’ve bought your graphics workstation, all
you need to do is use a smaller number for your field of view.

In addition to the field-of-view considerations, the projection transformation determines
how objects areprojected onto the screen, as its name suggests. Two basic types of
projections are provided for you by OpenGL, along with several corresponding
commands for describing the relevant parameters in different ways. One type is the
perspective projection, which matches how you see things in daily life. Perspective
makes objects that are farther away appear smaller; for example, it makes railroad tracks
appear to converge in the distance. If you’re trying to make realistic pictures, you’ll want
to choose perspective projection, which is specified with the glFrustum() command in
this code example.

The other type of projection isorthographic, which maps objects directly onto the
screen without affecting their relative size. Orthographic projection is used in
architectural and computer-aided design applications where the final image needs to
reflect the measurements of objects rather than how they might look. Architects create
perspective drawings to show how particular buildings or interior spaces look when
viewed from various vantage points; the need for orthographic projection arises when

Overview: The Camera Analogy 101

blueprint plans or elevations are generated, which are used in the construction of
buildings. (See “Projection Transformations” for a discussion of ways to specify both
kinds of projection transformations.)

Before glFrustum() can be called to set the projection transformation, some preparation
needs to happen. As shown in the reshape() routine in Example 3-1, the command called
glMatrixMode() is used first, with the argument GL_PROJECTION. This indicates that
the current matrix specifies the projection transformation; the following transformation
calls then affect theprojection matrix. As you can see, a few lines later glMatrixMode()
is called again, this time with GL_MODELVIEW as the argument. This indicates that
succeeding transformations now affect the modelview matrix instead of the projection
matrix. (See “Manipulating the Matrix Stacks” for more information about how to
control the projection and modelview matrices.)

Note that glLoadIdentity() is used to initialize the current projection matrix so that only
the specified projection transformation has an effect. Now glFrustum() can be called,
with arguments that define the parameters of the projection transformation. In this
example, both the projection transformation and the viewport transformation are
contained in the reshape() routine, which is called when the window is first created and
whenever the window is moved or reshaped. This makes sense, since both projecting
(the width to height aspect ratio of the projection viewing volume) and applying the
viewport relate directly to the screen, and specifically to the size or aspect ratio of the
window on the screen.

Try This

Change the glFrustum() call in Example 3-1 to the more commonly used Utility Library
routine gluPerspective() with parameters (60.0, 1.0, 1.5, 20.0). Then experiment with
different values, especially forfovy andaspect.

The Viewport Transformation

Together, the projection transformation and the viewport transformation determine how
a scene gets mapped onto the computer screen. The projection transformation specifies
the mechanics of how the mapping should occur, and the viewport indicates the shape
of the available screen area into which the scene is mapped. Since the viewport specifies
the region the image occupies on the computer screen, you can think of the viewport
transformation as defining the size and location of the final processed photograph—for
example, whether the photograph should be enlarged or shrunk.

The arguments to glViewport() describe the origin of the available screen space within
the window—(0, 0) in this example—and the width and height of the available screen
area, all measured in pixels on the screen. This is why this command needs to be called
within reshape()—if the window changes size, the viewport needs to change
accordingly. Note that the width and height are specified using the actual width and

102 Chapter 3: Viewing

height of the window; often, you want to specify the viewport this way rather than giving
an absolute size. (See “Viewport Transformation” on page 123 for more information
about how to define the viewport.)

Drawing the Scene

Once all the necessary transformations have been specified, you can draw the scene (that
is, take the photograph). As the scene is drawn, OpenGL transforms each vertex of every
object in the scene by the modeling and viewing transformations. Each vertex is then
transformed as specified by the projection transformation and clipped if it lies outside
the viewing volume described by the projection transformation. Finally, the remaining
transformed vertices are divided byw and mapped onto the viewport.

General-Purpose Transformation Commands

This section discusses some OpenGL commands that you might find useful as you
specify desired transformations. You’ve already seen a couple of these commands,
glMatrixMode() and glLoadIdentity(). The other two commands described
here—glLoadMatrix*() and glMultMatrix*()—allow you to specify any transformation
matrix directly and then to multiply the current matrix by that specified matrix. More
specific transformation commands—such as gluLookAt() and glScale*()—are
described in later sections.

As described in the preceding section, you need to state whether you want to modify the
modelview or projection matrix before supplying a transformation command. You
choose the matrix with glMatrixMode(). When you use nested sets of OpenGL
commands that might be called repeatedly, remember to reset the matrix mode correctly.
(The glMatrixMode() command can also be used to indicate thetexture matrix; texturing
is discussed in detail in “The Texture Matrix Stack” in Chapter 9.)

void glMatrixMode(GLenummode);

Specifies whether the modelview, projection, or texture matrix will be modified, using
the argument GL_MODELVIEW, GL_PROJECTION, or GL_TEXTURE formode.
Subsequent transformation commands affect the specified matrix. Note that only one
matrix can be modified at a time. By default, the modelview matrix is the one that’s
modifiable, and all three matrices contain the identity matrix.

You use the glLoadIdentity() command to clear the currently modifiable matrix for
future transformation commands, since these commands modify the current matrix.
Typically, you always call this command before specifying projection or viewing
transformations, but you might also call it before specifying a modeling transformation.

Overview: The Camera Analogy 103

void glLoadIdentity(void);

Sets the currently modifiable matrix to the 4×4 identity matrix.

If you want to specify explicitly a particular matrix to be loaded as the current matrix,
use glLoadMatrix*(). Similarly, use glMultMatrix*() to multiply the current matrix by
the matrix passed in as an argument. The argument for both these commands is a vector
of sixteen values (m1, m2, ... ,m16) that specifies a matrix M as follows:

Remember that you might be able to maximize efficiency by using display lists to store
frequently used matrices (and their inverses) rather than recomputing them. (See
“Display-List Design Philosophy” in Chapter 7.) (OpenGL implementations often must
compute the inverse of the modelview matrix so that normals and clipping planes can be
correctly transformed to eye coordinates.)

Caution: If you’re programming in C and you declare a matrix asm[4][4], then the
elementm[i][j] is in theith column andjth row of the OpenGL
transformation matrix. This is the reverse of the standard C convention in
whichm[i][j] is in rowi and column j. To avoid confusion, you should
declare your matrices asm[16].

void glLoadMatrix{fd}(constTYPE *m);

Sets the sixteen values of the current matrix to those specified bym.

void glMultMatrix{fd}(const TYPE *m);

Multiplies the matrix specified by the sixteen values pointed to bym by the current
matrix and stores the result as the current matrix.

Note: All matrix multiplication with OpenGL occurs as follows: Suppose the current
matrix is C and the matrix specified with glMultMatrix*() or any of the
transformation commands is M. After multiplication, the final matrix is always
CM. Since matrix multiplication isn’t generally commutative, the order makes a
difference.

M =

m1 m5 m9 m13
m2 m6 m10 m14
m3 m7 m11 m15
m4 m8 m12 m16

104 Chapter 3: Viewing

Viewing and Modeling Transformations

Viewing and modeling transformations are inextricably related in OpenGL and are in
fact combined into a single modelview matrix. (See “A Simple Example: Drawing a
Cube.”) One of the toughest problems newcomers to computer graphics face is
understanding the effects of combined three-dimensional transformations. As you’ve
already seen, there are alternative ways to think about transformations—do you want to
move the camera in one direction, or move the object in the opposite direction? Each
way of thinking about transformations has advantages and disadvantages, but in some
cases one way more naturally matches the effect of the intended transformation. If you
can find a natural approach for your particular application, it’s easier to visualize the
necessary transformations and then write the corresponding code to specify the matrix
manipulations. The first part of this section discusses how to think about
transformations; later, specific commands are presented. For now, we use only the
matrix-manipulation commands you’ve already seen. Finally, keep in mind that you
must call glMatrixMode() with GL_MODELVIEW as its argument prior to performing
modeling or viewing transformations.

Thinking about Transformations

Let’s start with a simple case of two transformations: a 45-degree counterclockwise
rotation about the origin around thez-axis, and a translation down thex-axis. Suppose
that the object you’re drawing is small compared to the translation (so that you can see
the effect of the translation), and that it’s originally located at the origin. If you rotate the
object first and then translate it, the rotated object appears on thex-axis. If you translate
it down thex-axis first, however, and then rotate about the origin, the object is on the line
y=x, as shown in Figure 3-4. In general, the order of transformations is critical. If you
do transformation A and then transformation B, you almost always get something
different than if you do them in the opposite order.

