O’REILLY Online Catalog SEARCH THE GATALOG

@ Palm Programming: The Developer's Guide

By Neil Rhodes & Julie McKeehan
1st Edition December 1998
1-56592-525-4, Order Number: 5254
482 pages, $32.95 Includes CD-ROM

Programming
e Add thisitem to Shopping Cart View Shopping Cart

CRELLY"
Full Description Emerging as the bestselling hand-held computers of all time, PalmPilots have spawned
About the Author intense devel oper activity and afanatical following. Used by Palm in their developer
Table of Contents training, this tutorial-style book shows intermediate to experienced C programmers how
Index to build a Palm application from the ground up. Includes a CD-ROM with source code
Reviews and third-party developer tools.
Colophon
Sample Chapters "D : .
online Conference Related O'Reilly Titles:
Errata
Authors Web Site PalmPilot: The Ultimate Guide, 2nd Edition
Reader Reviews

How to Order

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts

International | About O'Reilly | Affiliated Companies

© 2000, O'Reilly & Associates, Inc.

Thispage intentionally left blank

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! &

o

Palm Programming: The Developer's Guide -
Table of Contents

Foreword
Foreword
Preface

The Pam Phenomenon

Who This Book Is For-C Programmers
What This Book |s About and How
to Read It

What'sin aName-Is It aPilot

or aPam?

Conventions Used in This Book
How to Contact Us

Versions of Things

What's on the CD?

Whom We Need to Thank

. Palm-Why It Worksand How to Program It
1. ThePalm Solution

Why Palm Succeeded Where So

Many Failed
Designing Applications for Palm Devices
Elementsin aPalm Application

Summary

2. Development Environments and L anguages

Overview

Handheld Devel opment

Alternative Development Environments
High-L evel Forms Development
Conduit Devel opment

Conclusion

3. Designing a Solution

User Interface Elements

in an Application

General Design of aPalm Application
How the Sample Applications Are Useful
User Interface of the Sales Application
Developing a Prototype

Design Tradeoffs in the Sample Application
Designing for a Small Screen

Designing the Databases

Designing the Conduit

Design Summary

1. Designing Palm Applications

4.

Structure of an Application

Terminology

A Simple Application

Scenarios

Memory |Is Extremely Limited

Other Times Your Application Is Called

Summary

Forms and Form Objects

Resources

Forms

Form Objects

Resources, Forms, and Form Objects
in the Sales Application

Databases

Overview of Databases and Records
Creating, Opening, and Closing Databases
Working with Records

Examining Databases in the Sales Sample

. Menus

Menu User Interface

Menu Resources

Application Code for Menus

Adding Menus to the Sample Application

. Extras

Tables

Tablesin the Sample Application
Find

Beaming

Barcodes

Communications

Seria
TCP/IP

10. Debugging Palm Applications

Using POSE
Device Reset

Graffiti Shortcut Characters
Source-Level Debugging with CodeWarrior

Source-Level Debugging with GNU PalmPilot SDK
Using Simulator on Mac OS
Gremlins

[11. Designing Conduits
11. Getting Started with Conduits

Overview of Conduits

Registering and Unregistering a Conduit
Conduit Entry Points

The HotSync Log

When the HotSync Button Gets Pressed
Using the Backup Conduit

Creating aMinimal Sales Conduit

12. Uploading and Downloading Data with a Conduit

Conduit Requirements

Where to Store Data

Creating, Opening, and Closing Databases
Downloading to the Handheld

Uploading to the Desktop

When the HotSync Button Gets Pressed
Portability Issues

The Sales Conduit

13. Two-Way Syncing

The Logic of Syncing

The Conduit Classes

Sales Conduit Sample Based

on the Classes

Generic Conduit

Sales Conduit Based on Generic Conduit

14. Debugging Conduits

HotSync Flags
Source-Level Debugaing

Avoiding Timeouts While Debugging
Conduit Problems Y ou Might Have
Test with POSE

Turn Off Other Conduits During Testing
Usethe Log, Luke

Appendix: Whereto Go From Here

Palm Programming Book Web Site

The Official Palm Developer Site

Palm Programming Mailing Lists
Third-Party Palm Programming Resources
Third-Party Palm Programming FAQ
RoadCoders, Handheld Devel opers
PalmCentral

Journals and Magazines

Palm Programming: The Developer's Guide

Thispage intentionally left blank

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! |

sfarcs

Foreword

by David Pogue
Author, O'Reilly & Associates PalmPilot: The Ultimate Guide

http://www.davidpogue.com

What accounts for the PalmPilot's astonishing success? After all, there are more fully featured handhelds
(the dead Apple Newton), smaller ones (Rex), less expensive ones (Avigo), ones with keyboards (Psion),
and ones backed by Microsoft (Windows CE devices). Yet all of those palmtops (and many more) put
together constitute only 35% of the palmtop market. PalmPilot sales make up the remaining 65%.

Some of the reasons for its success are evident: the PalmPilot is truly shirt-pocketable, inexpensive, fast, and
simple, and a pair of AAA batteries drive it for two or three months (compare with 15 to 20 hourson a
Windows CE gadget). But there's another, bigger reason that overshadows all the others: the PalmPilot is
amazingly easy, pleasant, and satisfying to program.

At thiswriting, there are over 7,000 PalmPilot developers. My guessisthat 6,950 of them are teenagersin
their bedrooms. But that's just the point-because 3Com/Palm Computing and the Palm OS are so open, so
clear, so friendly, almost anyone with alittle programming experience can create new software for this
addictive piece of circuitry. Maybe that's why 5,000 PalmPilot programs on 500 Web sites are kicking
around at this very moment. No other handheld platform offers as many easily accessible development tools-
and so much encouragement from Palm Computing, the mother ship.

Asaresult, it's astonishing that thisis the first and only book on PalmPilot programming-and gratifying that
it's so meaty, complete, and informative. Authors Neil Rhodes and Julie McKeehan do more than rattle of f
lists of callsand APIs; in agentle, book-long arc, the authors lead you through the creation of a sample
PalmPilot program. Along the way, you'll learn to create almost every aspect of a Palm OS application, such
as databases, beaming, menus, dialogs, data entry, finding, and conduits to the desktop PC.

More than that, you'll learn the Palm OS itself. The authors firmly believe that in creating its OS, Pam
Computing got it right the first time; you're encouraged to embrace the same goals of speed, minimization of
steps, and elegant design. In other words, this book won't just teach you to become a PalmPilot programmer-
it will teach you to be agood one.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

s lfarcs

Palm Programming: The Developer’s Guide —

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! &

PRt

Foreword

by Daniel Pifko, Phillip B. Shoemaker, and Bill Witte
The Palm Development Tools Team

In 1888, the invention of the ballpoint pen revolutionized the world of writing. In 1995 the invention of the
Pilot™ connected organizer revolutionized the world of computing. The concepts behind the Palm
Computing® platform have a history longer than the device itself. Before the advent of the Palm Computing
platform, Jeff Hawkins and others at a small start-up called Palm Computing were devel oping software for
handheld devices, working with myriad hardware manufacturers to have them adopt the vision of those at
Palm Computing. When Jeff and the others finally realized it would never happen, they opted to create the
hardware themselves. Y ears later, out of this primordial ooze of creativity, the Pilot 1000 was born. Then
came the Pilot 5000, the PAlmPilotTM Personal, the PAlmPilotTM Professional, and the Paim I1ITM
connected organizers. Companies started calling upon Palm Computing to partner, and out of those

rel ationships came upgrade cards, pager cards, the IBM WorkPad, the Symbol SPT 1500 with integrated bar
code scanner, and the Qualcomm pdQ with integrated cellular phone. And the list continues to grow. Within
eighteen months, four products shipped from Palm Computing, and over amillion devices were sold. We
knew we had a solid and compelling platform that would be popular with devel opers.

The fundamental idea behind our strategy was first to get a large installed base using the devices as personal
organizers, and then to focus on signing up devel opers to broaden their usefulness. Thiswas avery different
approach than those of our predecessors. They believed you needed thousands of partners and a publicly
accepted standard to attract alarge body of users. A million-plus users later, we have over ten thousand add-
on software and hardware developers, and more are signing up daily. They believe, as we do, that the Palm
Computing platform represents a new, exciting, and commercially compelling opportunity for companies
like themselves. This development community has been and will continue to be an integral part of our
success story.

Developers new to the platform will find that the design philosophy that has made Palm's products such a
success with usersis mirrored in our approach to development. One example is that of minimalistic design.
Palm's products have always been designed with only the necessary piecesin mind. Never are arbitrary frills
thrown in just to make the device seem more appealing. Instead, we implement features that people will
actually use and that are well suited to the constraints present on asmall device. True to the philosophy of
the devices themselves, the Application Programming Interface (API) has been written with ssimplicity and
applicability to asmall devicein mind. The functions are tweaked for instant response to user input, easy
synchronization and backup, and a ssimple, consistent user interface in all applications.

We believe that this book will greatly benefit any Palm Computing platform devel oper who follows the
book's advice on how to create the best application with the lowest development cost. To quick-start your
own application, you can use the sample programs in the book as building blocks. We hope that they will
contribute to the fast development and superior performance of your application-and, in turn, will help it
contribute to the growth and power of the Palm Computing platform.

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! &

PRt

In this chapter:

e The Pam Phenomenon

¢ Who This Book Is For-C Programmers

e What This Book Is About and How
to Read It

e What'sin aName-Is|t aPilot

or aPam?

Conventions Used in This Book

How to Contact Us

Versions of Things

What's on the CD?

Whom We Need to Thank

Preface

The Palm Phenomenon .&

By almost anybody's standard of measure, the PalmPilot and other Palm devices are wildly successful.
Everybody loves them: users buy them faster than any other handheld, product reviewers give them awards,
and programmers, once they find the platform, never want to leave.

How do we account for this phenomenon? What makes the Palm handheld such a great device? Simple. It's
really fast, it's cheap, it does amost anything you ask it to, and it can fit in your shirt pocket. Combine that
with loyal users and one of the most ardent devel oper followings seen since the glory days of the Mac, and
you have all the elements of awhirlwind success. If you are a programmer, the question you should really be
asking yourself right now is, "What do | need to know to join in the fun?' To find out, keep reading.

Who This Book Is For-C Programmers 2

If you know C and you want to write applications for Palm devices, then thisis the book for you. It doesn't
matter if you own aPalm and are an avid user, or if you are only now thinking about getting one. Y ou can be
awretchedly poor student who wants to mess around with a PalmPilot in your spare time using free
development tools, or a programmer in a Fortune 500 company who just got told that you have to write an
application for the 5,000 units the company is deploying in the field next month.

We have tried hard to make sure that there is useful information for everyone, from beginning Palm

programmers to those of you who have already danced around the block with these lovely little devices. If
you want to write an application that reads barcodes, we help you; if you want to write an application to
deploy a sales force, we show you what to do.

Do You Need to Know C++7?

It doesn't hurt if you know C++, but it isn't necessary, either. C isjust fine for creating a Palm application.
C++ does comein handy if you are going to write a conduit (we will talk more about that in minute).

Do You Need to Be a Desktop Expert
to Write a Conduit?

Writing a Palm application can be atwo-part adventure. Y ou may want to create an application for the
handheld device and a desktop application that will talk to the Palm application. If you want to write a
conduit (the code that handles the exchange of data between the Palm and the desktop), then you will need
to know about the desktop (Windows or Macintosh). We tell you how to write the conduit, but not a lot
about how to create a desktop application. For that you will need some outside resources.

Which Flavor Conduit Do You Want-C++ or Java?

Y ou can use either C++ or Javato write a conduit. We discuss some of the issues and help you figure out
which path you want.

What This Book |'s About and How
to Read It aita

This book shows you how to create a Palm application and a conduit. It assumes that you have the Pam OS
documentation (available at the Palm Computing web site, http://www.palm.convVdevzone) and know where
to find things in it. Before showing you how to create an application, we also spend some time explaining
the difference between a good application and a bad one; in other words, we tell you how to design for this
platform.

The Breakdown of the Chapters

Part |, Palm-Why It Works and How to Program It, gives you the big picture. You learn about the devices,
their history, their development environments, and the right way to design a Palm application.

Chapter 1, The Palm Solution

We happily admit that this chapter is unabashedly partisan. Would you want someone who doesn't like the
Palm Computing platform telling you about it? We a so describe which features can be found on which
devices and what you can expect to seein the future.

Chapter 2, Development Environments and Languages

Here we show you the choices in devel opment environments and the range of languages you can use.

Chapter 3, Designing a Solution

We ruminate about the best way to design a Palm application and offer you some advice. We end this
chapter by showing you the design of an application and its accompanying conduit that we are going to
create in the book.

Part 11, Designing Palm Applications, takes you inside a Palm application. We describe its structure, user
interface elements, and the Application Programming Interface (API) for the various parts of the application.

Chapter 4, Sructure of an Application

We take you through the whole cycle of a Palm application, from the time it is launched by the user to the
moment it quits.

Chapter 5, Forms and Form Objects

Here you'll learn how to create the various user interface elements of the application-everything from buttons
to aerts, from lists to gadgets.

Chapter 6, Databases

We explain the unique way the Palm OS creates data structures and stores data on a Palm device.

Chapter 7, Menus

We show you how to create menus and the items in them. Y ou also learn how to use Palm's Graffiti
shortcuts and which menus should be where.

Chapter 8, Extras

We cover alittle bit of thisand alittle bit of that in this chapter. The topics are tables, find, beaming, and
barcodes (for use with the Symbol SPT 1500, a Palm Computing platform handheld).

Chapter 9, Communications

This chapter gives you adetailed look at communications on a Palm OS device, everything from seria to
TCP/IP.

Chapter 10, Debugging Palm Applications

Last, but most important, we turn to the crucial topic that is the bane of every programmer’s existence-
debugging. We show you how to figure out what's wrong with your code.

Part 111, Designing Conduits, covers conduits. Just as we created a Palm application, we do the same for
conduits. This section includes everything from a complete description of the parts of a conduit to
development platforms for them and code walkthroughs. Unlike the other two sections, these chapters build
on each other and should be read in order.

Chapter 11, Getting Sarted with Conduits

We start once again with the bigger picture. After we describe all the general things you need to know about
conduits, we finally turn to a small amount of code that forms the shell of a conduit.

Chapter 12, Uploading and Downloading Data with a Conduit

This chapter takes you a step further, and you see how to upload and download data between the desktop and
the conduit.

Chapter 13, Two-Way Syncing

In this chapter, we show you a conduit that uses full-blown data syncing, with the exchange of data
depending on where it has last been modified. We a so describe the various logic problems you encounter

with a device that can synchronize data on various desktops.

Chapter 14, Debugging Conduits

We return to the topic of debugging, thistime of conduits.

Appendix: Whereto Go FromHere

This appendix lists Palm developers resources.
How to Read This Book
There are afew standard approaches people use to read a book on programming.

¢ The skip-through-and-read-what's-interesting approach

e The cover-to-cover approach

o Thein-front-of-a-computer-trying-to-create-your-own-application approach
The skip-through approach
If you choose this approach, view Part | as background information. This section is more essentia for
beginners to the Palm Computing platform than for old-timers. If you already know which development
environment you are going to use, you can ignore Chapter 2. If you want to understand the design decisions
we made in the sample application and what makes the difference between a good and a bad Palm
application, then you need to read through Chapter 3.

Y ou can skip around Part |1 or read its chaptersin order. In either case, don't wait too long to read
Chapter 10. No matter what, read this chapter before you try to create your own project.

Part 111 won't make much sense unless you read it in order. Each chapter builds on the previous chapter.
The cover-to-cover method

We didn't write the book in this order, but it seemed like the right progression at the time.

The in-front-of-a-computer approach

Anxious types should read the debugging material before taking too deep a plunge into creating an
application. Otherwise, far be it from usto try to slow you down. Get to it!

What'sin a Name-Islit a Pilot
or a Palm? :&

We have to take a moment here to talk about both the name of this book, Palm Programming: The
Developer's Guide, and about Palm devicesin general. If you are aloyal Palm user, then you probably call it
aPilot. So does virtually everyone else on the planet, except the company that makes them-3Com. The
producers of these dandy devices want you to think of Palm not as a device, but as a platform, the Palm
Computing platform. They do this, reasonably enough, so that you realize that all the following devices use
the same operating system, even though different companies make and sell them:

e Pilot 1000, Pilot 5000
¢ PamPilot Professional
e PamPilot Personal

e PaAmlill
¢ |BM WorkPad
e Symbol SPT 1500

Why 3Com went from the use of Pilot to Palm can be summed up in one word-lawsuit. Lawyers for the
French Pilot Pen company contacted lawyers at 3Com and said, "Hey, Pilot is our name; stop using it." So
3Com did. Now, while we could spend hours talking about the questionable wisdom of letting a pen
company tell acomputer company to throw away awildly popular, highly recognized trade name, that
doesn't change our problem. People call them Pilots; the company calls them Palm devices.