Viewing and Modeling Transformations 105

Figure 3-4 Rotating First or Translating First

Now let’s talk about the order in which you specify a series of transformations. All
viewing and modeling transformations are represented as 4×4 matrices. Each successive
glMultMatrix*() or transformation command multiplies a new 4×4 matrix M by the
current modelview matrix C to yield CM. Finally, verticesv are multiplied by the current
modelview matrix. This process means that the last transformation command called in
your program is actually the first one applied to the vertices: CMv. Thus, one way of
looking at it is to say that you have to specify the matrices in the reverse order. Like
many other things, however, once you’ve gotten used to thinking about this correctly,
backward will seem like forward.

Consider the following code sequence, which draws a single point using three
transformations:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(N); /* apply transformation N */
glMultMatrixf(M); /* apply transformation M */
glMultMatrixf(L); /* apply transformation L */
glBegin(GL_POINTS);
glVertex3f(v); /* draw transformed vertex v */
glEnd();

With this code, the modelview matrix successively contains I, N, NM, and finally NML,
where I represents the identity matrix. The transformed vertex is NMLv. Thus, the vertex
transformation is N(M(Lv))—that is, v is multiplied first by L, the resulting Lv is
multiplied by M, and the resulting MLv is multiplied by N. Notice that the
transformations to vertex v effectively occur in the opposite order than they were
specified. (Actually, only a single multiplication of a vertex by the modelview matrix

x

z

y

x

z

y

Translate then RotateRotate then Translate

106 Chapter 3: Viewing

occurs; in this example, the N, M, and L matrices are already multiplied into a single
matrix before it’s applied to v.)

Grand, Fixed Coordinate System

Thus, if you like to think in terms of a grand, fixed coordinate system—in which matrix
multiplications affect the position, orientation, and scaling of your model—you have to
think of the multiplications as occurring in the opposite order from how they appear in
the code. Using the simple example shown on the left side of Figure 3-4 (a rotation about
the origin and a translation along thex-axis), if you want the object to appear on the axis
after the operations, the rotation must occur first, followed by the translation. To do this,
you’ll need to reverse the order of operations, so the code looks something like this
(where R is the rotation matrix and T is the translation matrix):

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(T); /* translation */
glMultMatrixf(R); /* rotation */
draw_the_object();

Moving a Local Coordinate System

Another way to view matrix multiplications is to forget about a grand, fixed coordinate
system in which your model is transformed and instead imagine that a local coordinate
system is tied to the object you’re drawing. All operations occur relative to this changing
coordinate system. With this approach, the matrix multiplications now appear in the
natural order in the code. (Regardless of which analogy you’re using, the code is the
same, but how you think about it differs.) To see this in the translation-rotation example,
begin by visualizing the object with a coordinate system tied to it. The translation
operation moves the object and its coordinate system down thex-axis. Then, the rotation
occurs about the (now-translated) origin, so the object rotates in place in its position on
the axis.

This approach is what you should use for applications such as articulated robot arms,
where there are joints at the shoulder, elbow, and wrist, and on each of the fingers. To
figure out where the tips of the fingers go relative to the body, you’d like to start at the
shoulder, go down to the wrist, and so on, applying the appropriate rotations and
translations at each joint. Thinking about it in reverse would be far more confusing.

This second approach can be problematic, however, in cases where scaling occurs, and
especially so when the scaling is nonuniform (scaling different amounts along the
different axes). After uniform scaling, translations move a vertex by a multiple of what
they did before, since the coordinate system is stretched. Nonuniform scaling mixed
with rotations may make the axes of the local coordinate system nonperpendicular.

Viewing and Modeling Transformations 107

As mentioned earlier, you normally issue viewing transformation commands in your
program before any modeling transformations. This way, a vertex in a model is first
transformed into the desired orientation and then transformed by the viewing operation.
Since the matrix multiplications must be specified in reverse order, the viewing
commands need to come first. Note, however, that you don’t need to specify either
viewing or modeling transformations if you’re satisfied with the default conditions. If
there’s no viewing transformation, the “camera” is left in the default position at the
origin, pointed toward the negativez-axis; if there’s no modeling transformation, the
model isn’t moved, and it retains its specified position, orientation, and size.

Since the commands for performing modeling transformations can be used to perform
viewing transformations, modeling transformations arediscussed first, even if viewing
transformations are actuallyissued first. This order for discussion also matches the way
many programmers think when planning their code: Often, they write all the code
necessary to compose the scene, which involves transformations to position and orient
objects correctly relative to each other. Next, they decide where they want the viewpoint
to be relative to the scene they’ve composed, and then they write the viewing
transformations accordingly.

Modeling Transformations

The three OpenGL routines for modeling transformations are glTranslate*(),
glRotate*(), and glScale*(). As you might suspect, these routines transform an object (or
coordinate system, if you’re thinking of it that way) by moving, rotating, stretching,
shrinking, or reflecting it. All three commands are equivalent to producing an
appropriate translation, rotation, or scaling matrix, and then calling glMultMatrix*()
with that matrix as the argument. However, these three routines might be faster than
using glMultMatrix*(). OpenGL automatically computes the matrices for you. (See
Appendix F if you’re interested in the details.)

In the command summaries that follow, each matrix multiplication is described in terms
of what it does to the vertices of a geometric object using the fixed coordinate system
approach, and in terms of what it does to the local coordinate system that’s attached to
an object.

Translate

void glTranslate{fd}(TYPE x, TYPE y, TYPE z);

Multiplies the current matrix by a matrix that moves (translates) an object by the
givenx, y, andz values (or moves the local coordinate system by the same amounts).

108 Chapter 3: Viewing

Figure 3-5 shows the effect of glTranslate*().

Figure 3-5 Translating an Object

Note that using (0.0, 0.0, 0.0) as the argument for glTranslate*() is the identity
operation—that is, it has no effect on an object or its local coordinate system.

Rotate

void glRotate{fd}(TYPEangle, TYPEx, TYPE y, TYPEz);

Multiplies the current matrix by a matrix that rotates an object (or the local coordinate
system) in a counterclockwise direction about the ray from the origin through the
point (x, y, z). Theangle parameter specifies the angle of rotation in degrees.

The effect of glRotatef(45.0, 0.0, 0.0, 1.0), which is a rotation of 45 degrees about the
z-axis, is shown in Figure 3-6.

y

x

z

Viewing and Modeling Transformations 109

Figure 3-6 Rotating an Object

Note that an object that lies farther from the axis of rotation is more dramatically rotated
(has a larger orbit) than an object drawn near the axis. Also, if theangle argument is zero,
the glRotate*() command has no effect.

Scale

void glScale{fd}(TYPE x, TYPE y, TYPE z);

Multiplies the current matrix by a matrix that stretches, shrinks, or reflects an object
along the axes. Eachx, y, and z coordinate of every point in the object is multiplied by
the corresponding argumentx, y, orz. With the local coordinate system approach, the
local coordinate axes are stretched, shrunk, or reflected by thex, y, andz factors, and
the associated object is transformed with them.

Figure 3-7 shows the effect of glScalef(2.0, -0.5, 1.0).

x

y

z

110 Chapter 3: Viewing

Figure 3-7 Scaling and Reflecting an Object

glScale*() is the only one of the three modeling transformations that changes the
apparent size of an object: Scaling with values greater than 1.0 stretches an object, and
using values less than 1.0 shrinks it. Scaling with a−1.0 value reflects an object across
an axis. The identity values for scaling are (1.0, 1.0, 1.0). In general, you should limit
your use of glScale*() to those cases where it is necessary. Using glScale*() decreases
the performance of lighting calculations, because the normal vectors have to be
renormalized after transformation.

Note: A scale value of zero collapses all object coordinates along that axis to zero. It’s
usually not a good idea to do this, because such an operation cannot be undone.
Mathematically speaking, the matrix cannot be inverted, and inverse matrices are
required for certain lighting operations. (See Chapter 5.) Sometimes collapsing
coordinates does make sense, however; the calculation of shadows on a planar
surface is a typical application. (See “Shadows” in Chapter 14.) In general, if a
coordinate system is to be collapsed, the projection matrix should be used rather
than the modelview matrix.

A Modeling Transformation Code Example

Example 3-2 is a portion of a program that renders a triangle four times, as shown in
Figure 3-8. These are the four transformed triangles.

• A solid wireframe triangle is drawn with no modeling transformation.

• The same triangle is drawn again, but with a dashed line stipple and translated (to
the left—along the negative x-axis).

• A triangle is drawn with a long dashed line stipple, with its height (y-axis) halved
and its width (x-axis) increased by 50%.

x

y

z

x

y

Viewing and Modeling Transformations 111

• A rotated triangle, made of dotted lines, is drawn.

Figure 3-8 Modeling Transformation Example

Example 3-2 Using Modeling Transformations: model.c

glLoadIdentity();
glColor3f(1.0, 1.0, 1.0);
draw_triangle(); /* solid lines */

glEnable(GL_LINE_STIPPLE); /* dashed lines */
glLineStipple(1, 0xF0F0);
glLoadIdentity();
glTranslatef(-20.0, 0.0, 0.0);
draw_triangle();

glLineStipple(1, 0xF00F); /*long dashed lines */
glLoadIdentity();
glScalef(1.5, 0.5, 1.0);
draw_triangle();

glLineStipple(1, 0x8888); /* dotted lines */
glLoadIdentity();
glRotatef (90.0, 0.0, 0.0, 1.0);
draw_triangle ();
glDisable (GL_LINE_STIPPLE);

Note the use of glLoadIdentity() to isolate the effects of modeling transformations;
initializing the matrix values prevents successive transformations from having a
cumulative effect. Even though using glLoadIdentity() repeatedly has the desired effect,
it may be inefficient, because you may have to respecify viewing or modeling
transformations. (See “Manipulating the Matrix Stacks” for a better way to isolate
transformations.)

Note: Sometimes, programmers who want a continuously rotating object attempt to
achieve this by repeatedly applying a rotation matrix that has small values. The
problem with this technique is that because of round-off errors, the product of
thousands of tiny rotations gradually drifts away from the value you really want
(it might even become something that isn’t a rotation). Instead of using this
technique, increment the angle and issue a new rotation command with the new
angle at each update step.

112 Chapter 3: Viewing

Viewing Transformations

A viewing transformation changes the position and orientation of the viewpoint. If you
recall the camera analogy, the viewing transformation positions the camera tripod,
pointing the camera toward the model. Just as you move the camera to some position
and rotate it until it points in the desired direction, viewing transformations are generally
composed of translations and rotations. Also remember that to achieve a certain scene
composition in the final image or photograph, you can either move the camera or move
all the objects in the opposite direction. Thus, a modeling transformation that rotates an
object counterclockwise is equivalent to a viewing transformation that rotates the
camera clockwise, for example. Finally, keep in mind that the viewing transformation
commands must be called before any modeling transformations are performed, so that
the modeling transformations take effect on the objects first.

You can manufacture a viewing transformation in any of several ways, as described next.
You can also choose to use the default location and orientation of the viewpoint, which
is at the origin, looking down the negative z-axis.

• Use one or more modeling transformation commands (that is, glTranslate*() and
glRotate*()). You can think of the effect of these transformations as moving the
camera position or as moving all the objects in the world, relative to a stationary
camera.

• Use the Utility Library routine gluLookAt() to define a line of sight. This routine
encapsulates a series of rotation and translation commands.

• Create your own utility routine that encapsulates rotations and translations. Some
applications might require custom routines that allow you to specify the viewing
transformation in a convenient way. For example, you might want to specify the
roll, pitch, and heading rotation angles of a plane in flight, or you might want to
specify a transformation in terms of polar coordinates for a camera that’s orbiting
around an object.

Using glTranslate*() and glRotate*()

When you use modeling transformation commands to emulate viewing transformations,
you’re trying to move the viewpoint in a desired way while keeping the objects in the
world stationary. Since the viewpoint is initially located at the origin and since objects
are often most easily constructed there as well (see Figure 3-9), in general you have to
perform some transformation so that the objects can be viewed. Note that, as shown in
the figure, the camera initially points down the negativez-axis. (You’re seeing the back
of the camera.)

Viewing and Modeling Transformations 113

Figure 3-9 Object and Viewpoint at the Origin

In the simplest case, you can move the viewpoint backward, away from the objects; this
has the same effect as moving the objects forward, or away from the viewpoint.
Remember that by default forward is down the negative z-axis; if you rotate the
viewpoint, forward has a different meaning. So, to put 5 units of distance between the
viewpoint and the objects by moving the viewpoint, as shown in Figure 3-10, use

glTranslatef(0.0, 0.0, -5.0);

This routine moves the objects in the scene -5 units along thez axis. This is also
equivalent to moving the camera +5 units along thez axis.

Figure 3-10 Separating the Viewpoint and the Object

y

x

z

y

x

z

y

x

z

114 Chapter 3: Viewing

Now suppose you want to view the objects from the side. Should you issue a rotate
command before or after the translate command? If you’re thinking in terms of a grand,
fixed coordinate system, first imagine both the object and the camera at the origin. You
could rotate the object first and then move it away from the camera so that the desired
side is visible. Since you know that with the fixed coordinate system approach,
commands have to be issued in the opposite order in which they should take effect, you
know that you need to write the translate command first in your code and follow it with
the rotate command.

Now let’s use the local coordinate system approach. In this case, think about moving the
object and its local coordinate system away from the origin; then, the rotate command
is carried out using the now-translated coordinate system. With this approach,
commands are issued in the order in which they’re applied, so once again the translate
command comes first. Thus, the sequence of transformation commands to produce the
desired result is

glTranslatef(0.0, 0.0, -5.0);
glRotatef(90.0, 0.0, 1.0, 0.0);

If you’re having trouble keeping track of the effect of successive matrix multiplications,
try using both the fixed and local coordinate system approaches and see whether one
makes more sense to you. Note that with the fixed coordinate system, rotations always
occur about the grand origin, whereas with the local coordinate system, rotations occur
about the origin of the local system. You might also try using the gluLookAt() utility
routine described in the next section.

Using the gluLookAt() Utility Routine

Often, programmers construct a scene around the origin or some other convenient
location, then they want to look at it from an arbitrary point to get a good view of it. As
its name suggests, the gluLookAt() utility routine is designed for just this purpose. It
takes three sets of arguments, which specify the location of the viewpoint, define a
reference point toward which the camera is aimed, and indicate which direction is up.
Choose the viewpoint to yield the desired view of the scene. The reference point is
typically somewhere in the middle of the scene. (If you’ve built your scene at the origin,
the reference point is probably the origin.) It might be a little trickier to specify the
correct up-vector. Again, if you’ve built some real-world scene at or around the origin
and if you’ve been taking the positivey-axis to point upward, then that’s your up-vector
for gluLookAt(). However, if you’re designing a flight simulator, up is the direction
perpendicular to the plane’s wings, from the plane toward the sky when the plane is
right-side up on the ground.

The gluLookAt() routine is particularly useful when you want to pan across a landscape,
for instance. With a viewing volume that’s symmetric in bothx andy, the (eyex, eyey,

Viewing and Modeling Transformations 115

eyez) point specified is always in the center of the image on the screen, so you can use a
series of commands to move this point slightly, thereby panning across the scene.

void gluLookAt(GLdoubleeyex, GLdoubleeyey, GLdoubleeyez, GLdoublecenterx,
GLdoublecentery, GLdoublecenterz, GLdoubleupx, GLdoubleupy, GLdoubleupz);

Defines a viewing matrix and multiplies it to the right of the current matrix. The
desired viewpoint is specified byeyex, eyey, andeyez. Thecenterx, centery, and
centerz arguments specify any point along the desired line of sight, but typically
they’re some point in the center of the scene being looked at. Theupx, upy, andupz
arguments indicate which direction is up (that is, the direction from the bottom to the
top of the viewing volume).

In the default position, the camera is at the origin, is looking down the negativez-axis,
and has the positivey-axis as straight up. This is the same as calling
gluLookat (0.0, 0.0, 0.0, 0.0, 0.0, -100.0, 0.0, 1.0, 0.0);

Thez value of the reference point is -100.0, but could be any negativez, because the line
of sight will remain the same. In this case, you don’t actually want to call gluLookAt(),
because this is the default (see Figure 3-11) and you are already there! (The lines
extending from the camera represent the viewing volume, which indicates its field of
view.)

Figure 3-11 Default Camera Position

Figure 3-12 shows the effect of a typical gluLookAt() routine. The camera position
(eyex, eyey, eyez) is at (4, 2, 1). In this case, the camera is looking right at the model, so
the reference point is at (2, 4, -3). An orientation vector of (2, 2, -1) is chosen to rotate
the viewpoint to this 45-degree angle.

y

x

z

up
vector

116 Chapter 3: Viewing

Figure 3-12 Using gluLookAt()

So, to achieve this effect, call

gluLookAt(4.0, 2.0, 1.0, 2.0, 4.0, -3.0, 2.0, 2.0, -1.0);

Note that gluLookAt() is part of the Utility Library rather than the basic OpenGL library.
This isn’t because it’s not useful, but because it encapsulates several basic OpenGL
commands—specifically, glTranslate*() and glRotate*(). To see this, imagine a camera
located at an arbitrary viewpoint and oriented according to a line of sight, both as
specified with gluLookAt() and a scene located at the origin. To “undo” what
gluLookAt() does, you need to transform the camera so that it sits at the origin and
points down the negativez-axis, the default position. A simple translate moves the
camera to the origin. You can easily imagine a series of rotations about each of the three
axes of a fixed coordinate system that would orient the camera so that it pointed toward
negativez values. Since OpenGL allows rotation about an arbitrary axis, you can
accomplish any desired rotation of the camera with a single glRotate*() command.