Asif the situation weren't interesting enough, add the entrance of the lumbering giant, Microsoft. Noticing
the success Palm Computing was having with its popular devices, Microsoft's leaders said, "Hey, we're
going to make some, too, and we're going to call them PalmPCs." While Microsoft eventually backed off
from the name PalmPC to palm-sized computers, the damage had already been done-the Palm name had
been compromised. Now we have to worry that people will not know whether we are talking about a
PalmPilot device or aWindows CE-based palm device in this book. It's enough to make a writer cry.

So here's our problem: we want to make the folks at Palm Computing happy, and we want to make sure
readers know what we are talking about in the book from just looking at the title. Our compromise solution
was Palm Programming. We wrote this book to last along time, and we are betting our title on 3Com'’s
ability to move consumer attachment from the word Pilot to the word Palm.

At the time we went to press, the dust hadn't settled yet; it wasn't clear whether 3Com would be successful in
wresting the Palm name away from Microsoft. If they are, the book has the right name, and you picked up
Palm Programming for the right reasons. If Microsoft wins-not an unbelievable possibility, however
unhappy the concept makes us-then you may have picked up this book thinking it would help you with the
Microsoft Windows CE programming of palm-sized devices. Sorry for the confusion.

Conventions Used in This Book .&

We use a couple of conventions worth noting.

Italic isused for avariety of things: URLS, filenames, functions, email addresses and other things we wanted
to emphasize.

Code comes in either small batches or larger amounts, but it is always represented inconst ant wi dt h.

Code elements such as parameters (basically, any code other than function names) also useaconst ant -
wi dt h font when they are included in a sentence.

NOTE:

Notes with an owl icon consist of tips or hints.

NOTE:

Notes with aturkey icon are warnings.

How to Contact Us .&

We have tried very hard to make sure that all the information in this book is accurate. If you find a problem
or have a suggestion on how to make the book better, please let us know by writing or emailing us at:

e ORellly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

Y ou can also send us messages electronically. To be put on the mailing list or to request a catalog, send
email to:

e nuts@oreilly.com

To ask technical questions or comment on the book, send email to O'Rellly technical support:

e bookguestions@oreilly.com

or you can send email to us, the authors:

o neil@pobox.com (Neil Rhodes)

julie@pobox.com (Julie McK eehan)

Versions of Things 2

We use alot of toolsin this book. As an easy point of reference, here is each product and the version of it
that we used:

Beta version of CodeWarrior for PAlm OS Release 5
GNU PalmPilot SDK Version 0.5.0

Palm OS Emulator (POSE) 2.0b3

3.0 Conduit Development Kit, beta version
Gdbplug .02

Symbol Scanner SDK Beta 1.08

Check O'Reilly's PamPilot Center at http://palmpilot.oreilly.com or see the web page for this book at
http: //www.or eilly.convcatal og/pal mprog/.

What's on the CD? '&

e Sourcefor al the samplesin this book. Updates to the CD can be found at
http://www.or eilly.corm/catal og/pal mprog/.

¢ A demo version of CodeWarrior for Palm OS.

¢ GNU PalmPilot SDK.

POSE.

Palm OS 3.0 SDK-including documentation.

Symbol Technologies SDK for the SPT 1500.

Demo version of Satellite Forms.

Linux versions of gcc, gdb, POSE, and Pilrc in both source and RPM format.

Whom We Need to Thank .&

If you haven't already figured out that the people at Palm Computing deserve an enormous amount of
gratitude, we will tell you now. Many people deserve our thanks, starting with Maurice Sharp, head of
Developer Technical Support (DTS) at Palm Computing. He coordinated the dispersal of proof chapters and
had the fortitude to read the whole manuscript while managing all the rest of his duties. Other DTS people
who read the entire manuscript were David Fedor, Cheri Leonard, Gary Stratton, Bruce Thompson, and
Ryan Robertson. Keith Rollin in Engineering also read the whole manuscript and gave us great comments,
especially about debugging tools. If you have ever tried to do atechnical review of a proof copy, you know
how much work thisis. These folks went the extra mile and obviously read on their own time (food spills
are asure-fireindicator of a dedicated individual), and for this we thank them profusely. If thisbook is
useful to you, remember that these people had a great deal to do with that.

Other people at PAlm Computing reviewed individual chaptersin their own areas of speciaty and gave us
great advice. These include some folks in Engineering: Dan Chernikoff (for seria port communications),
Bob Ebert, Roger Flores, Steve Lemke, Kelly McCraw, Chris Raff, and Tim Wiegman. Three managers also
took time out of their schedules to make sure we covered enough of the bigger picture. They are Daniel
Pifko (HotSync Product Manager), Phil Shoemaker (Tools Engineering Manager), and Bill Witte (OS/SDK
Product Manager). All these people read drafts of chapters and sent back tons of useful technical comments,
and we thank them.

The Palm Computing staff also provided alot of technical assistance. We can't begin to say how niceitisto
be able to ask for technical help, ask questions, ask about problems, and get answers, usually within a day or
two. The folks at Symbol Technologies also helped us out. Rob Whittle, Product Manager of the SPT 1500,

got us a beta unit of the SPT 1500 and gave many useful comments and other help.

We aso recruited some readers to seeif the book would make sense. These readers included C programmers
new to the platform and people who might well know more about programming the Palm than we do. This
list of volunteers who deserve recognition includes Stephen Beasley, Edward Keyes, J.B. Parrett, and
Stephen Wong. Edward Keyes offered especially insightful and thorough comments.

Now, over to the publishing side of things. Many thanks to our editor, Mark Stone. It was very nice to have
an editor who read and actually understood our writing. Mark time and time again caught inconsistencies
and sloppy descriptions and gently told us when we were mumbling. For two authors who don't like writing,
Mark's competence and professionalism made the task almost palatable.

On the personal side of things, we have afew people to thank aswell. As always, we need to thank our
children, Nicholas, Alexander, and Nathaniel, who can never figure out why either of us writes books. We
also thank our friends and families, who put up with our annoying tendencies to fade out of conversations,
be late, and be absolutely boring while we are writing.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PaaPaaac

Thispage intentionally left blank

Palm Programming: The Developer’s Guide ~

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

PRt

|. Palm-Why It Works and How to Program It

This section is about the big picture. In Chapter 1, The Palm Solution, we talk about Palm Computing's
success at getting the handheld solution right. In Chapter 2, Development Environments and Languages, we
discuss how to write programs that run on these devices and your choices in languages and environments. In
Chapter 3, Designing a Solution, we discuss which applications you can create for this platform-which
features the applications support, and what it takes to create a well-designed application.

We tell you what is possible and then show you how to do it. We give you a sample application, the source
code, and commentary, so that you can turn around and create Palm applications of your own.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

T T L LR

Thispage intentionally left blank

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! &

PRt

In this chapter:

e Why Palm Succeeded Where So

Many Failed
Designing Applications for Palm Devices

Elementsin aPalm Application
e SUMMary

1. The Palm Solution

Palm Computing has single-handedly defined the handheld market with the PalmPilot and Palm I11 pocket
organizers-people just go nuts over them. The question iswhy. Why did this little company succeed when so
many giants failed? The answer is that they got the magic formularight-they figured out what customers
really wanted and how much they were willing to pay for it.

Understanding how to design an application for this platform requires a bit of backpedaling and alook at the
history of these devices. Helping you understand that history and what made Palm such a skyrocketing
success will help you know how to design good applications for them. We want you to attack the design of
your application with the same magic formulathat Palm Computing used. Design does not happenin a
vacuum. If you ignore the features and characteristics that made Palm a success, your application will bomb.

Why Palm Succeeded Where So
Many Failed i

Not everybody knows that the PalmPilot was hardware born out of software, and not even system software,
at that. Its origins are in Graffiti, the third-party handwriting recognition software developed for Newton and
other Personal Digital Assistants (PDAS).

In 1994, Palm Computing came out with some handwriting-recognition software that promised accuracy and
speed in recognition on PDAS at the price of alittle bit of shorthand. Many industry experts thought such
software was doomed to fail, asit required too much work from the user. They were proved wrong. Speed
and accuracy were more important-Graffiti was able to offer enough to compensate for the relatively minor
work required to learn the new strokes.

No One Would Make a Good Enough Device

Buoyed by its success with Graffiti and frustrated by other companies inability to get the platform right,
Palm Computing decided to create its own handhelds. The result was the release of the Pilot 1000 in mid-
1996. It and its closely following mate, the Pilot 5000, rapidly made headway. So popular was this product
that with the release of its next device 18 months later, the company topped the 1-million-unit mark and
clearly dominated the market.

Not only that, but Palm Computing has since been acquired by U.S. Robotics and then again by 3Com. Not
to undercut 3Com's new ownership of the Palm OS, but we will continue to refer to the makers of the Palm
platform as Palm Computing.

It would be good to stop at this point and ask yourself why this company succeeded when so many other
companies failed. How was it alone able to produce a successful handheld? It wasn't experience in hardware
design-companies like Apple, Casio, and Hewlett-Packard clearly have more. It wasn't breadth of features-
Windows CE and Newton devices have more. It wasn't price-Texas Instruments's Avigo is cheaper. So what
does the Pam offer that all these other companies weren't providing? The answer to this question (because
Palm Computing figured out what customers wanted) is simple to articulate, but complex to understand.
Some insight can be gained by looking at the evolution of Palm devices and their OS relative to other
handhelds.

Palm Device Sze and Weight
Asyou can seein Figure 1-1, Palm Computing (and its licensees) has had a steady progression of products.

-Figure 1- 1. A brief timeline of Palm OS products from Graffiti to the Qualcomm pdQ

. i Symbal Oule

S, ot 1000/5000 Pl Pt Workod Pl SPT1500 pdi
: el

1995 1996 1997 1998 1999

Each of these devices differsin some respects and remains the same in others. One of the most striking
similaritiesis the size or form factor (see Figure 1-2). What differsis the memory, storage space, and the
addition of some hardware features like IR support on the Palm |11 and barcode support on the Symbol SPT
1500, the Palm device from Symbol Technologies. Indeed, there are only afew changes in outward design
between the PalmPilot and the Palm I11 and even less between the Palm I11 and the SPT 1500. Compared to
the PalmPilot, the Palm 111 has a slightly tapered base, alittle bit larger power button, and a sliding serid
port cover, and the two scroll buttons have been folded into one seesaw-type button-minor design changes
by anybody's measuring stick. The Symbol device differs from the Palm I11 only in its dightly increased
length (to accommodate the barcode reader) and the two green buttons at the top that are used to activate the
reader. Figure 1-2 shows most of these differences, plus the Qualcomm pdQ, discussed later.

Figure 1- 2. Differencesin physical design of Palm OS handhelds (from left to right): PalmPilot, Palm [11, Symbol SPT
1500, and Qualcomm pdQ

The reason Palm Computing didn't change the original design very much was because it was right from the
start. The crucial elements that are essentially the same across the entire product line are size and weight
(athough the Symbol SPT 1500 is ever so slightly taller and heavier due to the addition of a barcode scanner
at the top). From these specs, you can see that Palm designers believe that a handheld hasto fit easily into a
shirt pocket and rest lightly in the hand. Thisis especially clear when you evaluate the size and weight of
Palm devices relative to those of other handhelds (see Table 1-1).

-Table 1- 1. Specifications of Various Handhelds

Device Dimmsi ons V_Vei ght Price .

(in Inches) (in Ounces) (at Introduction)
PalmPilot 0.7x47x32 5.7 $370
TI Avigo 10 0.8x55x33 7 $300
Psion Series5 09x35x6.7 125 $600
Geofox-One 08x4.7x74 13.7 $799
MessagePad 2100 1.1x83x4.7 22.4 $1,150

Qualcomm'’s pdQ, a combination wireless cell phone and Palm device, also has the same screen size as other
Palm devices. The pdQ has asize of 1.4x6.2x2.6 inches and aweight of 8.2 ounces. This makesit twice as
deep, 1.5 incheslonger, 0.6 inches narrower, and 2.5 ounces heavier. Given the device's dual functionality,
such modifications make sense. Comparing the pdQ in Figure 1-2 to other devices, you can see that it more
closely resembles a cell phone than a standard Palm device. What makes this such a nice product, however,
Is the combination of complementary capabilities. The pdQ isacell phone with Palm's easy user interface
and it has a built-in address book with direct dial functionality.

Palm Device Cost

Moving from form factor to cost, we see another item important in the Palm's success. The price of the units
IS quite modest compared with other choices (see Table 1-1). It seemsthat alow entry priceisacritical part
of the equation in a successful handheld, along with size and weight.

Palm Device Features

The tasks that the handheld accomplishes are the final element in the magic formula of success. Table 1-2
breaks down the various configurations of the original devices from Palm Computing. Note that while there

IS some variation in memory, there are only afew new feature additions like IR support.

Table 1- 2. Palm Device Specifications

PalmPilot
. . Palm |11 and
PalmPilot Professional
Palm 1000 Palm 5000 Per sonal and 1BM 1&5/(r)r(1)bol SPT
Workpad
Backlit X X X
High-Contrast
LCD X X X
Memory 128K 512K 512K 1IMB 2MB
I +Expenses
Built-in +Expenses
X X + Expenses X
Apps* . +Mail
PPS- +Mail
TCP/IP X X
I nfar ed X
Flash Memory X
Barcode
Scanner x-symbol only

The original Palm Computing built-in applications included Dates, Address Book, To Do List, Memo Pad,
Calculator and Password Protection. The PalmPilot added a backlit screen, more memory, and a new built-in
application for expenses. The PamPilot Pro added TCP/IP support, more memory, and a built-in mail
application. The Pam |11 added new IR support and more memory.

From the beginning, Palm devices were extensible by adding applications. Later devices have much more
room for third party applications, however.

What Palm OS Devices Don't Have and Why
Almost more important than what Palm OS devices have is what they lack. No Palm OS device has:

o A keyboard

o Full text recognition

e Anindustry-standard PC card slot
o A powerful processor

Now, reflect for amoment on why thisis so. Adding any of these features requires changing the magic
combination of speed, size, and price that has made the Palm devices so popular.

A keyboard

Designing a device with akeyboard is a double problem: it radically affects the size, and it changes the types
of things a user will attempt to do. If there is a keyboard, a user will expect to be able to enter text easily.

But in order to handle alot of datainput, you need a system that can support that type of activity and a
processor capable of sorting and displaying it in aresponsive way. Once you have both a system and afast
enough processor, the price has crept so high that users go get laptops instead; for just afew dollars more,
they get alot more capability. Windows CE device makers have been learning this lesson the hard way for a
long time.

By removing both the keyboard and any real way of handling text input in quantity, Palm Computing kept its
focus on what kind of device it was providing. Palm'’s strategy was to deliberately create a device that was an
extension of a desktop computer. Think of the handheld as a "tentacle” (using the metaphor of the creator of
the Palm, Jeff Hawkins) reaching back to the desktop. It is awindow onto the data that resides on the
desktop. Having this sort of window is so useful because it can be taken anywhere. Palm figured out that to
be taken anywhere, it has to fit almost anywhere.

NOTE:

Thereisareally small device called the Franklin Rex, which is no larger than a business card and weighs
inat 1.4 oz. It will be interesting to see how successful it iswith itsinput limitation and size advantage
relative to the Palm and other handhelds. Watch its progress.

Text recognition software

Besides removing the keyboard, Palm Computing did away with supporting true text recognition. Palm
knew from Apple Computer's hard lesson with the Newton (painfully broadcast across the pages of
Doonesbury comic strips) that the recognition algorithms were just not good enough. Apple ended up with
frustrated people who spent far too much time trying to get their Newtons to recognize what they wrote.
Instead, Palm made the nervy choice to ask usersto spend a few minutes learning the stroke requirements of
Graffiti.

No doubt Apple had many focus group meetings where it asked legions of users the question, "Isit
important to you that a handheld device be able to recognize your handwriting?' If faced with this question,
users probably universally said yes, it was very important. Palm decided to figure out what users actually
wanted instead of what they said they wanted-not always the same thing. Users, it turns out, would rather
spend afew minutes learning to writea"T" like "7" than spend three times as much money and have a
device take a staggeringly long time to do even the most simple tasks.

An industry-standard PC card slot

Palm devices don't have a card slot, because they couldn't do it and keep the device small and cheap. Palm
did install a nonstandard memory card to give users the ability to upgrade the functionality. What the

company didn't provide for users was away to add storage, programs, or updates without being connected to
another device (either to the desktop or by modem).

Palm-Szed PCs-Are They Palm Killers?

Y ou can tell that Palm has a successful OS and device strategy because Microsoft has decided to copy it. In
thisindustry you can depend on two things: (1) Microsoft will copy successful products, and (2) prices will
drop. What it couldn't accomplish with Windows CE and larger devices, Microsoft is now trying to
accomplish with its brand-new Palm-like device. Copying Palm specs aimost completely, in January 1998,
Microsoft announced a Windows CE-based PalmPC platform. Microsoft later retracted the obvious nhame
ripoff, and the new platform became known as palm-sized PC.