Note: You can have only one active viewing transformation. You cannot try to combine
the effects of two viewing transformations, any more than a camera can have two
tripods. If you want to change the position of the camera, make sure you call
glLoadIdentity() to wipe away the effects of any current viewing transformation.

Advanced

To transform any arbitrary vector so that it’s coincident with another arbitrary vector (for
instance, the negativez-axis), you need to do a little mathematics. The axis about which
you want to rotate is given by the cross product of the two normalized vectors. To find
the angle of rotation, normalize the initial two vectors. The cosine of the desired angle
between the vectors is equal to the dot product of the normalized vectors. The angle of
rotation around the axis given by the cross product is always between 0 and 180 degrees.
(See Appendix E for definitions of cross and dot products.)

y

x

upvector

z

Viewing and Modeling Transformations 117

Note that computing the angle between two normalized vectors by taking the inverse
cosine of their dot product is not very accurate, especially for small angles. But it should
work well enough to get you started.

Creating a Custom Utility Routine

Advanced

For some specialized applications, you might want to define your own transformation
routine. Since this is rarely done and in any case is a fairly advanced topic, it’s left
mostly as an exercise for the reader. The following exercises suggest two custom
viewing transformations that might be useful.

Try This

• Suppose you’re writing a flight simulator and you’d like to display the world from
the point of view of the pilot of a plane. The world is described in a coordinate
system with the origin on the runway and the plane at coordinates (x, y, z). Suppose
further that the plane has someroll, pitch, andheading (these are rotation angles of
the plane relative to its center of gravity).

Show that the following routine could serve as the viewing transformation:

void pilotView{GLdouble planex, GLdouble planey,
 GLdouble planez, GLdouble roll,
 GLdouble pitch, GLdouble heading)
{
 glRotated(roll, 0.0, 0.0, 1.0);
 glRotated(pitch, 0.0, 1.0, 0.0);
 glRotated(heading, 1.0, 0.0, 0.0);
 glTranslated(-planex, -planey, -planez);
}

• Suppose your application involves orbiting the camera around an object that’s
centered at the origin. In this case, you’d like to specify the viewing transformation
by using polar coordinates. Let thedistance variable define the radius of the orbit,
or how far the camera is from the origin. (Initially, the camera is moveddistance
units along the positivez-axis.) Theazimuth describes the angle of rotation of the
camera about the object in thex-y plane, measured from the positivey-axis.
Similarly, elevation is the angle of rotation of the camera in they-z plane,
measured from the positivez-axis. Finally,twist represents the rotation of the
viewing volume around its line of sight.

Show that the following routine could serve as the viewing transformation:

void polarView{GLdouble distance, GLdouble twist,
 GLdouble elevation, GLdouble azimuth)

{

118 Chapter 3: Viewing

 glTranslated(0.0, 0.0, -distance);
 glRotated(-twist, 0.0, 0.0, 1.0);
 glRotated(-elevation, 1.0, 0.0, 0.0);
 glRotated(azimuth, 0.0, 0.0, 1.0);
}

Projection Transformations

The previous section described how to compose the desired modelview matrix so that
the correct modeling and viewing transformations are applied. This section explains how
to define the desired projection matrix, which is also used to transform the vertices in
your scene. Before you issue any of the transformation commands described in this
section, remember to call

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

so that the commands affect the projection matrix rather than the modelview matrix and
so that you avoid compound projection transformations. Since each projection
transformation command completely describes a particular transformation, typically
you don’t want to combine a projection transformation with another transformation.

The purpose of the projection transformation is to define aviewing volume, which is
used in two ways. The viewing volume determines how an object is projected onto the
screen (that is, by using a perspective or an orthographic projection), and it defines
which objects or portions of objects are clipped out of the final image. You can think of
the viewpoint we’ve been talking about as existing at one end of the viewing volume. At
this point, you might want to reread “A Simple Example: Drawing a Cube” for its
overview of all the transformations, including projection transformations.

Perspective Projection

The most unmistakable characteristic of perspective projection is foreshortening: the
farther an object is from the camera, the smaller it appears in the final image. This occurs
because the viewing volume for a perspective projection is afrustum of a pyramid (a
truncated pyramid whose top has been cut off by a plane parallel to its base). Objects
that fall within the viewing volume are projected toward the apex of the pyramid, where
the camera or viewpoint is. Objects that are closer to the viewpoint appear larger because
they occupy a proportionally larger amount of the viewing volume than those that are
farther away, in the larger part of the frustum. This method of projection is commonly
used for animation, visual simulation, and any other applications that strive for some
degree of realism because it’s similar to how our eye (or a camera) works.

Projection Transformations 119

The command to define a frustum, glFrustum(), calculates a matrix that accomplishes
perspective projection and multiplies the current projection matrix (typically the identity
matrix) by it. Recall that the viewing volume is used to clip objects that lie outside of it;
the four sides of the frustum, its top, and its base correspond to the six clipping planes
of the viewing volume, as shown in Figure 3-13. Objects or parts of objects outside these
planes are clipped from the final image. Note that glFrustum() doesn’t require you to
define a symmetric viewing volume.

Figure 3-13 Perspective Viewing Volume Specified by glFrustum()

void glFrustum(GLdoubleleft, GLdoubleright, GLdoublebottom,
GLdoubletop, GLdoublenear, GLdoublefar);

Creates a matrix for a perspective-view frustum and multiplies the current matrix by
it. The frustum’s viewing volume is defined by the parameters: (left, bottom, -near)
and (right, top, -near) specify the (x, y, z) coordinates of the lower-left and
upper-right corners of the near clipping plane;near andfar give the distances from
the viewpoint to the near and far clipping planes. They should always be positive.

The frustum has a default orientation in three-dimensional space. You can perform
rotations or translations on the projection matrix to alter this orientation, but this is tricky
and nearly always avoidable.

left

right

bottom

top

near

far

frustum

120 Chapter 3: Viewing

Advanced

Also, the frustum doesn’t have to be symmetrical, and its axis isn’t necessarily aligned
with thez-axis. For example, you can use glFrustum() to draw a picture as if you were
looking through a rectangular window of a house, where the window was above and to
the right of you. Photographers use such a viewing volume to create false perspectives.
You might use it to have the hardware calculate images at much higher than normal
resolutions, perhaps for use on a printer. For example, if you want an image that has
twice the resolution of your screen, draw the same picture four times, each time using
the frustum to cover the entire screen with one-quarter of the image. After each quarter
of the image is rendered, you can read the pixels back to collect the data for the
higher-resolution image. (See Chapter 8 for more information about reading pixel data.)

Although it’s easy to understand conceptually, glFrustum() isn’t intuitive to use. Instead,
you might try the Utility Library routine gluPerspective(). This routine creates a viewing
volume of the same shape as glFrustum() does, but you specify it in a different way.
Rather than specifying corners of the near clipping plane, you specify the angle of the
field of view (Θ, or theta, in Figure 3-14) in the y direction and the aspect ratio of the
width to height (x/y). (For a square portion of the screen, the aspect ratio is 1.0.) These
two parameters are enough to determine an untruncated pyramid along the line of sight,
as shown in Figure 3-14. You also specify the distance between the viewpoint and the
near and far clipping planes, thereby truncating the pyramid. Note that gluPerspective()
is limited to creating frustums that are symmetric in both thex- andy-axes along the line
of sight, but this is usually what you want.

Figure 3-14 Perspective Viewing Volume Specified by gluPerspective()

Θ

fovy

w

h

aspect = w
h

near

far

Projection Transformations 121

void gluPerspective(GLdoublefovy, GLdoubleaspect,
 GLdoublenear, GLdoublefar);

Creates a matrix for a symmetric perspective-view frustum and multiplies the current
matrix by it.fovy is the angle of the field of view in thex-z plane; its value must be in
the range [0.0,180.0].aspect is the aspect ratio of the frustum, its width divided by its
height.near andfar values the distances between the viewpoint and the clipping
planes, along the negativez-axis. They should always be positive.

Just as with glFrustum(), you can apply rotations or translations to change the default
orientation of the viewing volume created by gluPerspective(). With no such
transformations, the viewpoint remains at the origin, and the line of sight points down
the negativez-axis.