Now these devices are rolling off the assembly line and being compared in the harsh light of reality with
Palm devices. Many reviewers of these products ask the question of each new device, "Isit a Palm killer?"
The answer seems to be that while each device may have a nifty feature or two, users are better off sticking
with their Palm devices. The opinion seemsto be pretty widespread that "palm-sized" PCs are no Palm
killers.Y

Designing Applications for Palm Devices 2

Asyou can see from the way its handhelds are designed, Palm Computing was convinced that a handheld
device will be successful if itis:

o Small (fitsinto a shirt pocket)
o Inexpensive (doesn't cost more than afew hundred bucks)
o Ableto integrate seamlessly with a desktop computer by placing the handheld in a convenient cradle

These design decisions are only one part of the solution, however. The other part is the software. Palm
devices are popular because they contain useful, fast applications and because they are extensible. There
were |ots of personal organizers before Palm Computing came along. The difference is that those old devices
weren't easily extensible-third-party applications couldn't be added. The magic of Palm devicesistherefore
two-fold. The built-in applications cover awide range of general activities, giving users access to hames, a
date book, ato do list, and so on. Crucial, however, is the second part: the platform is also open to other
developers. Knowing how important other applications were, Palm provided tools and enough material to
gain awide developer following. These developers, in turn, have added lots of specialized applications.
Everybody-Palm, developers, users-benefits.

Essential Design Elements

We spent so much time discussing the history of Palm devices, what makes them popular, and features they
don't have because these issues are crucial to your understanding of the design philosophy behind aPam OS
application. These are the essential elementsin a Palm application:

It needs to take into account small screen size.

It needs to limit text input on the handheld.

It needs to seamlessly sync to a program on a desktop computer.
It needs to be small.

It needs to be fast.

But thereis all the difference in the world between listing these elements, and you knowing how to design an
application using them. Let's address each point in turn.

Designing for a small screen size

Asits history has shown, the form factor of Palm devicesis absolutely essential. It's small so people can
easily take it anywhere. Y ou should assume that this screen sizeis here to stay. Unlike some other handhelds
that have changed size this way and that, Palm devices will keep this form factor for some time. While you
might expect to see some integrated devices with a different screen size, these will be for very specific uses
and won't necessarily pertain to the design of most Palm OS applications.

The size of the Palm Screen is a mere 160x160 pixelsin a 6x6 cm area. The datayou present in an
application needs to be viewable in this area. Because the areais so small, you will need to break datainto
parts. While keeping the datain logical groups and relying on different views to show each element will
help, you will undoubtedly need to iterate your design several timesto get it right.

Look at how the date book handles the presentation of appointments, for example. If the user has a bunch of
appointments in asmall period of time, that portion of the day is shown. The user doesn't have to scroll
through large gaps or look at lots of blank areas. The application shapes the way the datais presented to
accommodate a small screen.

Start the design process by mocking up a couple of screens of data. Seeif the data fallsinto logical groups
that fit nicely in the 160x160 square. If you are requiring your users to continuously scroll back and forth,
rethink the organization. Here is the first rule to remember: the screen size drives the design-not the other
way around.

If you are continually making the user horizontally and vertically scroll through blank areas, redo your
design. Trying to display too much data can require the user to do too much scrolling; too little can require
flipping between too many views. Y ou have to find the right balance.

Limit text input on the handheld

HotSync technology makes text input far less necessary on the handheld. The small screen size and lack of a
keyboard make text entry difficult. All thisleadsto an ironclad truth for you to remember-a Palm handheld
is not amanual text input device. The user has a nice desktop computer that contains |ots of good things to
facilitate text entry: keyboards, big screens, and fast processors. A Palm handheld has none of these things.
These facts lead to another rule in designing for the Palm OS: data is entered on the desktop, and viewed on
the handheld.

Obviously, we are not excluding all data entry or even trying to limit some types. For example, the
application we create in this book is an order entry application. In this case, the handheld user is not required
to enter text, but instead picks items from lists. This works nicely because picking thingsis easy, while
entering text is hard. It isalso clear that there are some very obvious places where users need to enter dataon
their handheld, such asin the to-do list. Apart from effortless data entry, you should steer your user toward
adding data on the desktop.

NOTE:

A great example of effortless dataentry on alarge scaleisfinaly available with the arrival of Symbol's
SPT 1500. With this device, the user has away to enter data (via the barcode reader) quickly and easily
while not sitting at a desktop. It will be interesting to see how this new device shapes the development of
applications with text input options on this platform.

Where your app does allow the user to input something, you will need to support the system keyboard,
Graffiti input, and cut, copy, paste, and undo in the standard manner as outlined in the documentation.
Likewise, you need to support any shortcuts to text entry that the documentation describes. (These are
covered in detail in the Palm OS documentation.)

Seamlessly sync

The bold stroke of providing a convenient cradle and an easy-to-manage connection with the desktop has

been crucia to Palm's success. Palm engineers designed these devices to exist in a symbiotic relationship
with another computer. As aresult, an enormously important part of your application is the conduit-thisis
code that runs as part of HotSync on the desktop and transfers information to and from the handheld. In a
symbiotic relationship, both organisms rely on each other for something, and both provide something to the
other-just asin our Palm OS application and our desktop conduit.

The conduit will handle communication between the handheld and the outside world. The handheld portion
of the app will:

o Offer the user data viewing anytime and anywhere
o Allow the user to somewhat modify the data or arrange it differently
¢ Do taskswith as few taps as possible

Syncing commonly occurs between the handheld and a corresponding application on the desktop. But
syncing is not limited to this model. Here are other scenarios for syncing:

¢ A conduit can transfer data from the handheld to and from a corporate database that exists on aremote
server.

e A user might fill out a search form on the handheld that the conduit would read and use to do a Web
search. The search result would then be transferred back down to the handheld for the user to view.

¢ A conduit could sync the Address Book to aweb-based Personal Information Manager (PIM). Thus
while the data may reside far away, the web-based storage ensures that thisinformation is available to
auser who travels anywhere in the world.

Make the application small

The handheld portion of the application needs to take up as little space and memory as possible, because
there isn't much heap space and storage to go around. Y ou must be absolutely ruthless about thisto end up
with a good design. Trim the size, and keep the number of tasks your handheld application performsto a
bare minimum.

Later we will talk about ways to optimize your application programmeatically. For now we simply want to get
your thinking clear about the tasks of the handheld application and the conduit

NOTE:

We pray never to see an Office/Works type of application on the Palm handheld. Rather than make one
application do a bunch of tasks, create different apps.

Make the application fast

Handheld users measure time differently than desktop computer users. One is moving; oneis sitting still.
Handheld users are usually doing more than one thing-whether that is talking on the phone or walking
through a store with alist. Contrast this with the desktop user who is sitting at a desk and will most likely be
therefor along time.

The desktop user will wait patiently for an application to launch, in contrast to the handheld user who is on
the move. If you make the handheld user wait a minute before your program is ready to use, you won't keep
that user. Speed is absolutely critical. Thisistrue not only at application launch time but throughout its use.
If you make that process too slow or require flipping between too many screens, your user will give up. The
Pamisalively little machine, so don't bog it down with slow apps.

Always remember that there are enormous problems attempting to do things on a handheld that you could do
easily on adesktop computer. It has a pip-squeak processor with no more power than a desktop machinein
the mid-1980s. As aresult, you should precalcul ate as much as possible on the desktop. The stack spaceis
so abysmally small that you have to be careful of recursive routines, or large amounts of stack-based data.
The dynamic memory is so paltry that your global variable space must be limited and large chunks of data

can't be allocated in the dynamic heap.

If that were not enough, the amount of storageistiny. For that reason, your desktop portion of the
application needs to pay attention to which data the user really needs in this sync period. In our order entry
application, we should download data only on customers that the salesperson is going to use in the near
future. Customers that won't be visited in this time period should be left out.

Rather than bemoaning the sparseness of your programming options, however, you should keep in mind two
things: (1) it'sagreat programming challenge to create a clean, quick handheld application under these
conditions, and (2) the very existence of these conditions is why Palm devices are outselling everything
around. If you design for the device instead of beating your head against the wall for what you can't do,
you'll end up with an application that literally millions of people might want.

Palm Computing has done research indicating that nearly all users are aware that they can load third-party
applications on their Palm OS device. About two-thirds of the installed base has gone to the trouble of
getting third-party software and installing it on their handhelds. Thisis an enormous user base for your
applications.

User Interface Guidelines

The documentation that comes from Palm Computing contains User Interface (Ul) Guidelines. These docs
cover everything from which type of Ul widget to use for each screen control to exactly where they should
be placed relative to each other. Follow them.

NOTE:

Palm Computing provides several volumes of documentation on programming for the Palm OS. While not
as wonderful asthis book, it is nonetheless very useful. It also has a great price-it'sfree. You can get the
entire set of Windows or Macintosh documentation at Palm's developer site: http://palm.3com.convdevzone.

Designing your application to behave like the built-in applicationsis also agood idea. For example, if you
have an application that needs to display records similar to Names, then copy the format used in the Names
application (including the location of items). Palm Computing has provided the source code to the built-in
applications because it wants to facilitate your use of them. Mimic them wherever it makes sense.

The guidelines also discuss the display of different views in your application, navigating between views, and
how to convey information to the user. Not surprisingly, the guidelines also emphasize the importance of
speed and optimizing in your application. Y ou should also check Palm's web site for system updates and the
release of new Palm devices.

Elementsin a Palm Application 2

Now that you know how to design a Palm application, let's describe its two components. After that we will
look at how they communicate with each other.

The Two-Part Solution
Most Palm solutions are composed of a handheld application and desktop conduit:
The handheld portion

The portion that resides on the handheld and allows the user to view and manipulate data. Part |1, Designing
Palm Applications, deals with the creation of this part.

The conduit portion

Here you have code that handles syncing the data with a desktop application. Part |11, Designing Conduits,
shows you how to create this part.

The handheld portion has anicon that is displayed in the application list. Users will usually use the Palm
Install Tool from a Windows or Macintosh machineto install your application (it'll be installed on the next
synchronization).

HotSync Overview

When a user puts a Palm OS devicein its cradle and presses the HotSync button, the handheld application
begins communicating with the desktop conduit. For example, the Address Book has a built-in conduit that
synchronizes the address book information on the handheld with the address book information in the Palm
Desktop PIM. If anew entry has been made in either place, it is copied to the other. If an entry has been
modified either place, it is copied to the other. If an entry has been deleted in one place, it is usually deleted
in the other.

Third parties provide other conduits that replace the Address Book conduit so that the device's address book
synchronizes with other PIMs (Microsoft Outlook, for example). You'll usually want to write a conduit for
your application's database that will upload/download information in a manner appropriate for your
application.

For example, the Expense conduit reads the expense information from the handheld, fillsin a spreadsheet
based on the information, and then del etes the information from the handheld. From the users’ point of view,
thisisideal; they get their information in a standard, easy-to-use form: a spreadsheet on the desktop. The
Palm OS application doesn't have to worry about creating reports; its only purpose is recording expense
information.

If you don't want to write your own conduit, then a backup conduit is provided. It backs up any database
that:

o Doesn't already have a conduit responsible for it
o Has been marked as a database that should be backed up

NOTE:

There have been four different Windows versions of HotSync shipped to users (1.0, 1.1, 2.0, and 3.0).
You'll probably want to target HotSync 1.1 or later. It's also reasonable to target HotSync 3.0, since it is
available by download from http: //www.palm.com.

Summary 2

In this chapter, we have described Palm devices, the circumstances that governed their design, and the
history of Palm Computing's success with this combination. Then we discussed application design in light of
the devices' history, design, and future directions. Last, we discussed the important elementsin a Palm
application and gave you some rules to help you in application design.

* The built-in applications common to all Palm devices are Address Book, Date Book, To Do List, Memo Pad, Calculator, and
Security.

Y For an interesti ng set of reviews on product comparisons, check out PCWeek's web site, http: //www.zdnet.com/pcweek/, where
electronic versions of their reviews can be found.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PaaPaaac

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! &

PRt

In this chapter:

Overview

Handheld Development

Alternative Development Environments
High-Level Forms Development
Conduit Development

Conclusion

2. Development Environments and Languages

This chapter deals with the what and the how of things. First, we show you what you're programming for-the
nuts and bolts of the Palm OS. Then we show you how to do it-the avail able devel opment environments. By
the time we are through, you should have a good idea of the range of applications you can create for the
Palm OS, the coding requirements, and which development environment you want to use.

Overview .&

Developing for the PAlm OS isin some ways similar to other platforms and in other ways strikingly
different. Two important similarities are:

o Applications are event driven.
e You can use anything from standard C code to assembler to scripting.

Differences tend to center around features crucial to the device size and purpose. These include how the
Palm OS handles:

e Memory requirements
o Application and data storage
o Connectivity of the device to the desktop

Most important, you should remember that the relationship between the device and the OS is extremely
tight. Everything has been built on the premise that the handheld is an extension of the desktop and that it
must be responsive to the user.

Overview of the OS

Let'slook in more detail at thistight interaction of the OS and the applications on the handheld. The Pam
OS runs on top of a preemptive multitasking kernel. One task runs the user interface. Other tasks handle
things like monitoring input from the tablet.

The user interface permits only one application to be open at atime. Thus, when your application is open, it
(more or less) has control of the entire screen.

NOTE:

Applications run within the single-user interface thread and therefore can't themselves be multithreaded.

Memory
Memory is handled in an unusual fashion. The RAM on aPalm OS device is used for two purposes:
For dynamic memory allocation

Thisis memory your application or the system needs whileit is running. It also includes the stack your
application requires. On areset, this memory is cleared. This portion of memory is analogousto RAM in a
traditional OS.

For permanent storage

This includes downloaded applications as well as data that the user will view, create, and/or edit. To-dos,
names and phone numbers, memos, and all the other data for built-in applications also use this memory. On
areset, it isnot cleared. This portion of memory is analogousto files on ahard disk in atraditional OS.

For both kinds of memory, allocation is done as chunks. The permanent storage holds databases, with related
chunks kept in asingle database. For example, all the memos are stored (each as a separate chunk, or
database record) in a single database. Another database holds all records from the Address Book application.
We cover thisin detail in Chapter 6, Databases.

Unlikein atraditional desktop operating system, data and code are not copied from permanent storage to
dynamic memory but are used in place. For example, when your code executes, it is executing in-place from
the permanent storage. Since the permanent store itself is RAM, it can be read by the CPU like any other
RAM. Similarly, data can be read (and displayed) directly from storage.

For more information on memory usage in a Palm application see "Memory |s Extremely Limited" in
Chapter 4, Sructure of an Application.

NOTE:

Palm has been careful to ensure that permanent storage is protected against every programmer's ability to
accidentally overwrite memory (bugs happen). Pam rightly reasoned that users would be unhappy if one
bug in asingle application caused al their datato be lost. Thus, while the permanent storage can be read
like any other RAM, it is write-protected by the device. It won't allow that portion of RAM to be written.
In order to write to specific chunks within permanent memory, you have to use the operating system's
mechanism, and that includes a check against attempts to write to places outside the chunk.

Resources

An application on the Palm OS is a resource database that contains many different resources. A resourceis
simply a database record that has atype and an ID. Stored within these resources are the guts and skin of
your application. On the desktop, these resource databases have a .PRC extension. You'll find that they are
often referred to as PRC files.

Examples of the types of things stored in resources are:

e Your code

User interface elements
Text strings

Forms

Icons

The user interface elements that appear on the Palm device areinitialized based on the contents found in
these resources. Because the initialization is not embedded within your code, you can change the appearance
of your application (for instance, to localize it for another language) without modifying the code itself.
Another advantage is that you can use visual editors to display and edit the user interface portions of your
application. Such editors allow you to easily tweak the ook or presentation of data without recompiling and
redownloading your application. We discuss resourcesin detail in Chapter 5, Forms and Form Objects.

Events

A Palm OS application is event-driven. Events arrive, like pen down or key down, and your application
responds to them. Some events are handled by your application; others are handled by the operating system.
Once your application begins, it enters an event loop, repeatedly getting, then handling an event. The loop
continues until the user launches another application, which causes your application to quit. The event cycle
of aPalm application is covered in depth in Chapter 4.

Forms and controls

The Palm OS has built-in support for various controls and for managing forms. Forms are similar to
windows on a desktop operating system. Because of the simpler user interface on the Palm OS, only one
form is active even though several forms may be displayed.

The Palm OS provides arich API for forms that includes many user-interface elements. Some of these
elements are:

o Checkboxes

Radio buttons

Push buttons

Lists (one-column)
Pickers (pop-up lists)
Tables (multicolumn)
Scrollbars

Static text labels
Editable text fields
Menus

Because these elements are stored as resources rather than in your code, you can create a prototype of your
application very quickly. The simplicity of adding the User Interface (Ul) elements and the variety of them
makes it easy to try out various application designs. Chapter 5 contains a description of these.

Communications

The Palm OS supports a variety of communication methods. As communicating is an essential aspect of the
Palm'’s success, you should expect this area of the OS to be critical both in current and future applications.
Current communication protocols are:

e Serial communication.

o TCP/IP with a socket interface.

e Infrared. Low-level infrared support isvialrDA (Infrared Data Assocation).

o A higher-level object exchange is provided that allows exchanging information between Palm devices
and other devices using an industry-standard object exchange. This object exchange currently runs
only over IRDA, although other ways of exchanging information may be provided in the future.

Chapter 9, Communications, is devoted to afull discussion of communication features of the Palm OS.
Palm 3.0 OSfeatures

The 3.0 system added new features to the OS. The most important of these are:

Grayscale

The Palm 3.0 OS supports limited grayscale in 2-bit mode. Y our applications can switch between 1- and 2-
bit mode with specific system routines. Later devices and OS versions will undoubtedly increase grayscale
support.

Fonts

An additional larger bold font has been added to the ROM. Applications also have system support for the
use of custom fonts.

Heaps

The dynamic heap is larger, and the storage area has been folded into a single large heap. We discuss heap
size and manipulating memory chunksin "Memory |s Extremely Limited" in Chapter 4.

Objects larger than 64K
The system now allows you to manage objects that are larger than 64K with a new set of APIs.
Sound

Thereis support for volume control, asynchronous tones, custom alert sounds, and Standard MIDI (Musical
Instrument Digital Interface) Files (SMFs).

Dynamic Ul
New APIs are available that make it possible for you to create controls at runtime.

Serial number

Many devices (including the Palm I11) have a unique programmer-accessible serial number. This allows
greater flexibility with security measures. (Note: future devices are not guaranteed have this type of
identification.)

Applications that use these new features should check the version of the OS on which they are running and
either fail gracefully or not use 3.0-specific features.

Miscellaneous
The Palm OS has various other APIsfor things like:

¢ Strings-searching within strings, copying, converting to/from numbers.

o Dateandtime.

o Alarms-setting an alarm for a particular date and time. Y our application is then notified when that date
and time are reached (even though it may not be running at the moment).

¢ Find-the Palm OS provides a device-wide find that allows the user to search for a string anywhere
within the device. Each application doesits part by searching for the specified string within its own
databases.

With all these features, you can see that the Palm OS provides for rich and varied applications. Text and the
presentation of content are supported by awide variety of tools that aid in the visua display of information.

NOTE:
The subsystems of the Palm OS are called managers, and the naming convention for functions designate

the manager that they are in. For example, all memory manager routines begin with Mem All database
manager routines begin with Dm All form manager routines begin with Fr m

Overview of Conduits

The second part of the Palm application is the desktop connection. Because Palm devices act as an extension
of the desktop, it is crucial that information be easily exchanged. Conduits are the mechanism for doing this.

A conduit is code on the desktop that is called during a HotSync synchronization to manage the flow of
information to and from databases on the handheld. Conduits register the database or databases for which
they are responsible. Note that each database should have only one conduit responsible for it.

Conduits (Figure 2-1) are created using Conduit Development Kits for Windows (C/C++), Mac OS
(C/C++), or Java.

Figure 2- 1. Conduits control the exchange of information

Datebook Conduit
Todo Conduit
Moames Conduit
MyApp Conduit

Applications that do not have a conduit portion use a system-provided one instead. This Palm-created
conduit is used for backups and is part of HotSync. This backup conduit copies the application data or
database from the device and storesit as afile. Y ou specify the backup conduit when you create a database.
Think of thisasthe "If you can't afford an attorney, one will be appointed for you at no charge" conduit-the
conduit of last resort.

During aHotSync session, the backup conduit is called for databases that don't have another conduit and
which have been marked as needing a backup. At this point, it copies each record from the database and
copies database header information into afile. Thisfile can then be used to restore the state of the device if
necessary.

M ore sophisticated conduits do more than this basic copying of information. They can read/write specific
information to or from the device. For example, a conduit for a sales application might handle the
downloads of new price lists, overwriting any existing price list that has expired. It might also be responsible

for uploading a database of sales orders.

The most sophisticated conduits are those that synchronize records on the handheld with information on the
desktop. Good examples of these include conduits that synchronize the Date Book records with various
desktop PIMs like Outlook or Lotus Organizer. These synchronization conduits usually work by assigning
each record a unique ID and tracking when a particular record has been changed.

Handheld Development B

Many different development tools are available for Palm programming. Thereis everything from a
collection of tools that let you write C code to polished forms based packages that require only modest
amounts of scripting. From this gamut of choices, you should be able to pick the right tool for the type of
application you want to create. Before we discuss the advantages and disadvantages of each choice,
however, it's worth looking at a description of each option.

For the development of the handheld portion of your Palm application, you can write code on Windows
95/98/NT, Unix, or Macintosh platforms. Palm's official development environment, CodeWarrior, is
available for both Windows and Macintosh. Unix and Windows programmers have access to the free set of
tools-GNU C compiler, or GCC-and there are two packages for Windows-based forms development. Last,
but not least, Windows programmers can also program in 68K assembler or use a proprietary language
caled CASL.

CodeWarrior for Palm OS

The official development environment for the Palm OS is Metrowerks's CodeWarrior for Palm OS. This
commercia development environment allows you to create ANSI C and C++ programs on either Windows
95/98/NT or Macintosh systems. It currently includes Palm's Conduit Software Development Kit, and Palm's
own documentation assumes that you are using it. CodeWarrior for Palm OS is available on a subscription
basis with one year of free updates. It costs approximately $369. Here is a description of the tools that
CodeWarrior gives you for PAlm OS devel opment:

Metrowerks's Constructor

Constructor is a graphical resource editor (see Figure 2-2) that you use to create the user interface elements
of your application.

Figure 2- 2. Creating an application's resour ces using M etr ower ks Constr uctor

1§ Conebiwctor for PalmDS 1.0.2
ER i fnonge Loyod Window Hel
i _oixl| 0]
E s e sine B [o
- ﬁ Forms= } pemes -
Cuztomers 1000] Ll Dbgact Mame
] Codar o = Butbon =
2| Rem E EI
(8] Cumomer
| Cibete o E Largesu Propanies B Layou fgpeararcs
| B ratasm = Fom
il Let Drigh 0
L~ Tap Chgn 1] m 0¥
B Promct Setones wiah 180 —_——
Darvtrme App Rasow Height ”‘
N IIsable A Lkabk
dm.h.lun lewn Ham Ml u Modal
Marshn Siring Save Behind [e Bebin
Spplomian loon [e—Y 100
Fuba (erarss Hasde
Haadar ils nams
wienu Bar 10 1000
Inoiuge Detads in hea ey (.,)
Keep [0 In 3ync Fowrr Ttle Sales O ke ‘h 1001 .

J .| losEse] |

CodeWarrior Integrated Development Environment (IDE)

Thisis aproject-based IDE (see Figure 2-3) that includes:
- A Motorola 68000 C/C++ compiler

- A linker

- PalmRez (formerly called PilotRez), which creates PRC files from the compiled 68000 code and
converts resources from Constructor format to PRC format

Figure2- 3. CodeWarrior I DE editing a project

i Metrowerks Code'W arrion (=1
fie Edt Seerch Project lafrdow Help

NLOEEERENEEARRRNBEREERRE
|

O

[#3 Snies tfor device) = gl; {al:;a
2] Fs | Cose Dala
S Apphowee 131K GIE » = E.;l
B StertunC ode b &2 42 =
i) B 131558 B0 + + @
A SniesRacc = . —
-3 AppResomee s B RUUEAE
A Swesrs
oCrramas e][][B.][4] par (csaesushcuzes e S
M veal Stotiorary P [W]
case BeanCu =
handls::] = Lrus; —_
bresalk
1
raturn heandled:
static Boolean Cust 1 1 vent { EventPty svant)
3 e Boolean handled = fal=e:
switch {(event-r»eTyps)
Ccasa _stEelectEirent
1 s {mvant-idats. lstSalect selesction);
ha.m:'llzd = t'ru.e: —_—
break:
Urec 1z | 4] | o[

CodeWarrior Debugger

This source-level debugger is used to debug Palm OS applications. It can debug an application running on a
Palm device connected to your host computer via a seria cable, or an application running on the POSE.
Figure 2-4 shows the Debugger in action.

Figure 2- 4. Metrowerks Debugger being used on a Palm OS application

Hclmnﬂkzl:l-ehuggﬂv'l 75
Eﬂ Cormrol Dsts Mindow Copsole Heb

Salutprc lag _ o] = |
Frocass Cr
Eize=0xz3E E \EA.LEE l-\.‘.ialu:.mn.p:,- !EE
cardIT=i —
EEIE-Dxa0 P

iShobal Uadadlan -
DrdadF =imDpan e Coamendit. Eb!il]l]l!l‘.‘l‘.‘l:l:l

Drderkl andle Eve vl Cameniit...{0

il J Glabals
DrderF samCipse CanendiC_. |:|
=] B comentn. eoooo0oo

Ll el

I iF fHaRAl eCawmarPerna T Esm (e T 1

H Shada Warahlss
=ADCEBSED _ Starup__) wmid H -

o
0:10CEBT OO Pilaldain) b emarep | DOOCIEES
Starbyp LT i
T | | ccirias o o |
[
AR B CHE
[{5emies cromiEsashtmle. J
Diford PilotMein(Word cmd, Prr cmdPBP, Word LsunchFlags) =
|
Word =rrorc = 03
erroE = RonVersicaCcmpatible (Ox02000000, lamchFlags); _I
if (RELoE)
-
[Line: 2035 | Seaicn - 1_|_| k|

Palm Software Development Kit (SDK)

Includes header files, documentation, atutorial, and invaluable sample code. The samplesinclude the source
code to the built-in applications. Expense, Memo, Address Book, and To Do.

Conduit SDK

This SDK is used to create conduits. The SDK is available separately, but is bundled as a courtesy. Note that
the SDK requires Microsoft Visual C++ for Windows in order to create Windows conduits. Metrowerks's
CodeWarrior for Mac OS can be used to create Macintosh conduits.

Devel oping on the Macintosh

If you're already developing software on the Macintosh, you're probably using CodeWarrior and therefore
have a good idea of what to expect from this product. For those Macintosh users who don't have
CodeWarrior, you can assume that Metrowerks's reputation for creating quality development environments
is deserved. Most users are very happy with its products.

Devel oping on Windows

CodeWarrior was originally a Macintosh-only devel opment environment that has been ported to Windows.
While it works quite reliably, many Windows users find that the CodeWarrior IDE does not have a
Windows look and feel. Because it looks more like a Macintosh product and some keystrokes don't work as
expected, some Windows users find it annoying.

NOTE:

Y ou should assume that Metrowerks will fix the problems with the look of the Windows product. It is
certainly worth your time to check out the most current version. CodeWarrior can be purchased from Palm

Computing (http://www.pal m.com/devzone/tools/cw) or from mail-order houses such as PC Zone (http: //www.pczone.com). A
demo version of CodeWarrior for Palm OS (on Windows) is available from http: //www.pal m.convdevzone/tools/cw.

GCC

Thereisalong and honored tradition within the software developer community that tools, including
compilers, should be free. A towering figure in the quest for free programming tools is the Free Software
Foundation. VVolunteers for this organization have been responsible for creating some of the finest compilers
around. One of the best to come out of this effort is GCC (the GNU C Compiler), ageneral C/C++ compiler.
This compiler is one of the most widely used compilers on Unix, and it even enjoys broad use on Win32
platforms,

NOTE:

Free Software Foundation volunteers create compilers for various platforms and give away the source on
the condition that any modifications must also be distributed. Y ou can find out more information about the
foundation from its web site (http://www.gnu.or g/fsf).

When the Pilot 1000 first shipped, the only development environment was CodeWarrior running on Mac
OS. Many Unix and Windows programmers wanted to develop applications for the Palm but were not
willing to buy a Macintosh to do so. Some enterprising and helpful programmers took advantage of the
presence of GCC and added a PalmPilot port of the compiler that creates Palm OS binaries. A collection of
tools was put together in what is officially known as GNU PalmPilot SDK-however, most folks just call the
entire thing GCC.

What isin GNU PalmPilot SDK

This SDK isacollection of tools that allow you to create C/C++ Palm OS applications on Unix or Windows.
Thetoolsinclude:

GCC

The most important of these toolsisthe GNU C Compiler (GCC), which compiles C/C++ code to Motorola
68K.

GDB
A source-level debugger.
PilRC

This resource compiler creates Palm resources from textual descriptions of the resources. These text files
contain resource descriptions and end in the extension .RCP.

PilrcuUl

This application displays RCP files graphically, previewing what they'll look like on the handheld. Figure 2-
5 shows an example of PilrcUl.

Figure 2- 5. PilrcUIl displaying the resour ces of an application

% PilRc - C:ASALESA\zales. rcp

Fie Ophions Fom

New... [Detaili] |: Done]

Copilot

This application emulates the Palm device at the hardware level. It requires aROM image from an actual
Palm device and acts amost exactly like a Palm device. Further development of this has been taken over by

Palm-see Chapter 10, Debugging Palm Applications, for more details.
Whereto get GCC

There are several sources on the Net for GCC, depending on whether you want GCC for Unix or for
Windows. As new places become available all the time, it is worth checking Palm's web site for more recent
information. If you get all the parts at once, it is abig download (15MB), so make sure that you leave ample
timefor it. Our favorite place to acquire all of GCC at once is Ray's Software Archive

(http://www.pal mcentral .com).

If you use GCC, you still need to figure out what to do for the conduit portion of your application. Y ou have
two choices. Y ou can purchase the Conduit SDK Tool Kit from Palm for $99, or you can rely on the backup
conduit that Palm supplies.

Tools Directly from Palm Computing

Palm offersalot of useful stuff aswell. All of the following resources can be found at Palm's devel oper web
site (http: //www.palm.convdevzone):

POSE

This application is afurther development of Copilot. It serves as areplacement for an actual Palm OS device
while you do development. Because it can load a ROM image from disk, it usefully emulates different
versions of the Palm OS. Figure 2-6 shows how POSE appears on your monitor.

NOTE:

Of course, final testing of your application should take place with actual Palm OS devices. Do not ship an
application having tested it only on the emulator.

Figure 2- 6. POSE in a desktop window emulating a Palm 111 device

Palm OS” Emulator £

Debug ROMs

There are 2.0 and 3.0 OS ROM images that you can use with POSE. They are not the version of the ROM
used in production devices, as they have added, among other things, extra debugging code that does sanity
checking of parameters.

Palm OS documentation

All the documentation for the Palm OS can be found on Palm's web site. There are numerous FAQs, tech
notes, and white papers. This documentation is updated frequently.

Palm tutorial

Thisis awalkthrough that shows the building of an application from start to finish. The tutorial assumes
you'll be using CodeWarrior for Palm OS. This very thorough tutorial is quite good in its description of the
intricate details of application development (what buttons go where, how you add a button to aform, and so
on). There are Windows and Macintosh versions of the tutorial that can be downloaded for free

(http: //mww.palm.convdevzone).

Conduit Development Kit (CDK)

Thisisthe SDK for creating conduits for Mac OS and/or Windows using C or C++. This SDK costs $99, but
isincluded as part of CodeWarrior for Palm OS. The Windows version requires Visual C++. The Macintosh
version requires CodeWarrior for Mac OS.

Conduit SDK, Java Edition

Thisisthe SDK for creating conduits for Mac OS and/or Windows using Java. This SDK costs $99.

Alternative Development Environments 2

The following sections describe several useful alternative development environments for the Palm OS.
Assembler SDK (ASDK)

This SDK allows development of applications written in Motorola 68K assembler. It includes Pila (Pilot
Assembler). To us this would be sheer agony, but apparently some devel opers enjoy writing applicationsin
assembly language. To each their own poison. Y ou certainly can't beat the price-it's free.

For more information, see Darren Massena's web site (http://www.massena.com), which is an indispensable
Palm developer resource in its own right.

Jump

This novel environment allows you to write your application in Java using a Palm class library and your
favorite Java development environment. Jump then compiles the resulting Java .class files into Motorola
68K code. Jump includes avery small runtime library that provides crucia Java support like garbage
collection.

The only disappointing aspect of Jump is that the Palm OS is not completely supported. For example, any
calls that require a callback function as a parameter (such asLst Set Dr awFunct i on and
Fr mnSet Event Handl er) won't work.

This development environment is free, and source code is provided. Jump is the brainchild of Greg Hewqill;
you can get it from http: //mwww.hewgill.com.

CASL

This commercial package provides cross-platform support. Y ou write an application once in the CASL
language (a BASIC-like proprietary language) and then deploy it on Palm OS or on other operating systems.

This approach offers you ease of cross-platform dispersion as you write your applications in one language
for multiple platforms. The code is compiled into a p-code for avirtual machine. Thereisavirtual machine
for Palm OS, and one will be available for Windows CE in 1998. Y ou can test your applications under
Windows, aswell. Figure 2-7 shows an example of application development using CASL. Asyou can see,
development is simpler than directly using C or C++.

CASL runsonly on Windows and is currently priced at $64.95 (a free demo version is available). See
http: //www.casl soft.com for more details.

Figure 2- 7. Using the CASL IDE

. ChSLade? - Blackjak_cxl [O] =]
Fi= Edi ‘i=s Fio Buld Epsrule Took “Window Help
HE O = T K [Pilot Debug Xl & A

SN [lackiak el BEE

E lavmches %
launchey) l_winner -

o 36D B45;

e

h_=mce==0
n1 ET="1

L

card=randomn(10l+1
£ card=l
h_mcasl
how ace:

h_total=card:

card=randoun| 10 }+1:
cards=1
b =i

[Lel]

B

=l
Ll

T T s/

Foi Help, piess F1 L T Ll 10 P

High-Level Forms Devel opment 2

Palm devices are so numerous and applications so popular that there are even a couple of third-party
development environments specifically for creating specialized forms-based Palm applications.