With gluPerspective(), you need to pick appropriate values for the field of view, or the
image may look distorted. For example, suppose you’re drawing to the entire screen,
which happens to be 11 inches high. If you choose a field of view of 90 degrees, your
eye has to be about 7.8 inches from the screen for the image to appear undistorted. (This
is the distance that makes the screen subtend 90 degrees.) If your eye is farther from the
screen, as it usually is, the perspective doesn’t look right. If your drawing area occupies
less than the full screen, your eye has to be even closer. To get a perfect field of view,
figure out how far your eye normally is from the screen and how big the window is, and
calculate the angle the window subtends at that size and distance. It’s probably smaller
than you would guess. Another way to think about it is that a 94-degree field of view
with a 35-millimeter camera requires a 20-millimeter lens, which is a very wide-angle
lens. (See “Troubleshooting Transformations” for more details on how to calculate the
desired field of view.)

The preceding paragraph mentions inches and millimeters—do these really have
anything to do with OpenGL? The answer is, in a word, no. The projection and other
transformations are inherently unitless. If you want to think of the near and far clipping
planes as located at 1.0 and 20.0 meters, inches, kilometers, or leagues, it’s up to you.
The only rule is that you have to use a consistent unit of measurement. Then the resulting
image is drawn to scale.

Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular parallelepiped, or
more informally, a box (see Figure 3-15). Unlike perspective projection, the size of the
viewing volume doesn’t change from one end to the other, so distance from the camera
doesn’t affect how large an object appears. This type of projection is used for
applications such as creating architectural blueprints and computer-aided design, where

122 Chapter 3: Viewing

it’s crucial to maintain the actual sizes of objects and angles between them as they’re
projected.

Figure 3-15 Orthographic Viewing Volume

The command glOrtho() creates an orthographic parallel viewing volume. As with
glFrustum(), you specify the corners of the near clipping plane and the distance to the
far clipping plane.

void glOrtho(GLdoubleleft, GLdoubleright, GLdoublebottom,
GLdouble top, GLdouble near, GLdoublefar);

Creates a matrix for an orthographic parallel viewing volume and multiplies the
current matrix by it. (left, bottom, -near) and (right, top, -near) are points on the near
clipping plane that are mapped to the lower-left and upper-right corners of the
viewport window, respectively. (left, bottom, -far) and (right, top, -far) are points on
the far clipping plane that are mapped to the same respective corners of the viewport.
Bothnear andfar can be positive or negative.

With no other transformations, the direction of projection is parallel to thez-axis, and
the viewpoint faces toward the negative z-axis. Note that this means that the values
passed in forfar andnear are used as negative z values if these planes are in front of the
viewpoint, and positive if they’re behind the viewpoint.

For the special case of projecting a two-dimensional image onto a two-dimensional
screen, use the Utility Library routine gluOrtho2D(). This routine is identical to the
three-dimensional version, glOrtho(), except that all thez coordinates for objects in the
scene are assumed to lie between−1.0 and 1.0. If you’re drawing two-dimensional
objects using the two-dimensional vertex commands, all thez coordinates are zero; thus,
none of the objects are clipped because of theirz values.

left

right

bottom

top

near far

toward
the

viewpoint

viewing volume

Viewport Transformation 123

void gluOrtho2D(GLdoubleleft, GLdoubleright,
 GLdoublebottom, GLdoubletop);

Creates a matrix for projecting two-dimensional coordinates onto the screen and
multiplies the current projection matrix by it. The clipping region is a rectangle with
the lower-left corner at (left, bottom) and the upper-right corner at (right, top).

Viewing Volume Clipping

After the vertices of the objects in the scene have been transformed by the modelview
and projection matrices, any primitives that lie outside the viewing volume are clipped.
The six clipping planes used are those that define the sides and ends of the viewing
volume. You can specify additional clipping planes and locate them wherever you
choose. (See “Additional Clipping Planes” for information about this relatively
advanced topic.) Keep in mind that OpenGL reconstructs the edges of polygons that get
clipped.

Viewport Transformation

Recalling the camera analogy, you know that the viewport transformation corresponds
to the stage where the size of the developed photograph is chosen. Do you want a
wallet-size or a poster-size photograph? Since this is computer graphics, the viewport is
the rectangular region of the window where the image is drawn. Figure 3-16 shows a
viewport that occupies most of the screen. The viewport is measured in window
coordinates, which reflect the position of pixels on the screen relative to the lower-left
corner of the window. Keep in mind that all vertices have been transformed by the
modelview and projection matrices by this point, and vertices outside the viewing
volume have been clipped.

Figure 3-16 Viewport Rectangle

124 Chapter 3: Viewing

Defining the Viewport

The window system, not OpenGL, is responsible for opening a window on the screen.
However, by default the viewport is set to the entire pixel rectangle of the window that’s
opened. You use the glViewport() command to choose a smaller drawing region; for
example, you can subdivide the window to create a split-screen effect for multiple views
in the same window.

void glViewport(GLintx, GLint y, GLsizeiwidth, GLsizeiheight);

Defines a pixel rectangle in the window into which the final image is mapped. The (x,
y) parameter specifies the lower-left corner of the viewport, andwidth andheight are
the size of the viewport rectangle. By default, the initial viewport values are (0, 0,
winWidth, winHeight), wherewinWidth andwinHeight are the size of the window.

The aspect ratio of a viewport should generally equal the aspect ratio of the viewing
volume. If the two ratios are different, the projected image will be distorted when
mapped to the viewport, as shown in Figure 3-17. Note that subsequent changes to the
size of the window don’t explicitly affect the viewport. Your application should detect
window resize events and modify the viewport appropriately.

Figure 3-17 Mapping the Viewing Volume to the Viewport

In Figure 3-17, the left figure shows a projection that maps a square image onto a square
viewport using these routines:

undistorted distorted

Viewport Transformation 125

gluPerspective(fovy, 1.0, near, far);
glViewport(0, 0, 400, 400);

However, in the right figure, the window has been resized to a nonequilateral rectangular
viewport, but the projection is unchanged. The image appears compressed along the
x-axis.

gluPerspective(fovy, 1.0, near, far);
glViewport (0, 0, 400, 200);

To avoid the distortion, modify the aspect ratio of the projection to match the viewport:

gluPerspective(fovy, 2.0, near, far);
glViewport(0, 0, 400, 200);

Try This

Modify an existing program so that an object is drawn twice, in different viewports. You
might draw the object with different projection and/or viewing transformations for each
viewport. To create two side-by-side viewports, you might issue these commands, along
with the appropriate modeling, viewing, and projection transformations:

glViewport (0, 0, sizex/2, sizey);
 .
 .
 .
glViewport (sizex/2, 0, sizex/2, sizey);

The Transformed Depth Coordinate

The depth (z) coordinate is encoded during the viewport transformation (and later stored
in the depth buffer). You can scalez values to lie within a desired range with the
glDepthRange() command. (Chapter 10 discusses the depth buffer and the
corresponding uses for the depth coordinate.) Unlikex andy window coordinates,z
window coordinates are treated by OpenGL as though they always range from 0.0 to 1.0.

void glDepthRange(GLclampdnear, GLclampdfar);

Defines an encoding forz coordinates that’s performed during the viewport
transformation. Thenear andfar values represent adjustments to the minimum and
maximum values that can be stored in the depth buffer. By default, they’re 0.0 and
1.0, respectively, which work for most applications. These parameters are clamped to
lie within [0,1].

126 Chapter 3: Viewing

In perspective projection, the transformed depth coordinate (like thex andy coordinates)
is subject to perspective division by thew coordinate. As the transformed depth
coordinate moves farther away from the near clipping plane, its location becomes
increasingly less precise. (See Figure 3-18.)

Figure 3-18 Perspective Projection and Transformed Depth Coordinates

Therefore, perspective division affects the accuracy of operations which rely upon the
transformed depth coordinate, especially depth-buffering, which is used for hidden
surface removal.

Troubleshooting Transformations

It’s pretty easy to get a camera pointed in the right direction, but in computer graphics,
you have to specify position and direction with coordinates and angles. As we can attest,
it’s all too easy to achieve the well-known black-screen effect. Although any number of
things can go wrong, often you get this effect—which results in absolutely nothing being
drawn in the window you open on the screen—from incorrectly aiming the “camera”
and taking a picture with the model behind you. A similar problem arises if you don’t
choose a field of view that’s wide enough to view your objects but narrow enough so they
appear reasonably large.

If you find yourself exerting great programming effort only to create a black window, try
these diagnostic steps.

depth coordinate spacing

Troubleshooting Transformations 127

1. Check the obvious possibilities. Make sure your system is plugged in. Make sure
you’re drawing your objects with a color that’s different from the color with which
you’re clearing the screen. Make sure that whatever states you’re using (such as
lighting, texturing, alpha blending, logical operations, or antialiasing) are correctly
turned on or off, as desired.