Pendragon Forms

This Windows application provides avery easy way to create simple multipage forms that contain text
fields, checkboxes, radio buttons, etc.

Pendragon Forms also provides a conduit that automatically uploads information into comma-separated
values (CSV) files. These files can then be easily imported into spreadsheet or database programs. Looking
at Figure 2-8, you can see how simpleit isto make the form being displayed on the Palm device in Figure 2-
9.

Figure 2- 8. Developing a form using Pendragon Forms

4" Pendiagon Forms Manager

t: Pendragon Forms Manager

Bacoded Parts |nvantony

T T pya—
E: Foim Dezigren

Form Title: |1

Field Type:
|Popup st

Popup Dptions:
Meak

Field
2
Lp A Fare
:

TaaFare
T elephane Calls

w Select one.. Miscellansous

O3
RIRIRAL] = 3 -]

Enter your question bext i T T -

Figure 2- 9. Running an application created with Pendragon Forms

F
Mlaaks
Fir Fare
Tawi Fve
Telephone Cals
w Mliscelaneaus
(D) (aven)

Pendragon Formsis $50, and, nicely enough, there is no runtime fee necessary for deploying forms. See
http: //www.pendragon-software.com for further details.

Satellite Forms

Satellite Forms, by SoftMagic, is an environment for creating very sophisticated Palm OS applications. In
Satellite Forms, your application consists of a number of database tables and forms. Each formistied to a
specific table and can display elements of that table. Figure 2-10 shows an example table in Satellite Forms.
Figure 2-11 shows an example form. Figure 2-12 shows the resulting form on a Palm device.

Figure 2- 10. Creating atablein Satellite Forms

= Satclite Forms App Desgner [Developer Edition) - Sales. zfa

B Edk View Hardeeld Window Help
DiS|E] s[m(@| 2| & 2 S1=|] =] == -]

l:é't:h nfrhmr 55 Praducts

ioperties

Froems Mame of Table: [Pracicts

* Cuztomer

* Cuigtomess

. k=i

+ Oider

T ables
Categonies
Customers
Orders
Bl Froducts

@ Extersion:

e | o [

5 Barbee

B Monopoly
7 Life

i Hisk

fad bl B b B RS e =

Fleady Y I I

Figure2- 11. Creating aform in Satellite Forms

* Satellite Forms App Designer [Developer Edition] - Sales sla
Eie Edt Yiew Handheld ‘Window Help

D|s|m| #[8|a] 2] ﬂl a5 I E | r!||1||-|r I |2 | o | [e
SO e
% Froperte: _I Iﬁ peilies of Bullon Conliol

Faumng

) i af Comtiol
Customar
+ m Customers m III
[E wem T Cancel
+ B Order - al s |
B Tabies M.
Calegones
Cuskomiers Atriuhes: Action when Clcked
Orders ol [
Fredhicts |£Hn|mal =l F.m
ﬂﬁ Esdensions Eddt I
W Visble Dimensens
=T
Pasin |* £
™ Auio Alepest :

I Altesnate Shape s [9 w [15

Ready

Figure2- 12. A running Satellite Forms application

0

Sureenary:
Repair front steps
Completet [] Yes [E Mo

Extra Infa:

Rrickgareanemel

Instead of using C/C++ code, you control the actions of the application in one of two ways:

e You specify aset of built-in actions that occur when the user taps a control. For instance, when a
button is pressed, you could request (among many choices) that a new form be opened or that you
return to the previous form.

e You specify custom code that you want executed. The codeis created using a scripting language that
isvery similar to Visual Basic.

The application comes with a number of built-in controls aswell as alibrary of routines. Satellite Forms also
has an extension mechanism that allows you to write C code for your own new controls and new libraries
(imagine, for instance, alibrary of financial routines or a new user interface control).

Satellite Forms has an ActiveX control that is connected to a HotSync conduit. Y ou can use the ActiveX
control during HotSync to copy any table to, or from, the Palm device. The tables are stored on the desktop
as DBX files, which can be easily integrated with any database.

At the time of this writing, the price tag for Satellite Forms was $595 (making this the most expensive
environment). Y ou have a couple of requirements, aswell. It only runs on Windows, and applications you
create require aruntime library on the Palm device (the runtime is free). After you hand over the initial
money, there is no additional cost to deploying applications built with Satellite Forms. There is ademo
version (which limits the number and size of tables you create) available at the company's web site
(http://www.pumatech.conysatforms _fam.html).

There are certain things that can't be done in Satellite Forms. For example, you don't have direct control of
events, you can't specify your own menu items, and text fields have a maximum length. It also may be quite
difficult to create a very specialized user interface (although the extension mechanism does allow alot of
flexibility).

Thisis avery sophisticated package that can be used to create commercial-quality applications. The
following commercia products have been built with Satellite Forms:

e Punch List by Strata Systems. Thisis project management software for the construction industry.

o Real Estate Companion by Mobile Generation Software. Thisis client and property information for
real estate professionals.

o Helpdesk on the Go by Kerem Krikpinar. Thisis afield service companion for technical support
desks.

Handheld Devel opment Recommendations

Now that you have a good idea of the choices for creating applications for Palm devices, it'stimeto figure
out which isthe right one for you. As should not be surprising, Windows programmers have the most
flexibility; Macintosh and Unix folks have none. Let's look at the Macintosh, Unix, and then Windows
choicesin order.

Developing using Mac OS

CodeWarrior for Palm OS is the only way to do development at the current time. The good news is that
CodeWarrior for Palm OS started life on Macintosh, so you can be assured that it's a robust, elegant product.

Developing using Unix

You'll be using GCC tools for your development environment. Thisisn't really a disadvantage, however. If
you are accustomed to twiddling around with Unix in the first place, then the slightly more complex setup of
GCC (the need to use makefiles) won't even get atwitch out of you. Plus, it's free.

Devel oping using Windows

Y ou've got quite a bit of choice, as every environment we have discussed is available on Windows. Let'stry

to eliminate some of the options by focusing on what might be a factor in your decisions:
Assembly programming

If programming in assembly is your cup of tea, then ASDK isfor you.

C/C++ programming

If you are an ardent C programmer, you will be using CodeWarrior or GCC. If you are an occasional or
hobbyist programmer, then GCC is probably your best choice, given its attractive sticker price. Whileitis
more flexible, it is also more difficult to use (it requires familiarity with makefiles and command lines).*

For greater usability, we suggest that you go with CodeWarrior. The inclusion of Palm's Conduit SDK as
part of the package, the documentation and source code provided by both Metrowerks and Palm, and Palm's
support make this development environment the obvious winner.

Forms-based script devel opment

If priceisan important factor, then we think Pendragon Forms is a good low-cost way to create simple forms
for inputting data. If we were writing a simple survey-type application on atight budget, this would be the
tool of choice.

The choice for rapid prototyping, fast development, and great usability

We are very excited about Satellite Forms and view it as comparable to Visual Basic on Windows. If you
can afford it, you should use it. Even if your final shipping application is based in C, this environment is
great for rapid prototyping. It allows quick development of applications without forcing you to get involved
in the low-level nuts and bolts of creating an application from scratch.

Let's put it thisway-if we (veteran C/C++ programmers) were writing any application for the Palm OS, we'd
first look to see whether we could use Satellite Forms. We give this strong a recommendation because of the
experience we had with porting the sample application in this book to Satellite Forms. Don't be fooled by the
simplicity of the environment. Y ou can create quite sophisticated applications very quickly with little or no
custom code. For example, consider the Sales application that we are developing in this book. Using C, this
application has more than 2,000 lines of code and took weeks to write. Using Satellite forms, we created an
application with similar functionality in about three hours-thisincludes the time it took to learn how to use
Satellite Forms.

On the CD-ROM are versions of the Sales application. Compare the CodeWarrior/GCC version of it with
the one we created using Satellite forms. We think you'll be amazed at the similarity. Figure 2-13 shows the
final Satellite Forms version running on the Palm handheld.

-Figure 2- 13. Sales application written using Satellite Forms

9 (<
(3 e

Switching platforms

If you are changing devel opment platforms, there are afew issues for you to consider. CodeWarrior is
compatible across platforms, as projects and files can be moved from Macintosh to Windows and vice versa.

Y ou also have cross-platform compatibility between Windows and Unix if you are using GCC. The only
thing to watch for is line break conventions-they are different on the two operating systems.

NOTE:

Metrowerks Constructor uses Mac OS resource forks. (If you're not familiar with Mac OS resource forks,
now is not the time to learn.) While this creates no problem for the Mac OS, Windows is another matter. A
Windows project requires two separate files for your Constructor resource files, one for the data fork and
one for the resource fork. This can cause some confusion on Windows, since both these files are visible.
Additionally, in order to get these two separate files created, you have to copy Constructor fileson a
floppy-copying over the network won't work.

NOTE:

This problem will go away in the future when Constructor is rewritten to use normal datafiles that provide
true cross-platform compatibility.

Switching development environments

Switching from CodeWarrior to GCC or vice versais possible but not easy. The source code is not much of
aproblem, even though there are some differences between the two C/C++ compilers. The resources are a
different matter. If you are moving from GCC to CodeWarrior, you have to do the following:

1. OnaMac OS machine, use pr c2r sr ¢ to convert your PRC file to a Macintosh resourcefile. (That's
right-you need a Macintosh to convert from Unix to Windows!)

2. Next, use ResEdit to modify the MBAR resource into an MBAR resource and separate MENU resources as
required by Constructor.

Going from CodeWarrior to GCC is much easier:
1. Use PTools (which iswritten in Java and therefore available on any platform) to open your .PRC file.

2. Next, display each resource in PIIRC format. Copy each of the resources into one big .RCP file, and use
thisasinput to PIIRC.

NOTE:
The sample application in this book, Sales, compiles with both CodeWarrior and GCC and has both PIIRC

resource files and Metrowerks Constructor files. Thus, it can be built in either environment. Most of these
tools (demo or complete versions), along with the sample code, are available on the CD.

Conduit Development 2

If you are creating a conduit for your Palm application, you need to do so on Macintosh or Windows using
Palm's Conduit SDK. The Conduit SDK comes with:

o Header files
e Debug and nondebug libraries

e Source code for sample conduits
What Is a Conduit?

Under Windows, a conduit isaDynamic Link Library (DLL) that is called as HotSync occurs. Aninstall
DLL isprovided with which you register your conduit with HotSync. On Mac OS, a conduit is a shared
library.

Conduits have access to databases on the Palm OS. The Conduit Manager handles the complexities of
communication; it is not your concern. You simply call routines to read and write records in the database.
The Conduit Manager handles the communication protocol.

Using C/C++

In order to develop conduits for Windows, you must use Visual C++ 5.0 (or later). For Mac OS, you can use
any development environment that has the ability to create shared libraries (CodeWarrior for Mac OSisa
likely candidate).

C++ classes that smplify creating a synchronization conduit are provided by Palm (frequently referred to by
the names basemon and basetbl). These C++ classes are the basis of the conduits for the built-in
applications. If your application's synchronization needs are similar to those of the built-in applications, then
these C++ classes work well. As your application's sync needs differ, the C++ classes become less useful,
and you might wish to consider reverting to the underlying C/C++ Conduit Manager API to make things
work properly. You do, however, have another aternative.

There are other C++ classes recently provided by Palm to aid in the creation of conduits. These classes
(called Generic Conduit) are not officially supported by Palm (at the time of this book's writing), but they do
offer an aternative-in many ways easier-method of conduit creation.

Using Java

Presently, Java conduits work only on Windows. Conduits written in Java can take advantage of Java

Database Classes (JDBC) for easy interaction with database engines. The sample code that is part of the
Conduit SDK, Java Edition, uses JDBC to interact with an Oracle database.

Conclusion .&

Y ou should now have a good idea of which development environment you want to use to write your Palm
OS applications. Y ou should also know enough about the featuresin the Palm OS and of the devicesto
make intelligent decisions about the types of applications that you can create for Palm devices. Next, we
discuss the sample application that we are developing throughout this book.

* While we have never used any, we have heard that there are visua frontends to GCC that make it somewhat easier to use.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PaaPaaac

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! &

PRt

In this chapter:

e User Interface Elements

in an Application

Genera Design of aPalm Application
How the Sample Applications Are Useful
User Interface of the Sales Application
Developing a Prototype

Design Tradeoffs in the Sample Application
Designing for a Small Screen

Designing the Databases

Designing the Conduit

Design Summary

3. Designing a Solution

Now that you know about the features of the Palm OS and you have figured out what devel opment
environment you are going to use, it istime to create a new application. To do this, you first need to know
what the Palm OS provides in the way of user interface elements. Second, you need a description of the
elements common to every application.

From this general overview, we move to a concrete example. For this purpose, we discuss a sample
application that we are going to create and then dissect in this book. We show you its design, what actions
the user performs, how we prototyped it, and the design complications we encountered. Once we've covered
the handheld portion of the application, we turn to a description of the conduit.

User I nterface Elements
in an Application i

The Palm OS provides you with an abundance of user interface elements. The following is a description of
these elements. We also show you some common examples of each type.

Alerts

Figure 3-1 contains an example of atypical alert. It issimply amodal dialog that displays atitle, a message,
an icon, and one or more buttons. Y ou are responsible for setting the text of the title, the message, and the
button(s). Y ou also specify the type of alert. It can be any of the following types (ordered from mildest in
conseguence to most severe):

I nformation

Thishasan "i" icon. The alert provides to the user some information (for example, that an action can't be
completed). No data loss has occurred.

Confirmation

Thishasa"?' icon. The alert asks the user a question, asking the user to confirm an action or to choose from
possibilities.

Warning

Thishasa"!" icon. You are asking the user if the action isreally intentional. Data loss could occur if the
action is completed. The Memo Pad uses a confirmation alert for deleting memos, since the user can choose
to save an archive on the PC (thus the datais not lost). However, the system uses a warning dialog when the
user chooses to delete an application, since after the delete, the application is completely gone. Figure 3-1 is
awarning alert.

Error

This has astop sign. This alert tells the user that an error occurred as aresult of the last action.

Figure 3- 1. A warning alert

Delete Application i)

& Delete the TestTable
applicationand all data?

(ves J(_1)

Forms

A formisagenera purpose container for one or more other user interface elements. A form can contain
buttons, lists, tables, controls, and icons. It can aso have a menubar associated with it. Forms can be
anything from modal dialogs to containers for lists or tables of data. Forms can be small or fill the entire
screen of the handheld.

Thelook of aform, including the proper placement of buttons, is covered in the Palm OS documentation.
Y ou need to scrupulously follow placement guidelines for al elementsin aform. Figure 3-2 contains three
different forms from the built-in applications to give you an idea of the variability they can have.

Figure 3- 2. Three forms containing various controls

[ddross View DR firroe I PrivateRecords

Technical Support e — @ You howe morked this

3Com Corporation record Private. Go to
e e the Security application

Waork: #47-676-141 and tap the Hide button

to hide all Private
records.

Other: www.palm.com
E-mail: support@palm.com

1565 Charleston Road
Mountain View, CA 34043

o) (@) () & (oonw) (G) ENA] ¢

Menus, Menu Items, and Menubars

Menus, menu items, and menubars are related to one another. A menubar contains one or more menus. A
menu contains one or more menu items. Menu items often have Graffiti shortcuts associated with them.

Figure 3-3 contains an example of a menubar with two menusin it. One of the menusis open, and it
contains six menu items (plus an additional separator bar item). We discuss these features in detail in
Chapter 7, Menus.

Figure 3- 3. A menubar with two menus; thefirst menu has six items (plus a separator bar)

Tables and Lists

Tables and lists are used for similar purposes. Use a table when you want to displays multiple columns of
data and use lists when you need to display a single column. We discuss this further in the section "Tables"
in Chapter 8, Extras. Figure 3-4 contains an example of alist on the |eft and atable on theright. Asyou can
seein Figure 3-4, tables can support different types of data.

Figure 3- 4. A list (Ieft) and atable (right)

776 Bus £ 400
7/6 Barfore $_ X000
76 BusmessMecks §_ 2500
776 Fax 3 S.00
76 Dinner 5 6525
74T Hotel $_12500
T/T Entéertomndreednt £ 10,00
778 Cor Rentol : 27.598

Miscellaneous User Interface Elements

There are anumber of other user interface elements. These include buttons, checkboxes, bitmaps, fields,
gadgets, labels, Graffiti shift indicators, pop-up triggers, push buttons, repeating buttons, scrollbars, and
selectors. Table 3-1 contains an example and a brief description of the typical use for each item. The Pam
OS documentation describes in detail the attributes of each type of object and gives you information on
where each item should be placed in aform.

-Table 3- 1. Miscellaneous User Interface Elements

User Interface

Element Typical Example Brief Description of Use
A button is atappable object with a
Button label. An action occurs when it is
tapped.
Checkbox A checkbox represents an on/off state.
Thisisfor user data entry. It has one or
Field more lines of editable text. It can also

be used for text that isn't editable.

Thisisabitmap object that is usually
Form Bitmap (D black and white. Look for grayscale and
color support in the future.

M T W T F S Thisisacustom Ul object that is
& 7 8

. a 1 11 limited only by your imagination. Y ou
400 can create gadgets for ssimple or
10:00 complicated uses.
Gadget 1200 foeo I
200 [This example gadget comes from the

400 Calendar application and was created to
&0 handle the display of custom
appointment times.

This shows the current Graffiti shift
state (punctuation, symbol, uppercase
Graffiti Shift shift, or uppercase lock). This indicator

Indicator t should bein any form that allows text
entry and should be at the lower right of
the form.

Label First narne: Thisis anoneditable text object.

Tap on thisto display apop-up list. The

Pop-up Trigger = il pop-up trigger displays the currently

selected text from the list.

Push buttons represent an on/off state
Push Button Priovity: [2[34]5] and, as arule, are grouped so that only
one of agroup is selected at atime.

Thisworks like a button but causes a

Repeating Y . . . -
Button - (rj%pvsfl ng action while the button is held

This object is often used for scrolling
text or tables. It alows one-line
scrolling, page scrolling, and direct
navigation to a particular location.
Scrollbars are not available prior to
Scrollbar Palm 0S 2.0,

If you plan to support the 1.0 OS, your
code will need to handle scrolling using
the hardware scroll buttons.

When a user taps this object, adialog
.. box pops up to allow the user to edit the
.................................... Val uel A grw r&tangle &jrrounds the
trigger.

General Design of a Palm Application B

Most applications will contain a certain core number of user interface elements. Even the simplest
application will, at the very least, need aform and some controls. Most applications go well beyond the
minimal number of features and have multiple menus, forms, and dialogs as well.

When you sit down to design your application, you'll need to ask yourself the following questions and come
up with some reasonable answers to them:

What tasks does the application accomplish?

Obvioudly, thisis a question one would ask about any application on any platform. That doesn't make it any
less relevant here. Y ou need to lay out as clearly as possible what the user can do with your application,
what tasks the user can perform. Just as importantly, you should have a clear idea of possible tasks that the
user can't do.

The essence of the Palm OS and the handhelds is speed and accessibility. Putting a possible feature on the
chopping block because it ruins either of these is something to be proud of and is terribly difficult to do in
this era of "kitchen sink" applications.

What forms does the application have?

Thereisminimally a startup form that the user sees when tapping the application icon. Every dialog (other
than an aert) or other dataview isalso anew form. A good rule of thumb is that you will have one form for
every view of data. Forms add up fast when you count this way.

What menus does the application have?

Commonly, you will support the Record, Edit, and Option menus. They will be similar to those found in the
built-in applications with the same menu items. Often custom menus are also a part of the application.

What dialog boxes does the application have?
Alert diadlog boxes give information, ask questions, issue warnings, and report errors.
What is the structure of the application’s database or databases?

The database is where you store information that is displayed on the handheld. Y ou need to decide how
many databases you will need, how the records are ordered, and what is stored in each record.

What versions of the OSwill you support?

Y ou need to decide what versions of the Palm OS you are targeting. As we write this, there are three
versions: 1.0, 2.0, and 3.0.

A Palm study found that less than five percent of the Palm OS devicesin use were running the 1.0 version of
the OS. This number will only shrink as more post-1.0 OS devices are sold and users upgrade their 1.0
devicesto the 3.0 OS.
Our recommendation is not to worry about compatibility with the Palm 1.0 OS. Users can upgrade to the 3.0
OS (including IR support and 2MB of memory) for around $100 at the time of thiswriting. A user unwilling
to spend that kind of money is probably unwilling to buy your software. Of course, your particular situation
may dictate that you support the 1.0 version of the OS.
Here are the major changesin the 2.0 and 3.0 operating systems:

Palm 0S2.0

Many new APIs, some changed APIs. Support for TCP/IP (on _ IMB devices), support for scrollbars,
and support for |EEE Floating Point (32-bit floats, 64-bit doubles)

Palm OS3.0

Added support for infrared (devices include an IR port), additional sound support, additional font
support, progress manager, possible unique device ID

NOTE:

It's very easy to write an application that is intended to support the 1.0 OS and accidentally uses a post-1.0

call (like Evt SysEvent Avai |). To catch thistype of error, include a header file that flags any calls to a 2.0-or-later
routine. Y ou can find this header on the CD-ROM. Y ou can also test your applications with POSE using older ROMs.

What does the conduit do?

If all you want to do is save the handheld data to the desktop as a backup, use the backup conduit. If the user

needsto look at or edit the data on the desktop, or if the user needsto transfer data from the desktop to the
handheld, then you need to design a conduit and determine what it can and can't do with data. Y ou need to
figure out what datais transferred, whether datawill be uploaded, downloaded, or synchronized, and what
application on the desktop the user will useto view the data.

General Optimization

There are al'so some important ways to optimize when designing an application:
o Minimize the number of taps to complete frequent actions
o Minimize screen clutter by hiding infrequent actions

e Provide command buttons for common multistep activities
e Minimize switching screens

How the Sample Applications Are Useful 2

Some of you may be wondering how useful the Sales application will be to you. Does it show you how to
implement all the APIS? Does it contain the essential components of most Palm applications? Here are some
answers. The Sales application uses most of the Palm API (except for Category Ul) and to that extent offers
abroad treatment. Because it isn't an exact clone of the built-in apps, you aso see some new design issues
and code. It also covers databases, beaming, menus, dialog boxes, and Find. Another crucial component is
the detailed description of its conduit. We hope that much of what is mystifying about conduitsis clarified in
our descriptions and the code we create.

We also cover some Palm OS features in smaller sample applications. We handle tables, barcoding, serial,
and TCP/IP in this manner. The bad news is that the Palm OS is so feature-rich that there are indeed some
other areas we don't cover in this detail. We hope there are no glaring omissions. Our goal was not to cover
every topic but only the most difficult or important ones. Our examples are created with this goal in mind.
(If we goofed, let us know and we will try to correct it in the future.)

User I nterface of the Sales Application 2

The sample application we are creating is a forms-based application that will be used to record orders. This
application is for a person who sells toys to stores.

NOTE:

This sample application will be used as abasis for our code discussions throughout the book. It and the
source code are available on the CD-ROM.

These are the activities we want the salesperson to be able to accomplish in the application:

Modify, delete, or create a new customer
Create anew order for a customer
Delete an order

Delete or modify itemsin an order

e Beam acompany to another device

The Sales Application Customer List

The user starts the application and picks a customer from alist.
The customer list

Thisisthe startup form of the application. It isalist of all the customers that our salesperson normally sells
toysto during that selling period. The user can tell which customers already have orders because those
without orders are in bold.

We admit that bolding an item to indicate status is a subtle, if not obscure, design element. Its presenceis
reasonable when you remember the audience of this application. The same user will useit day in and day out
for taking orders. The bolding of an item in a constantly used application may be warranted, while it may not
be in amore general purpose application. In any case, a user who doesn't know what the bold isfor is not
hurt-it's just a shortcut for the experienced user.

When a name is selected from the customer list (see Figure 3-5), the individual Customer form is opened.

-Figure 3- 5. Picking a customer from alist

Bucket of Toys-2
Toys we be-3
Mick's Best Tows
Little Toy Shop
Toys By Alex
Pook's Play Spot

Occasionally the salesperson may want to create a new customer while out in the field, so we provide this
capability on the handheld. On Palm devices with IR capability, the salesperson might also want to beam
customer information. Both these actions are handled in this form as part of the Customer List Record menu

(see Figure 3-6).

Figure 3- 6. Customer Menu in the Customer List form

Oprions
Mew Customer M
Beam all Customerss B

New Customer

When the user selects New Customer or performs the Graffiti shortcut, the New Customer dialog you seein
Figure 3-7 is shown.

Figure 3- 7. New Customer dialog

MNarme:
Address:

City:
FPhone:
Private:
[oK) €oncel) [Delete)

Note that customer records can be labeled private. When a user selects this option and the preferences are set

to view all records, we put up adialog explaining why that customer is still visible (see Figure 3-8).

Figure 3- 8. Explanation on private record checkbox

Private Records

@ Y¥ou have rarked this
record Private. Go te
the Secwrity application
and tap the Hide button
to hide all Private
records.

Cox)

The user clearly expects something to happen when selecting the private checkbox. If preferences have been
set to hide private records, the record disappears from view when the user taps OK. We put up the dialog to
prevent confusion on the user's part when all records are viewable. Thisis a good example of explaining
logical, but unexpected, results.

Beam All Customers

If the handheld has IR (infrared beaming) capabilities, this menu item provides a quick way for the
salesperson to transfer all the customer information to another device. When Beam All Customersis
selected, the user get the message shown in Figure 3-9. The person receiving the customers aso gets status
information (see Figure 3-9).

Figure 3- 9. The status when beaming customers

Joe's toys-1
Bucket of Toys-2
Toys we be-3

a

Joe's toys-1
Bucket of Toys-2
Toys we be-3

a

Beamn

Preparing: All Accepting: AN
L CuUstOrers T CUSTOINErs

If the Palm deviceis not IR capable, the user never seesthe item in the Customer List menu. The built-in
sample applications aways show the Beam menu, but then tell users they can't beam on a non-1R-capable
device-we like our way better.

The Customer Order Form

Once a customer is tapped on, the user is shown the individual Customer form. Most of the activity in the
application happens here.

Creating an order

The most important activity is the creation of an order. Thisis done by selecting toys and adding them to the
customer's order. Figure 3-10 shows an empty Order sheet and one that has several itemsin it.

Figure 3- 10. A new order and one containing several items

....... lgsl-Joe [
....... 126 Kite I
....... 127 Eall -
....... 138Yoyo AT
....... 125G Joe -
....... 120 Manopoly -
....... 122 Yahtzee -
......... 10Life B
......... 20 Battleship a5
I: Mew... :] I:Detuils:l I: Crane :] I: Mew... :l I:Detuils:] I: Done :]

Figure 3-11 shows the toys listed by category. First the user selects a category (if the current category is
wrong) and then selects one of the toysinit.

Figure 3- 11. Selecting a category and toy

(New_) (Detads) (Done)

Once an order is complete, the salesperson closes it and moves on to another customer. Orders can be
revisited, if necessary. Asthereisonly one order per customer, selecting that customer from the list
automatically takes the user back to the order.

Idedlly, a customer should be able to have more than one order associated with the customer form. In a
shipping application, we would certainly add that functionality. For the purposes of this book, however, the
extra programming doesn't add much new to our explanation of the Palm OS. We |leave it as an additional
exercise for eager readers.

Modifying an itemin an order

The user can modify an item by tapping on the part of it that needs changing. If the toy iswrong, a new toy
can be selected. When the item is changed, the item stock number automatically updates to reflect the new
toy. If the number iswrong, that can be changed separately.

Deleting an itemin an order

Deleting the item can be done in two ways. The quick way isto select Delete Item in the Record menu (see
Figure 3-12). If the user failed to first select an item, we give adialog box reminder prompting an item's
selection (see Figure 3-13). Otherwise, we show the user a confirmation dialog just to make sure the delete
request was valid (see Figure 3-13).

-Figure 3- 12. Deleting from the Record Menu

Edit Options |
Delete Hem]
Delete (ustomer._ .
Customer Details... »E

(Hew_) (Detods) [Done)

Figure 3- 13. Deleting an item from an order

125 Gl-Joe etk

@ You must haveon item Product: w Barbie
selected to perform
this command. To
select an item, tap on

Delete Item

the product nome of @ Delete salected order
the item. item?

It isdifficult to say whether it is better to require a user to constantly confirm deletion requests or to allow
the accidental deletion of items instead. Two points that drove our decision here were the smallness of the
Palm screen and the real likelihood that the user would be moving when selecting items. Remember, there
are only a couple of pixels of space between Delete Customer and Delete Item in the Record menu. If you

give the user no warning before deleting an item, you can easily turn a mistap into a terrible mistake.

Another way to delete an item is by selecting the Details button, which brings up the Details dialog (see the
right side of Figure 3-13). A deletion confirmation dialog is also shown. A third way isto set the quantity to
0, and then tap on a different row.

Changing Customer Information
To change information about a customer, the user selects Customer Details in the Record menu (see Figure

3-17). Delete Customer is used to get rid of the customer entirely. (We talk more about why this information
ishandled herein "Design Tradeoffsin the Sample Application,” later in this chapter.)

There are two different details forms. one for the customer and one for the item. They have different user
interfaces. When you follow the logic of the Palm Ul, and look at the number of times a user islikely to do
either of these tasks, you will understand our positioning of each of these choices.

The Customer Details

The Customer Details is the form in which you change information about the customer or, secondarily,
delete the customer entirely (see Figure 3-14). This is not something we commonly expect the user to want
to do. Indeed, thisisinformation that is primarily entered and maintained on the desktop. We allow editing
to give the user flexibility, not because we think this form will be edited very often. The user is more likely
to look at thisform to get the customer's tel ephone number than to change it. As accessis through the
Record menu, thisform is difficult to get to, and it may be hard for the user to remember itslocation. Thisis
okay if it allows better access for a more frequent activity. It does-to the Item Details form.

Figure 3- 14. Customer information

Mamve: Bucket of Toys-2
RAddress: 1732 South B Streat

City: Miwoukes
Phome: {281)3%%-670%
Private:]
[oK) €oncel) [Delete)

The Item Details

Every customer has an detail screen associated with the order, as well. In this form, the user can do three
things (from most frequent to least):

o Delete the item from the order
¢ Change the quantity of theitem being ordered
¢ Change the type of item being ordered

The activity most likely to occur is the deletion of an item, because the item amount or type can also be
changed in the order itself (see Figure 3-15). But the salesperson can only delete an item from an order in
thisform. Asthisis amore common activity than viewing information about the customer, thisformis
easier to get to for the user.

Figure 3- 15. The Item Details screen

125G Joe 3

Product: -« Barbia

Quantity:

ok) (Cocel) [Delete)

Deleting the Customer

If the user selects the Delete Customer menu item, a confirmation dialog is shown (see Figure 3-16). A
much slower way to delete an item is to select the Customer Details menu item and tap the Delete button in
that form.

Figure 3- 16. Deleting a customer

Delete Customer

@ Delete selected
customer 7

® Save backep copy on PC7

O &

We provide the user with an option to archive the customer information on the PC, as opposed to deleting it
completely from both the handheld and the PC.

Beaming the Customer

The user of an IR-capable device can also beam information about a single user. Selecting the menu item
Beam Customer takes care of this. We make sure that non-I1R-capable devices don't show the item in the
menu (see Figure 3-17 for a comparison).

Figure 3- 17. The Record menu with beam present and not present

I RIS N Edit Options I I GETLTY Y Edit Options I
Delete Item i Delete Item i
Delete Customer... Delete Customer...

Customer Details... ~E Customer Details...

Bearn Customer + B

Edit and Options Menus

Last, but not least, we offer Edit and Options menus in our application with the standard Graffiti shortcuts
(see Figure 3-18).

Figure 3- 18. Sales application Edit and Options menus

Record [y Options) [Customer [T |
Undo «U About Sales |
Cut X
Copy «C
Paste &P
Select AN 75

Keyboard K
Graffiti /G

Developing a Prototype 2

Now that we've shown you the application in its final form, let's back up and show you the process and
decisions we made to get there. First, let'slook at how we prototyped it.

Clarify the Flow of Events

Our prototype design was a mock-up of the basic views that we wanted to have in the application. We came
up with those views by listing the actions we wanted the user to be able to do and the order in which we
thought they would occur; we discussed the flow of events. Our strategy was to optimize the application so
that the more frequent the action the fewer stepsit took to complete. We also wanted to emulate the design
of the built-in applications wherever possible.

The Sart Screen

The first and most important view to create well is the start screen-what your user sees when the application
is launched. In the Sales application, the place to start seemed straightforward-with alist of the salesperson's
customers. Thisisalist that can be modified on the handheld, but ordinarily would be created on the
desktop. The desktop application should be clever about culling customers from the list if the salesperson
isn't visiting them on thistrip. It might also want to order the customers either alphabetically or by visit (as
the salesperson prefers).

Design Tradeoffsin the Sample Application 2

Aswith any design, we made some modifications that changed the look and functionality of this application.
We think it will be useful to you to explain how we meandered about with these decisions.

Adding Items to an Order

There are a couple of things to notice about the design that we ended up with for this action (see Figure 3-
19). When the user taps on the customer name, an order form immediately presentsitself. Asthisisthe most
common action, we focused on minimizing the steps necessary to completeit. In our final design, we
managed to reduce the number of steps required to take an order by one. Look at two possible designsin
Figure 3-19, and you will see where we saved a step. The example on the left requires the user to first select
the customer name and then tap the New Order button below the list (two actions). The example on the right
brings the order forward with one less action.