2. Remember that with the projection commands, the near and far coordinates
measure distance from the viewpoint and that (by default) you’re looking down the
negativez axis. Thus, if the near value is 1.0 and the far 3.0, objects must havez
coordinates between−1.0 and−3.0 in order to be visible. To ensure that you
haven’t clipped everything out of your scene, temporarily set the near and far
clipping planes to some absurdly inclusive values, such as 0.001 and 1000000.0.
This alters appearance for operations such as depth-buffering and fog, but it might
uncover inadvertently clipped objects.

3. Determine where the viewpoint is, in which direction you’re looking, and where
your objects are. It might help to create a real three-dimensional space—using
your hands, for instance—to figure these things out.

4. Make sure you know where you’re rotating about. You might be rotating about
some arbitrary location unless you translated back to the origin first. It’s OK to
rotate about any point unless you’re expecting to rotate about the origin.

5. Check your aim. Use gluLookAt() to aim the viewing volume at your objects. Or
draw your objects at or near the origin, and use glTranslate*() as a viewing
transformation to move the camera far enough in thez direction only so that the
objects fall within the viewing volume. Once you’ve managed to make your
objects visible, try to change the viewing volume incrementally to achieve the
exact result you want, as described next.

Even after you’ve aimed the camera in the correct direction and you can see your
objects, they might appear too small or too large. If you’re using gluPerspective(), you
might need to alter the angle defining the field of view by changing the value of the first
parameter for this command. You can use trigonometry to calculate the desired field of
view given the size of the object and its distance from the viewpoint: The tangent of half
the desired angle is half the size of the object divided by the distance to the object (see
Figure 3-19). Thus, you can use an arctangent routine to compute half the desired angle.
Example 3-3 assumes such a routine, atan2(), which calculates the arctangent given the
length of the opposite and adjacent sides of a right triangle. This result then needs to be
converted from radians to degrees.

128 Chapter 3: Viewing

Figure 3-19 Using Trigonometry to Calculate the Field of View

ΘΘ
2

Distance

S
iz

e

Troubleshooting Transformations 129

Example 3-3 Calculating Field of View

#define PI 3.1415926535

double calculateAngle(double size, double distance)
{
 double radtheta, degtheta;

 radtheta = 2.0 * atan2 (size/2.0, distance);
 degtheta = (180.0 * radtheta) / PI;
 return (degtheta);
}

Of course, typically you don’t know the exact size of an object, and the distance can only
be determined between the viewpoint and a single point in your scene. To obtain a fairly
good approximate value, find the bounding box for your scene by determining the
maximum and minimumx, y, andz coordinates of all the objects in your scene. Then
calculate the radius of a bounding sphere for that box, and use the center of the sphere
to determine the distance and the radius to determine the size.

For example, suppose all the coordinates in your object satisfy the equations -1≤ x ≤ 3,
5 ≤ y ≤ 7, and -5≤ z ≤ 5. Then the center of the bounding box is (1, 6, 0), and the radius
of a bounding sphere is the distance from the center of the box to any corner—say (3, 7,
5)—or

If the viewpoint is at (8, 9, 10), the distance between it and the center is

The tangent of the half angle is 5.477 divided by 12.570, which equals 0.4357, so the
half angle is 23.54 degrees.

Remember that the field-of-view angle affects the optimal position for the viewpoint, if
you’re trying to achieve a realistic image. For example, if your calculations indicate that
you need a 179-degree field of view, the viewpoint must be a fraction of an inch from
the screen to achieve realism. If your calculated field of view is too large, you might need
to move the viewpoint farther away from the object.

(3-1)2 + (7 - 6)2 + (5 - 0)2 = 30 = 5.477

(8-1)2 + (9 - 6)2 + (10 - 0)2 = 158 = 12.570

130 Chapter 3: Viewing

Manipulating the Matrix Stacks

The modelview and projection matrices you’ve been creating, loading, and multiplying
have only been the visible tips of their respective icebergs. Each of these matrices is
actually the topmost member of a stack of matrices (see Figure 3-20).

Figure 3-20 Modelview and Projection Matrix Stacks

A stack of matrices is useful for constructing hierarchical models, in which complicated
objects are constructed from simpler ones. For example, suppose you’re drawing an
automobile that has four wheels, each of which is attached to the car with five bolts. You
have a single routine to draw a wheel and another to draw a bolt, since all the wheels and
all the bolts look the same. These routines draw a wheel or a bolt in some convenient
position and orientation, say centered at the origin with its axis coincident with thez
axis. When you draw the car, including the wheels and bolts, you want to call the
wheel-drawing routine four times with different transformations in effect each time to
position the wheels correctly. As you draw each wheel, you want to draw the bolts five
times, each time translated appropriately relative to the wheel.

Suppose for a minute that all you have to do is draw the car body and the wheels. The
English description of what you want to do might be something like this:

• Draw the car body. Remember where you are, and translate to the right front
wheel. Draw the wheel and throw away the last translation so your current position
is back at the origin of the car body. Remember where you are, and translate to the
left front wheel....

Similarly, for each wheel, you want to draw the wheel, remember where you are, and
successively translate to each of the positions that bolts are drawn, throwing away the
transformations after each bolt is drawn.

Since the transformations are stored as matrices, a matrix stack provides an ideal
mechanism for doing this sort of successive remembering, translating, and throwing
away. All the matrix operations that have been described so far (glLoadMatrix(),

...
modelview
matrix stack
(32 4×4 matrices)

a b c d
e f g h
i j k l

m n o p

a b c d
e f g h
i j k l

m n o p

q p o n
m l k j
i h g f
e d c b

projection
matrix stack
(2 4×4 matrices)

Manipulating the Matrix Stacks 131

glMultMatrix(), glLoadIdentity() and the commands that create specific transformation
matrices) deal with the current matrix, or the top matrix on the stack. You can control
which matrix is on top with the commands that perform stack operations:
glPushMatrix(), which copies the current matrix and adds the copy to the top of the
stack, and glPopMatrix(), which discards the top matrix on the stack, as shown in
Figure 3-21. (Remember that the current matrix is always the matrix on the top.) In
effect, glPushMatrix() means “remember where you are” and glPopMatrix() means “go
back to where you were.”

Figure 3-21 Pushing and Popping the Matrix Stack

void glPushMatrix(void);

Pushes all matrices in the current stack down one level. The current stack is
determined by glMatrixMode(). The topmost matrix is copied, so its contents are
duplicated in both the top and second-from-the-top matrix. If too many matrices are
pushed, an error is generated.

void glPopMatrix(void);

Pops the top matrix off the stack, destroying the contents of the popped matrix. What
was the second-from-the-top matrix becomes the top matrix. The current stack is
determined by glMatrixMode(). If the stack contains a single matrix, calling
glPopMatrix() generates an error.

Example 3-4 draws an automobile, assuming the existence of routines that draw the car
body, a wheel, and a bolt.

Example 3-4 Pushing and Popping the Matrix

draw_wheel_and_bolts()
{
 long i;

a b c d
e f g h
i j k l

m n o p

a b c d
e f g h
i j k l

m n o p

132 Chapter 3: Viewing

 draw_wheel();
 for(i=0;i<5;i++){
 glPushMatrix();
 glRotatef(72.0*i,0.0,0.0,1.0);
 glTranslatef(3.0,0.0,0.0);
 draw_bolt();
 glPopMatrix();
 }
}

draw_body_and_wheel_and_bolts()
{
 draw_car_body();
 glPushMatrix();
 glTranslatef(40,0,30); /*move to first wheel position*/
 draw_wheel_and_bolts();
 glPopMatrix();
 glPushMatrix();
 glTranslatef(40,0,-30); /*move to 2nd wheel position*/
 draw_wheel_and_bolts();
 glPopMatrix();
 ... /*draw last two wheels similarly*/
}

This code assumes the wheel and bolt axes are coincident with thez-axis, that the bolts
are evenly spaced every 72 degrees, 3 units (maybe inches) from the center of the wheel,
and that the front wheels are 40 units in front of and 30 units to the right and left of the
car’s origin.

A stack is more efficient than an individual matrix, especially if the stack is implemented
in hardware. When you push a matrix, you don’t need to copy the current data back to
the main process, and the hardware may be able to copy more than one element of the
matrix at a time. Sometimes you might want to keep an identity matrix at the bottom of
the stack so that you don’t need to call glLoadIdentity() repeatedly.

The Modelview Matrix Stack

As you’ve seen earlier in “Viewing and Modeling Transformations,” the modelview
matrix contains the cumulative product of multiplying viewing and modeling
transformation matrices. Each viewing or modeling transformation creates a new matrix
that multiplies the current modelview matrix; the result, which becomes the new current
matrix, represents the composite transformation. The modelview matrix stack contains
at least thirty-two 4×4 matrices; initially, the topmost matrix is the identity matrix. Some
implementations of OpenGL may support more than thirty-two matrices on the stack. To

Additional Clipping Planes 133

find the maximum allowable number of matrices, you can use the query command
glGetIntegerv(GL_MAX_MODELVIEW_STACK_DEPTH, GLint *params).

The Projection Matrix Stack

The projection matrix contains a matrix for the projection transformation, which
describes the viewing volume. Generally, you don’t want to compose projection
matrices, so you issue glLoadIdentity() before performing a projection transformation.
Also for this reason, the projection matrix stack need be only two levels deep; some
OpenGL implementations may allow more than two 4×4 matrices. To find the stack
depth, call glGetIntegerv(GL_MAX_PROJECTION_STACK_DEPTH, GLint
*params).

One use for a second matrix in the stack would be an application that needs to display a
help window with text in it, in addition to its normal window showing a
three-dimensional scene. Since text is most easily positioned with an orthographic
projection, you could change temporarily to an orthographic projection, display the
help, and then return to your previous projection:

glMatrixMode(GL_PROJECTION);
glPushMatrix(); /*save the current projection*/
 glLoadIdentity();
 glOrtho(...); /*set up for displaying help*/
 display_the_help();
glPopMatrix();

Note that you’d probably have to also change the modelview matrix appropriately.

Advanced

If you know enough mathematics, you can create custom projection matrices that
perform arbitrary projective transformations. For example, the OpenGL and its Utility
Library have no built-in mechanism for two-point perspective. If you were trying to
emulate the drawings in drafting texts, you might need such a projection matrix.

Additional Clipping Planes

In addition to the six clipping planes of the viewing volume (left, right, bottom, top, near,
and far), you can define up to six additional clipping planes to further restrict the viewing
volume, as shown in Figure 3-22. This is useful for removing extraneous objects in a
scene—for example, if you want to display a cutaway view of an object.

134 Chapter 3: Viewing

Each plane is specified by the coefficients of its equation: Ax+By+Cz+D = 0. The
clipping planes are automatically transformed appropriately by modeling and viewing
transformations. The clipping volume becomes the intersection of the viewing volume
and allhalf-spaces defined by the additional clipping planes. Remember that polygons
that get clipped automatically have their edges reconstructed appropriately by OpenGL.

Figure 3-22 Additional Clipping Planes and the Viewing Volume

void glClipPlane(GLenumplane, const GLdouble*equation);

Defines a clipping plane. Theequation argument points to the four coefficients of the
plane equation, Ax+By+Cz+D = 0. All points with eye coordinates (xe, ye, ze, we) that
satisfy (A B C D)M-1 (xe ye ze we)

T >= 0 lie in the half-space defined by the plane,
where M is the current modelview matrix at the time glClipPlane() is called. All
points not in this half-space are clipped away. Theplane argument is
GL_CLIP_PLANEi, wherei is an integer specifying which of the available clipping
planes to define.i is a number between 0 and one less than the maximum number of
additional clipping planes.

You need to enable each additional clipping plane you define:

glEnable(GL_CLIP_PLANE i);

You can disable a plane with

glDisable(GL_CLIP_PLANE i);

All implementations of OpenGL must support at least six additional clipping planes,
although some implementations may allow more. You can use glGetIntegerv() with
GL_MAX_CLIP_PLANES to find how many clipping planes are supported.

Additional Clipping Planes 135

Note: Clipping performed as a result of glClipPlane() is done in eye coordinates, not in
clip coordinates. This difference is noticeable if the projection matrix is singular
(that is, a real projection matrix that flattens three-dimensional coordinates to
two-dimensional ones). Clipping performed in eye coordinates continues to take
place in three dimensions even when the projection matrix is singular.

A Clipping Plane Code Example

Example 3-5 renders a wireframe sphere with two clipping planes that slice away
three-quarters of the original sphere, as shown in Figure 3-23.

Figure 3-23 Clipped Wireframe Sphere

Example 3-5 Wireframe Sphere with Two Clipping Planes: clip.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 GLdouble eqn[4] = {0.0, 1.0, 0.0, 0.0};
 GLdouble eqn2[4] = {1.0, 0.0, 0.0, 0.0};

 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);
 glPushMatrix();
 glTranslatef (0.0, 0.0, -5.0);

/* clip lower half -- y < 0 */
 glClipPlane (GL_CLIP_PLANE0, eqn);

136 Chapter 3: Viewing

 glEnable (GL_CLIP_PLANE0);
/* clip left half -- x < 0 */
 glClipPlane (GL_CLIP_PLANE1, eqn2);
 glEnable (GL_CLIP_PLANE1);

 glRotatef (90.0, 1.0, 0.0, 0.0);
 glutWireSphere(1.0, 20, 16);
 glPopMatrix();
 glFlush ();
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
 glMatrixMode (GL_MODELVIEW);
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMainLoop();
 return 0;
}

Try This

• Try changing the coefficients that describe the clipping planes in Example 3-5.

• Try calling a modeling transformation, such as glRotate*(), to affect glClipPlane().
Make the clipping plane move independently of the objects in the scene.

Examples of Composing Several Transformations 137

Examples of Composing Several Transformations

This section demonstrates how to combine several transformations to achieve a
particular result. The two examples discussed are a solar system, in which objects need
to rotate on their axes as well as in orbit around each other, and a robot arm, which has
several joints that effectively transform coordinate systems as they move relative to each
other.

Building a Solar System

The program described in this section draws a simple solar system with a planet and a
sun, both using the same sphere-drawing routine. To write this program, you need to use
glRotate*() for the revolution of the planet around the sun and for the rotation of the
planet around its own axis. You also need glTranslate*() to move the planet out to its
orbit, away from the origin of the solar system. Remember that you can specify the
desired size of the two spheres by supplying the appropriate arguments for the
glutWireSphere() routine.

To draw the solar system, you first want to set up a projection and a viewing
transformation. For this example, gluPerspective() and gluLookAt() are used.

Drawing the sun is straightforward, since it should be located at the origin of the grand,
fixed coordinate system, which is where the sphere routine places it. Thus, drawing the
sun doesn’t require translation; you can use glRotate*() to make the sun rotate about an
arbitrary axis. To draw a planet rotating around the sun, as shown in Figure 3-24,
requires several modeling transformations. The planet needs to rotate about its own axis
once a day. And once a year, the planet completes one revolution around the sun.

Figure 3-24 Planet and Sun

To determine the order of modeling transformations, visualize what happens to the local
coordinate system. An initial glRotate*() rotates the local coordinate system that
initially coincides with the grand coordinate system. Next, glTranslate*() moves the
local coordinate system to a position on the planet’s orbit; the distance moved should

Translate

Revolve (Year)

Rotate (Day)

sun

planet

138 Chapter 3: Viewing

equal the radius of the orbit. Thus, the initial glRotate*() actually determines where
along the orbit the planet is (or what time of year it is).

A second glRotate*() rotates the local coordinate system around the local axes, thus
determining the time of day for the planet. Once you’ve issued all these transformation
commands, the planet can be drawn.

In summary, these are the OpenGL commands to draw the sun and planet; the full
program is shown in Example 3-6.

glPushMatrix();
glutWireSphere(1.0, 20, 16); /* draw sun */
glRotatef ((GLfloat) year, 0.0, 1.0, 0.0);
glTranslatef (2.0, 0.0, 0.0);
glRotatef ((GLfloat) day, 0.0, 1.0, 0.0);
glutWireSphere(0.2, 10, 8); /* draw smaller planet */
glPopMatrix();

Example 3-6 Planetary System: planet.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

static int year = 0, day = 0;

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);

 glPushMatrix();
 glutWireSphere(1.0, 20, 16); /* draw sun */
 glRotatef ((GLfloat) year, 0.0, 1.0, 0.0);
 glTranslatef (2.0, 0.0, 0.0);
 glRotatef ((GLfloat) day, 0.0, 1.0, 0.0);
 glutWireSphere(0.2, 10, 8); /* draw smaller planet */
 glPopMatrix();
 glutSwapBuffers();
}

Examples of Composing Several Transformations 139

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
}

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {
 case ‘d’:
 day = (day + 10) % 360;
 glutPostRedisplay();
 break;
 case ‘D’:
 day = (day - 10) % 360;
 glutPostRedisplay();
 break;
 case ‘y’:
 year = (year + 5) % 360;
 glutPostRedisplay();
 break;
 case ‘Y’:
 year = (year - 5) % 360;
 glutPostRedisplay();
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMainLoop();

140 Chapter 3: Viewing

 return 0;
}

Try This

• Try adding a moon to the planet. Or try several moons and additional planets. Hint:
Use glPushMatrix() and glPopMatrix() to save and restore the position and
orientation of the coordinate system at appropriate moments. If you’re going to
draw several moons around a planet, you need to save the coordinate system prior
to positioning each moon and restore the coordinate system after each moon is
drawn.