Figure 3- 19. Two waysto design the selection of a new order

Bucket of Toys-2 Bucket of Toys-2

Toys we he-3 Toys we be-3

Little Shop of Toys Little Shop of Toys
Around the Corner Toys Around the Corner Toys
Big Toys Big Toys

World of Discoveries World of Discoveries

(New..] (Details] [Done]

The tradeoff here affects two things. We can make an order easier to create (our solution) or make customers
easier to create and edit. For us the choice is obvious; we assume that the salesperson rarely adds new
customers or modifies old ones. Thisisthe standard list of customers that our user always deals with when
selling toys. In aworld where customers came and went more often, we might have chosen differently.

Where to Put Customer Information

The next design issue we tackled was how the user accesses, modifies, and del etes customer information.
Menu items or buttons could go either in the startup screen or in the order form. Both choices carry their
own set of advantages and disadvantages. Before showing you the logic of our choices, back up and look
again at what we want the user of the Palm device to be able to do:

o Create anew customer
Beam a customer list
Beam a single customer
Modify a customer
Delete a customer

In adesktop application, we are certain that al of these activities would be put in the same menu. On the
handheld, we weren't so sure they should be kept together. After some consideration, we chose to put
creating a new customer and beaming a customer list in the startup view, because these are the only two
genera customer items. Every other action has to do with a particular customer, whether that is creating an
order, changing the customer's information, or deleting the information from the unit.

Creating a new customer

Clearly, the time when a user is going to create a new customer isin the startup screen while looking at the
list of customers. The right user interface for thisis amenu item, not a button. Thisis an infrequent action,

so we don't want to waste valuable screen real estate with a button for it. In our solution, getting to the New
Customer form takes two actions: pressing the built-in Menu button and selecting New Customer from the

Customer menu.

Beaming a list of customers

Our users might share customers with each other; we wanted to give them an easy way of sending customer

information to each other (we chose not to support beaming orders, though). The menu item was our way of
doing this. It takes two steps to accomplish this task. The user first pushes the built-in Menu button and then
selects the item from the Customer menu.

Deleting a customer

Y ou could place thisitem in the startup Customer List form or in the Customer form. If you put it in the
menu of the startup Customer List form, aswe did in an earlier version of this application, you need a way
for the user to select which customer to delete. The user selects Delete Customer from the Customer menu
and apicklist is brought forth from which customers can be deleted one at atime or in group (see Figure 3-
20).

Figure 3- 20. One way to delete customers

] Customer [TTT)
Mew Customer M

Delete (ustomer X

Edit (ustomer ¥

TOYS WeE DE-J

a

b

[
d

However, there's afaster way that requires fewer taps (and no new picklists). Within the Palm user interface
model, you delete an item while you are viewing it. Look at the built-in Names and Memos applications (see
Figure 3-21). Notice that you start with alist of items and select one. Only at this point can you use a Record
menu item to delete the name or memo you are viewing.

Figure 3- 21. How the built-in Names and M emos applications handle actions

i | | GBI Edit Options |
1 Delete Address. /D H Mew Memo &M delete
Attach Mote <R “|Delete Memo.. »#D|
I pelete Note..) Beam Memo o —

Bearn Address « B
' Salect Business Card..

[|Bearn Business Card MM Hare is amemal amasing 1o delete
E-mail: _ suppori@palm.com
1565 Charleston Road

Mountain View, CA 94043
(Done) (B0) (v) %

Likewise, in our application the customer is selected from alist and then, while viewing the customer form,
the user can delete that client.

A desktop application would not be designed thisway. Single-clicking on a customer from the list would
select it. At that point, the Delete menu item would delete it, while the Open menu item (or, as a shortcut, a
double-click) would open the Order form for the customer. However, the Palm OS is not a desktop OS.
Double-taps aren't part of the idiom. Users of a Palm OS device expect a single tap to make an action occur.

Y ou might ask why this model has been adopted. The design makes sense when you readlize that the initial
itemsin the startup list are "hot." If you touch them, something happens immediately to switch you to
another form. The Palm OS does not have a tap, double-tap model. The Palm model is attractive because it
cuts down on the number of steps required to complete the most common actions. Each of these very
common actions takes a smaller number of steps because picklist items are hot:

o Viewing aname in the Names application requires pushing the built-in Names button and tapping the
namein thelist.

o Opening a memo requires pushing the built-in Memo button and tapping the appropriate memo.

o Creating anew order for a customer requires opening the application and tapping a customer.

Designing for a Small Screen 2

One of the biggest challenges you face as a handheld application designer is how to fit data in the screen
space on a Palm device. In the Sales application, this challenge happens when we are trying to figure out the
right way to select atoy. We assume that there are more toys than would fit on one list on the screen. One
approach might have been to have one long scrolling list-the least favorable solution. Toys, like many other
types of items, naturally fall into obvious groups. We chose to take advantage of this by first putting the toys
into categories.

Table 3-2 contains three ways that we could have organized the items. Our solution was to go with a
category organization. This makes things like special sales promotional items easy to handle. A fast-food
restaurant might use a similar approach for taking orders. In both cases, the customer is going to go through
categories in certain obvious groupings.

Organizing things alphabetically is another possibility, but one that doesn't make as much sense for our
application. Neither the customer nor the salesperson is likely to think about the toysin thisway.

Organizing the items by number might have been a good choice from the salesperson's point of view. Itis
not uncommon to memorize part numbers of items you work with all the time; however, where this
organization strategy breaks down is from the customer's point of view. The customer is not necessarily
going to request items by number. We imagine the customer thinks in terms of the store's shelves which are
themselves organized by category. Our strategy isto match the customer's organizational model. Doing so
minimizes the number of steps required to add an item to the order (less category switching).

-Table 3- 2. Ways of Categorizing Toys

By Category Alphabetically By Item Number
Games A-C 00199
Acquire Absolute Terror Tim 1Aardvark Arnie
- Mouset
OusETap Acquire 2Jane Sit and Spit
- Monsterwalk .
Aardvark Arnie 3Pretty Patty
- Siege Towers .
Chubby Bunny 4Zebrawith baby

Dalls D-H 100199

- Aardvark Arnie
Glow in the Dark Pumpkin

- Jane, Sit and Spit .
Spi Halloween-Princess

.7 ith
ebrawith baby Happy Bunny PlayAlong

Action Figures | -P
- Absolute Terror

Tim Jane, Sit and Spit
- Chubby Bunny Monsterwalk

- Daredevil Dan Mousetrap

- Sissy Sunny Pretty Patty

Promational Q-2
- Glow inthe Dark
Pumpkin !
P Siege Towers
- Halloween- !
Princess Sissy Sunny

 Halloween-Pirate Z00ming Eyes

101Marbles by the 100s
102Ball and Jacks

104Glowing Glop
200299

200Siege Towers
201Acquire
202Moustrap
203Monsterwalk
900999

900Glow in the Dark
Pumpkin

901Halloween-Princess

903Happy Bunny PlayAlong

Designing the Databases 2

Once you have figured out how to organize the data, your next big decision is to determine the number of
databases you should use. We settled on four databases in the Sales application; they are customers,
products, orders, and categories.

Customers

The customer database contains the information about the customers. Each customer record contains five
items:;

Customer 1D

A unique customer code assigned at corporate headquarters. If anew customer is created on the
handheld, it is assigned a temporary negative customer 1D. Corporate headquarters is responsible for
assigning a permanent ID after a HotSync.

Name

A string.

Address

A string.

City

A string.

Phone

A string.
The order in the database is the order in which they are displayed in the list. New customers are added at the
beginning. There are at least two possible ways to reasonably organize the customer database-al phabetically
or by visit order (the first name is the first customer the salesperson visits, the second name is the second
visit, and so on).

Products

The product database contains information about each of the toys that can be ordered by the customer. Each
product record contains:

Product ID

Aninteger. Thisis assigned by corporate headquarters.

Price

A number. Thisisacent amount that we can store as an integer rather than as a floating point number.
Name

A string.

Category number

A number. The valueisfrom 0 to 15 and is stored as an index into the category database.

Instead of storing the category number as a separate piece of data directly in the record, we use the
category feature of the database manager to store it (see Chapter 6, Databases). Doing so saves a small
amount of space and gives us a pedagogical excuse to discuss this feature of databases.

Orders

The order database contains records for each of the salesperson's orders. The order database does not contain
records for customers with no orders. Each order record contains:

Customer 1D

In order to match a customer to an order, each order contains the customer ID.
Number items ordered

Aninteger. Thisisthe quantity of each item that was ordered.

ltems

An array of items where each item contains a product ID and a quantity.

We considered having the customer's order be part of the customer database, but decided to separate them as
aprecursor to providing multiple orders for each customer in the future.

Categories

There's a Category Ul that we don't implement in the Sales application. It is inappropriate to our application
because it is a mechanism for allowing the storing of editable category names. The Category Ul has folders
at the top-right and items are stored within these categories. The Category Ul aso provides a mechanism for
editing the category names. Thisis the feature we wish to restrict in our application-products come from the
desktop and are unchangeable.

We didn't want to hardcode the category names into the application, either, as product lists have been known
to change on occasion. We chose instead to store the information in the application info block of the
products database (see " Creating the Application Info Block in a Database" on page 144). This way we can
modify it during a HotSync.

The categories are stored sequentially as null-terminated strings. The order of the categories matches the
category numbers used in the products database-record O of this database contains the name of category O.
For example, if we want to know the name of category 4, we go to the fourth null-terminated string in the
app info block.

Designing the Conduit B

A conduit is a desktop application made in a desktop devel opment environment. It uses HotSync
synchronization to connect the desktop to the handheld; conduits are responsible for the transfer of datato
and from the handheld and the desktop. The user views the data using some application (a spreadsheet, for
example, for viewing expense report items). The conduit needs to make sure that this desktop application
has the data it needs to handle processor-intensive tasks. Before looking at the design of the Sales
application conduit, let's examine this issue of off-loading processor-intensive tasks.

Processor-Intensive Tasks

Using the conduit to transfer the data, move processor-intensive tasks onto the PC and off of the handheld. If
you can't move tasks, you should almost always get rid of them.

Palm devices are noted for being both fast and cheap-two of the key features that have made them so
popular. One of the reasons they are cheap is they have little bitty processors that don't have much
horsepower. Y our job as a good application designer is to avoid taxing the handheld's processing abilities.
Don't turn it into a slow device-there are already plenty of those around. This means that you may end up
making design decisions about your database that don't make sense from a desktop database designer's point
of view, but do make sense when you take into account the desktop's superior processing abilities. Hereisan
example.

Recently, we were involved in porting an application from another handheld platform (with a fast processor)
to the Palm platform. Thisis an application that keeps track of a bunch of vending machines: when they
need filling, what products go in what slots, how much money is collected, and so on. The account screen
provides a summary of the machines that belong in that account (an account could have many machines or
just afew). The machine screen provides a summary of items for that particular machine. In the original
platform, as we entered an account screen at runtime, we'd run through the database, summarizing and
totalling (for instance, we'd total how many machines needed to be serviced for an account, along with how
many total machines an account had).

When we began our port of the application to the Palm platform, thisway of handling the task no longer
made sense. The hit the user would endure when opening a machine or account screen was too long. So we
bit the bullet and moved the summarizing and totalling to the desktop application. Thisinformation is now
stored in the account database. The price we had to pay is duplicate data in every account (upping by a small
amount the size of our databases). It was worth it, however, to have a zippy account screen that instantly
displays information about machines.

The built-in Expense application provides another useful example. Let's approach the issue from the point of
view of a question.

Q: What feature is missing from the Expense application?
A: Thereis no expense total.

Why? you might ask. We think it isto avoid an unnecessary processing task that doesn't really provide the
user with necessary information. Totals are things a user will care about back at the office when sitting
calmly at a desktop computer, not when she or heis rushing from a cab through an airport to catch aflight.

The moral of the story is not to make users pay for processor-intensive tasks if there is any way to avoid it.
Sometimes that means keeping functionality but moving the processing elsewhere (asin our ported vending
machine application); sometimes that means not offering afeature in the first place (asin the Expense
application with no total).

NOTE:

Tasks that may be fast on the handheld but can't be implemented well for other reasons should also be
moved to the desktop. For example, think of subtotalling alist of figuresin an expense report. Thistask is
easy to do on a big screen using a mouse and a combination of keysto select and total the figures. It is
much harder to do on atiny screen (you can't see many of the items at one time), where datais close
together (it's easy to hit the wrong figure), and selecting is complex (items are hot and tapping does
something). Desktop applications and handheld ones should complement each other and extend
functionality in ways that neither could handle alone-they should not duplicate features.

Design of the Sales Application Conduit
Our Sales application conduit handles the following tasks during a HotSync synchronization:

Opening and closing the sales, customer, and product databases on the Palm device.

Iterating through the records in the databases on the handheld.

Uploading customer orders from the handheld to the desktop.

Downloading the product database from the desktop to the handheld.

Comparing customer records so that only modified records are synced.

Appropriately adding, deleting, and modifying customer records on the handheld and on the desktop.
Reordering records in a database after new records have been added.

Public portions of data, such as product information, are kept in the application desktop folder; private
portions of data, such as customer lists, are kept in user folders.

o Converting the datain the application's database records to a text-delimited file that can be read into a
database on the desktop computer.

The conduit also needs to be installed and uninstalled. With a commercial application, this process should be
handled automatically, invisible from the user.

NOTE:

Use an installer program to automate the installation and uninstallation of the conduit; it isfairly
straightforward (wetell you about thisin "Automatically Installing and Uninstalling a Conduit" on
page 308). For information on manual installation, see "Registering and Unregistering Manually Using
CondCfg" on page 307.

Design Summary 2

By now, you should have agood feel for how to design a Palm application and conduit. Y ou aso know
about the range and types of tools available to help you with this project. Y ou should also have agood
feeling for what types of applications will work well on a Palm device and the types of user interface

elements you can easily add to them. Now it is time to turn away from design issues and to the code you
need to write to create your application.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PaaPaaac

Palm Programming: The Developer’s Guide ~

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

crammcich
||

|1. Designing Palm Applications

Now it istime to see what isinside a Palm application. We cover everything you need to know, from the
application's structure and user interface elements to the API for the various parts of the application.
Chapter 4, Structure of an Application, takes you through the whole cycle of a Palm application, from the
timeit islaunched by the user to the moment that it receives the command to quit. Chapter 5, Forms and
Form Objects, shows you how to create the various user interface elements of the application, everything
from buttons to lists to dialogs. Chapter 6, Databases, shows you how to work with and store datain a Palm
application. Chapter 7, Menus, is an examination of menus and the items they contain. Chapter 8, Extras,
coversalittle bit of thisand alittle bit of that-topics that are important, but too small to require their own
chapter. Chapter 9, Communications, gives you adetailed look at serial and TCP/IP. Last, but most
importantly, in Chapter 10, Debugging Palm Applications, we turn to that crucial topic that is every
programmer’s necessary evil in life-debugging.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PaaPaaac

Thispage intentionally left blank

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! &

PRt

In this chapter:

Terminology

A Simple Application

Scenarios

Memory |Is Extremely Limited

Other Times Y our Application Is Called

Summary

4. Structure of an Application

The overall flow and content of a Palm OS application is the subject of this chapter. Y ou will learn:

¢ The standard code routines found in every Palm application

All about the application's lifecycle-its starting, running, and closing

How the application processes each event and hands it off to the appropriate manager

How memory is organized on a Palm device; how the application can use it

All the times that an application needs to be available to the system and how these instances are
handled in the code

Terminology 2

Like every operating system and coding interaction, the Palm OS has it own set of necessary terminology for
you to learn. Much of it may aready be familiar to you from other applications you have written. We suggest
that you skim through this list and concentrate on the items that are new to you. New and unique
terminology islisted first.

Form

An application window (what many people would think of as aview) that usually covers the entire screen. A
form optionally contains controls, text areas, and menus. In a Palm OS application, there is only one active
form allowed at a time. Chapter 5, Forms and Form Objects, covers formsin detail.

Window

A rectangular areain which things like dialogs, forms, and menus are drawn by the application. The
Window Manager makes sure that windows properly display relative to each other (for example, it hasthe
ability to restore the old contents when awindow is closed). Note in arather Shakespearian twist of logic
that all forms are windows, even though all windows are not forms.

Database

A collection of persistent memory chunks. There are two kinds: resource and record databases.
Resource

A piece of data stored in aresource database. Each resource is identified by a resource type and number. A
Palm application is a collection of resources. Chapter 5 covers resources in more detail.

Record

A data structure identified by a unique record ID. Applications typically store datain record databases.
Event

A data structure that describes things that happen in an application. Events can be low-level hardware events
like a pen down, pen up, or hardware key press. They can also be higher-level events like a character
entered, a menu item selected, or a software button pressed.

The Palm OSis an event-driven system. Only one application is open at atime. When that application is
running, it runs an event loop that retrieves events and continues to handle them until the user starts another
application.

Main event loop

The main loop of execution in an application, which repeatedly retrieves events and then acts on them.
Launch code

A parameter passed to an application that specifies what the application should do when that particular
launch code is executed. An application typically handles more than one launch code. Thisisthe
communication method used between the OS and an application and between applications.