• Try tilting the planet’s axis.

Building an Articulated Robot Arm

This section discusses a program that creates an articulated robot arm with two or more
segments. The arm should be connected with pivot points at the shoulder, elbow, or other
joints. Figure 3-25 shows a single joint of such an arm.

Figure 3-25 Robot Arm

You can use a scaled cube as a segment of the robot arm, but first you must call the
appropriate modeling transformations to orient each segment. Since the origin of the
local coordinate system is initially at the center of the cube, you need to move the local
coordinate system to one edge of the cube. Otherwise, the cube rotates about its center
rather than the pivot point.

After you call glTranslate*() to establish the pivot point and glRotate*() to pivot the
cube, translate back to the center of the cube. Then the cube is scaled (flattened and
widened) before it is drawn. The glPushMatrix() and glPopMatrix() restrict the effect of
glScale*(). Here’s what your code might look like for this first segment of the arm (the
entire program is shown in Example 3-7):

glTranslatef (-1.0, 0.0, 0.0);
glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);

Examples of Composing Several Transformations 141

glPushMatrix();
glScalef (2.0, 0.4, 1.0);
glutWireCube (1.0);
glPopMatrix();

To build a second segment, you need to move the local coordinate system to the next
pivot point. Since the coordinate system has previously been rotated, thex-axis is
already oriented along the length of the rotated arm. Therefore, translating along the
x-axis moves the local coordinate system to the next pivot point. Once it’s at that pivot
point, you can use the same code to draw the second segment as you used for the first
one. This can be continued for an indefinite number of segments (shoulder, elbow, wrist,
fingers).

glTranslatef (1.0, 0.0, 0.0);
glRotatef ((GLfloat) elbow, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);
glPushMatrix();
glScalef (2.0, 0.4, 1.0);
glutWireCube (1.0);
glPopMatrix();

Example 3-7 Robot Arm: robot.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

static int shoulder = 0, elbow = 0;

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glPushMatrix();
 glTranslatef (-1.0, 0.0, 0.0);
 glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
 glTranslatef (1.0, 0.0, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glutWireCube (1.0);
 glPopMatrix();

142 Chapter 3: Viewing

 glTranslatef (1.0, 0.0, 0.0);
 glRotatef ((GLfloat) elbow, 0.0, 0.0, 1.0);
 glTranslatef (1.0, 0.0, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glutWireCube (1.0);
 glPopMatrix();

 glPopMatrix();
 glutSwapBuffers();
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(65.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (0.0, 0.0, -5.0);
}

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {
 case ‘s’: /* s key rotates at shoulder */
 shoulder = (shoulder + 5) % 360;
 glutPostRedisplay();
 break;
 case ‘S’:
 shoulder = (shoulder - 5) % 360;
 glutPostRedisplay();
 break;
 case ‘e’: /* e key rotates at elbow */
 elbow = (elbow + 5) % 360;
 glutPostRedisplay();
 break;
 case ‘E’:
 elbow = (elbow - 5) % 360;
 glutPostRedisplay();
 break;
 default:
 break;
 }
}

Reversing or Mimicking Transformations 143

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMainLoop();
 return 0;
}

Try This

• Modify Example 3-7 to add additional segments onto the robot arm.

• Modify Example 3-7 to add additional segments at the same position. For
example, give the robot arm several “fingers” at the wrist, as shown in Figure 3-26.
Hint: Use glPushMatrix() and glPopMatrix() to save and restore the position and
orientation of the coordinate system at the wrist. If you’re going to draw fingers at
the wrist, you need to save the current matrix prior to positioning each finger and
restore the current matrix after each finger is drawn.

Figure 3-26 Robot Arm with Fingers

Reversing or Mimicking Transformations

The geometric processing pipeline is very good at using viewing and projection matrices
and a viewport for clipping to transform the world (or object) coordinates of a vertex into
window (or screen) coordinates. However, there are situations in which you want to

144 Chapter 3: Viewing

reverse that process. A common situation is when an application user utilizes the mouse
to choose a location in three dimensions. The mouse returns only a two-dimensional
value, which is the screen location of the cursor. Therefore, the application will have to
reverse the transformation process to determine from where in three-dimensional space
this screen location originated.

The Utility Library routine gluUnProject() performs this reversal of the transformations.
Given the three-dimensional window coordinates for a location and all the
transformations that affected them, gluUnProject() returns the world coordinates from
where it originated.

int gluUnProject(GLdoublewinx, GLdoublewiny, GLdoublewinz, const GLdouble
modelMatrix[16],const GLdoubleprojMatrix[16], const GLintviewport[4],
GLdouble*objx, GLdouble*objy, GLdouble*objz);

Map the specified window coordinates (winx, winy, winz) into object coordinates,
using transformations defined by a modelview matrix (modelMatrix), projection
matrix (projMatrix), and viewport (viewport). The resulting object coordinates are
returned inobjx, objy, andobjz. The function returns GL_TRUE, indicating success,
or GL_FALSE, indicating failure (such as an noninvertible matrix). This operation
does not attempt to clip the coordinates to the viewport or eliminate depth values that
fall outside of glDepthRange().

There are inherent difficulties in trying to reverse the transformation process. A
two-dimensional screen location could have originated from anywhere on an entire line
in three-dimensional space. To disambiguate the result, gluUnProject() requires that a
window depth coordinate (winz) be provided and thatwinz be specified in terms of
glDepthRange(). For the default values of glDepthRange(),winzat 0.0 will request the
world coordinates of the transformed point at the near clipping plane, whilewinz at 1.0
will request the point at the far clipping plane.

Example 3-8 demonstrates gluUnProject() by reading the mouse position and
determining the three-dimensional points at the near and far clipping planes from which
it was transformed. The computed world coordinates are printed to standard output, but
the rendered window itself is just black.

Example 3-8 Reversing the Geometric Processing Pipeline: unproject.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

Reversing or Mimicking Transformations 145

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glFlush();
}

void reshape(int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective (45.0, (GLfloat) w/(GLfloat) h, 1.0, 100.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void mouse(int button, int state, int x, int y)
{
 GLint viewport[4];
 GLdouble mvmatrix[16], projmatrix[16];
 GLint realy; /* OpenGL y coordinate position */
 GLdouble wx, wy, wz; /* returned world x, y, z coords */

 switch (button) {
 case GLUT_LEFT_BUTTON:
 if (state == GLUT_DOWN) {
 glGetIntegerv (GL_VIEWPORT, viewport);
 glGetDoublev (GL_MODELVIEW_MATRIX, mvmatrix);
 glGetDoublev (GL_PROJECTION_MATRIX, projmatrix);
/* note viewport[3] is height of window in pixels */
 realy = viewport[3] - (GLint) y - 1;
 printf (“Coordinates at cursor are (%4d, %4d)\n”,
 x, realy);
 gluUnProject ((GLdouble) x, (GLdouble) realy, 0.0,
 mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
 printf (“World coords at z=0.0 are (%f, %f, %f)\n”,
 wx, wy, wz);
 gluUnProject ((GLdouble) x, (GLdouble) realy, 1.0,
 mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
 printf (“World coords at z=1.0 are (%f, %f, %f)\n”,
 wx, wy, wz);
 }
 break;
 case GLUT_RIGHT_BUTTON:
 if (state == GLUT_DOWN)
 exit(0);
 break;

146 Chapter 3: Viewing

 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMouseFunc(mouse);
 glutMainLoop();
 return 0;
}

gluProject() is another Utility Library routine, which is related to gluUnProject().
gluProject() mimics the actions of the transformation pipeline. Given three-dimensional
world coordinates and all the transformations that affect them, gluProject() returns the
transformed window coordinates.

int gluProject(GLdoubleobjx, GLdoubleobjy, GLdoubleobjz, const GLdouble
modelMatrix[16],const GLdoubleprojMatrix[16], const GLintviewport[4],
GLdouble*winx, GLdouble*winy, GLdouble*winz);

Map the specified object coordinates (objx, objy, objz) into window coordinates,
using transformations defined by a modelview matrix (modelMatrix), projection
matrix (projMatrix), and viewport (viewport). The resulting window coordinates are
returned inwinx, winy, andwinz. The function returns GL_TRUE, indicating success,
or GL_FALSE, indicating failure.

Reversing or Mimicking Transformations 147

148 Chapter 3: Viewing

Reversing or Mimicking Transformations 149