Menu

Menus are stored in resources grouped together into menubars and are displayed when the user taps the
menu area. See Chapter 7, Menus, for more details.

Menubar
A collection of menus stored in aresource. Each form can have a menubar associated with it.
Dialog

A window containing controls that require the user to make a decision. In other words, the dialog must be
dismissed (usually by tapping on one of its buttons) before the application can continue.

Alert
A warning or information dialog that needs to be dismissed by the user.

These brief descriptions cover the most important terminology. In the following section, we look at the basic
elements of avery small Palm OS application.

A Simple Application 2

Creating asmall application before tackling a more complex one is a good way to gain familiarity with a
new coding challenge. First, we tell you what our little application does and show you the code for it. After
that we do a code walkthrough and point out important elements.

What the Application Does

Our Hello World application displays the words "Hello World" and provides a button to press. Pressing the
button displays an adert, as shown in Figure 4-1, which is dismissed by tapping OK. There are two menus,
each with one menu item (see Figure 4-2). Asthisisavery ssmple application, you just get a beep when you
choose either menu item.

-Figure 4- 1. Dialog shown after tapping the button

Hello World

@ Goodnight moon!

Figure 4- 2. The menusof Hello World

Second | | First m |
Bee Beeglnure|

The Hello World Source Code

Now that you have an idea of what the application can do, look at Example 4-1 to see the code that produces
it. Once you have looked through it for yourself, we will discussit.

-Example 4- 1. TheHello World Source Code

#i ncl ude <Pil ot. h>

#ifdef __GNUC__

#i ncl ude "Cal | back. h"
#endi f

#include "Hel | oWorl dRsc. h"

static Err StartApplication(void)

{
Fr nGot oFor m(Hel | oWor | dForm) ;

return O;

}

static void StopApplication(void)
{
}

static Bool ean MyFornHandl eEvent (Event Ptr event)
{

Bool ean handl ed = fal se;

#ifdef __ GNUC__
CALLBACK_PROLOGUE
#endi f
switch (event->eType) {

case ctl SelectEvent: // A control button was pressed and rel eased.
Fr mAl ert (Goodni ght MoonAl ert);
handl ed = true;
br eak;

case frnOpenEvent:
Fr nDr awfFor m(Fr nGet Act i veForm());
handl ed = true;
br eak;

case menuEvent:
if (event->data.nenu.item D == FirstBeep)
SndPI aySyst enSound(sndl nf 0) ;
el se
SndPl aySyst enSound(sndSt art Up) ;
handl ed = true;
br eak;
}
#ifdef _ GNUC__
CALLBACK_EPI LOGUE
#endi f
return handl ed;

}

stati c Bool ean ApplicationHandl eEvent (EventPtr event)
{

FornmPtr frm

I nt formd;

Bool ean handl ed = fal se;

if (event->eType == frnloadEvent) {
//Load the formresource specified in the event then activate it
formd = event->data.frnLoad. form D;
frm= FrmnitFormformd);
FrBet Acti veForm(frm;

/1 Set the event handler for the form The handler of the currently
/'l active formis called by FrnDi spatchEvent each tinme it is called
switch (formd) {
case Hel | oWor| dForm

Fr nSet Event Handl er (frm MyFor nHandl eEvent) ;

br eak;
}
handl ed = true;

}

return handl ed;

}

static void EventLoop(void)
{

Event Type event;

Wor d error;

do {
Evt Get Event (&event, evt Wit Forever);
if (! SysHandl eEvent (&event))
if (! MenuHandl eEvent (0, &event, &error))
if (! ApplicationHandl eEvent (&event))
Fr nDi spat chEvent (&event);
} while (event.eType != appStopEvent);
}

DWord Pil ot Mai n(Word | aunchCode, Ptr cndPBP, Word | aunchFl ags)
{

Err err;

if (launchCode == sysAppLaunchCndNor mal Launch) {
if ((err = StartApplication()) == 0) {
Event Loop() ;
St opAppl i cation();

return err;

}

A Code Walkthrough of Hello World

Let's start at the beginning with the #i ncl ude files.

The #include files

Pilot.nisanincludefile that itself includes most of the standard Palm OS include files (using CodeWarrior,
Pilot.h actually includes a prebuilt header file to speed compilation). To keep things simple, our application
doesn't use anything beyond the standard Palm OS include files. Indeed, any calls outside the standard ones

would have necessitated the use of other specific Palm OS include files.

The second include file, Callback.h, defines some macros needed if you are using GCC. They are needed to
handle callbacks from the Palm OS to your code. We discuss thisin "Callbacksin GCC" on page 78.

The third include file, HelloWorldRsc.h, defines constants for all the application's resources (for example,
Hel | oWor | dFor m). Aswelll seein Chapter 5, if you use Constructor, thisfile is generated automatically
(see Example 4-2). If you use the GNU PamPilot SDK, you usually create thisfile yourself (see Example 4-
3).

Example 4- 2. HelloworldRsc.h Generated by Constructor (Used with CodeWarrior)

/| Header generated by Constructor for Pilot 1.0.2

/1

/| Generated at 9:55:01 PM on Thursday, August 20, 1998

/1

/1 Generated for file: Macintosh HD: Pal m Hel | oworl d: Rsc: Hel l 0. rsrc
/1

/1 TH S IS AN AUTOVATI CALLY GENERATED HEADER FI LE FROM CONSTRUCTOR FOR PALMPI LCT;
/] - DO NOT EDIT - CHANGES MADE TO THI'S FILE WLL BE LOST

/1

/1 Pilot App Name: "Hello World"

/1

/1 Pilot App Version: "1.0"

/1 Resource: tFRM 1000
#define Hel |l oWorl dForm 1000
#define Hel | owor| dButt onButton 1003

/'l Resource: Talt 1101
#def i ne Goodni ght MoonAl ert 1101
#def i ne Goodni ght MoonCOK 0

/1 Resource: MBAR 1000
#define Hel | owor| dMenuBar 1000

/1 Resource: MENU 1010
#defi ne FirstMenu 1010
#define FirstBeep 1010

/1 Resource: MENU 1000

#defi ne SecondMenu 1000
#def i ne SecondBeepnore 1000

Example 4- 3. HelloworldRsrc.h Created by Hand (Used with GNU PalmPilot SDK)

#defi ne Hel | oWorl dForm 1000
#defi ne Hel | oWor | dButt onButt on 1003
#defi ne Hel | oWwor| dMenuBar 1000
#def i ne Goodni ght MoonAl ert 1101
#define FirstBeep 1010

#defi ne SecondBeepnore 1000

The main routine: PilotMain

Example 4-4 shows the main entry point into your application. The first parameter is the launch code. If
your application is being opened normally, this parameter is the constant

sysAppLaunchCnrdNor mal Launch. The second and third parameters are used when the application is
opened at other times.

Example 4- 4. PilotMain

DWord Pil ot Mai n(Word | aunchCode, Ptr cmdPBP, Word | aunchFl ags)
{

Err err;

if (launchCode == sysAppLaunchCndNor mal Launch) {
if ((err = StartApplication()) == 0) {
Event Loop();
St opAppl i cation();
}
}

return err;

}

If the launch codeissysAppLaunchCndNor mal Launch, wedo aninitialization in
St art Appl i cati on and run our event loop until the user does something to close the application. At
that point, we handle termination in St opAppl i cati on.

The startup routine: StartApplication

In the routine shown in Example 4-5, we handle all the standard opening and initialization of our
application. In more complicated applications, this would include opening our databases and reading user
preference information. In our rudimentary Hello World application, all we need to do istell the Form
Manager that we want to send our (one and only) form. Thisqueuesup af r rLoadEvent inthe event
queue.

Example 4- 5. StartApplication

static Err StartApplication(void)

{
Fr nGot oFor m(Hel | oWor | dForm) ;

return O;

}

The closing routine: StopApplication

Because we are creating such a simple application, we don't actually have anything to do when it's closing
time. We provided the routine in Example 4-6 so that our Hello World source code would have the same
standard structure as other Palm applications.

Example 4- 6. An Empty StopApplication

static void StopApplication(void)

{
}

Normally in St opAppl i cat i on we handle al the standard closing operations, such as closing our
database, saving the current state in preferences, and so on.

The main event loop

InPi | ot Mai n, you will notice that after the initialization there isa call to the one main event loop (see

Example 4-7). In thisloop, we continually process events-handing them off wherever possible to the system.
We go through the loop, getting an event with Evt Get Event , and then dispatch that event to one of
four nested event handlers, each of which gets a chance to handle the event. If an event handler returns true,
it has handled the event and we don't process it any further. Evt Get Event then getsthe next event in the
gueue, and our loop repeats the process.

The loop doggedly continuesin this fashion until we get the appSt opEvent , at which time we exit the
function and clean thingsup in St opAppl i cat i on.

Example 4- 7. EventL oop

static void Event Loop(void)

{

Event Type event;

Wor d error;
do {
Evt Get Event (&event, evt Wit Forever); system routine
if (! SysHandl eEvent (&event)) system routine
if (! MenuHandl eEvent (0, &event, &error)) system routine
if (! ApplicationHandl eEvent (&event)) routine we write
FrnDi spat chEvent (&event) system routine

} while (event.eType != appStopEvent);

Handling events with EvtGetEvent

This Event Manager routine's sole purposein life is to get the next event from the queue. It takes as a second
parameter atime-out value (in ticks-hundredths of a second). Evt Get Event returns either when an event
has occurred (in which case it returns true) or when the time-out value has elapsed (in which case it returns
false and fillsin an event code of ni | Event).

We don't have anything to do until an event occurs (this application has no background processing to do), so
we passthe evt Wi t For ever constant, specifying that we don't want atime-out.

The event queue and application event loop

Let's step back for amoment and look at the events that are received from Evt Get Event . Events can be of
all different types, anything from low-level to high-level ones. In fact, one useful way to look at a Palm
application is ssimply as an event handler-it takes al sorts of events, handing them off to various managers,
which in turn may post a new event back to the queue, where it is handled by another event handler. We will
discuss more sophisticated examples of thislater (see "Scenarios' later in this chapter), but for now look at a
very simple set of events to get an idea of how this all works together. Imagine the user has our application
open and taps the stylus on the screen in the area of the silk-screened Menu button. The first time through
the event queuethe SysHandl eEvent routine handles the event, interpretsit, and creates a new event
that gets put back in the queue (see Figure 4-3).

Figure 4- 3. An event in the event loop

Hsar fape the ApplicationHondleEvent

Menu Button
FanDispatchEvent

MenuvButtonEvent

!

This new event, when it comes through the loop, gets passed through SysHandl eEvent and on to the
MenuHandl eEvent , asit is now recognizable as a menu request (see Figure 4-4). MenuHandl eEvent
displays the menubar and drops down one of the menus. If the user now taps outside the menu, the menus

disappear.

Figure4- 4. A regurgitated event in the event loop

Displays
Menu

SysHandleEvent
—
«@a@» -

ApplicationHondleEvent
FanDispatdhEvent

If amenu item is selected, however, anew event is generated and sent to the queue. This event is retrieved
by the event loop, where it is passed through SysHandl eEvent and onto MenuHandl eEvent . Given
the way this process works, you can see that the different managers are interested in different types of
events. Keeping thisin mind, let's now return to our code and look at the event loop and the four routinesin
it.

SysHandleEvent

Thefirst routinein theloop isalways SysHandl eEvent , asit provides functionality common to al
Palm applications. For instance, it handles key events for the built-in application buttons. It does so by
posting an appSt opEvent to tell the current application to quit; the system can then launch the desired
application.

It handles pen events in the silk-screened area (the Graffiti input area and the silk-screened buttons). For
example, if the user tapson Find, SysHandl eEvent completely handles the Find, returning only when the
Find is done.

Here are some of the more important events it handles:

keyEvent

Occurs, among other times, when one of the built-in buttonsis pressed. The keycode specifies which
particular button is pressed. SysHandl eEvent handles pen events in the Graffiti input area. When a
character iswritten, SysHandl eEvent postsakeyEvent with the recognized character.

penDownEvent

Occurs when the user presses the stylus to the screen.

penMbveEvent

Occurs when the user moves the stylus on the screen.

NOTE:

penMoveEvent saren't actualy stored in the event queue, because there are so many of them. Instead,
when Evt Get Event iscalled, if no other events are pending, Evt Get Event will return a
penMoveEvent if the penisdown and has moved since the last call.

MenuHandleEvent

The second routine in our event loop is MenuHandl eEvent . Asyou might have imagined, the
MenuHandl eEvent handles events involving menus. These events occur when a user:

e Tapson the Menu silk-screened button. The function finds the menubar for the current form and
displaysit by creating awindow.

o Taps somewhere else while amenu is being displayed. The function closes the menu when the user
taps outside it.

MenuHandl eEvent also switches menusif the user taps on the menubar. Aswould be expected, it closes
the menu and menubar if the user taps on a menu item. At this point, it posts a menu event that will be
retrieved in alater call to Evt Get Event .

ApplicationHandl eEvent

Thethirdroutine, Appl i cati onHandl eEvent , isaso astandard part of the event loop and is
responsible for loading forms and associating an event handler with the form. Note that thisis also the first
time our application is doing something with an event. Here is the code in our Hello World application for
that routine:

stati c Bool ean ApplicationHandl eEvent (EventPtr event)
{

FornmPtr frm

I nt formd;

Bool ean handl ed = fal se;

if (event->eType == frnloadEvent) {

/'l Load the formresource specified in the event and activate the form
formd = event->data.frnLoad. form D;
frm= FrmnitFormformd);
FrSet Acti veForm(frm;

/1 Set the event handler for the form The handler of the currently
/'l active formis called by FrnDi spatchEvent each time it gets an event.
switch (formd) {
case Hel | oWor| dForm
Fr nSet Event Handl er (frm MyFor nHandl eEvent) ;
br eak;
}
handl ed = true;

}
return handl ed;

}

While we'll see amore complex example of Appl i cat i onHandl eEvent in Chapter 5, you can at least
see that our routine handles the request to load our sole form.

Callbacksin GCC

We need to swerve down atangent for amoment to discuss GCC. There is one way that your code will

differ depending on whether you use GCC or CodeWarrior. Even if you're not using GCC, it's still worth
reading this section to learn why we sprinkled abunch of "#i f def __ GNUC__ " inour functions.

The GCC compiler's calling conventions differ from those in the Palm OS. In particular, the GCC compiler
expects at startup that it can set up the A4 register (which it uses to access global variables) and that it will
remain set throughout the life of the application. Unfortunately, thisis not true when a GCC application cals
aPalm OS routine that either directly or indirectly calls back to a GCC function (a callback).

The most common example of this occurrence is when we've installed an event handler for aform with

Fr nSet Event Handl er . Onceweve donethat, acall to FrnDi spat chEvent (aPalm OS routine)
can call our form's event handler (a GCC function, if we've compiled our application with GCC). At this
point, if our event handler triesto access global variables, it'll cause a spectacular application crash.

The solution isto use a set of macros that set the A4 register on entry to the callback function and restore it
on exit. You need to provide a Callback.h header file as part of your project (see Example 4-8) and

#i ncl ude itinyour file. Then, every callback needs to add the CALLBACK_PROLOGUE macro at the
beginning of the callback function (just after variables are declared) and a CALLBACK EPI LOGUE macro
at the end of the callback function. Here's avery simple example:

static int MyCall back()
{
int myReturnResul t;
i nt anot her Vari abl e;
#ifdef __ GNUC__
CALLBACK_PROLOGUE
#endi f
/1 do stuff in nmy function
#ifdef __ GNUC__
CALLBACK_EPI LOGUE
return nyReturnResult;

}

It's crucia that you don't try to access global variables before the CALLBACK _ PROLOGUE macro. For
example, here's code that will blow up because you're accessing globals before the macro has had a chance
to set the A4 register:

static int MyCall back()
{
int nyVariabl e = gSoned obal Var;
#ifdef _ GNUC__
CALLBACK_PROLOGUE
#endi f

}

It's also important that you return from your function at the bottom. If you must ignore our advice and return
from your function in the middle, make sure to add yet another instance of the CALLBACK EPI LOGUE
right before the return.

-Example 4- 8. The Callback.h File, Needed for GCC

#ifndef _ CALLBACK H__
#define _ CALLBACK H__

/* This is a workaround for a bug in the current version of gcc: gcc assunes
that no one will touch %4 after it is set up in crt0.0. This isn't true
if a function is called as a callback by sonething that wasn't conpiled by
gcc (like FrnCl oseAll Forms()). It may also not be true if it is used as a
cal | back by sonething in a different shared library. We really want a function
attribute "call back" that inserts this prol ogue and epil ogue automatically.

- lan */

regi ster void *reg_a4 asn("%4");

#def i ne CALLBACK_PROLOGUE \
void *save_a4 = reg_a4; asn("nove.l %@5, W@4; sub.| #edata, W@4" : :);

#defi ne CALLBACK_EPI LOGUE reg_a4 = save_a4;

#endi f

NOTE:

There's been some discussion among those who use the GCC compiler about a more convenient solution
to the Example 4-8 workaround. Some folks want to get rid of the macros by modifying the GCC compiler
withacal | back attribute to the function declaration. This would cause the compiler to add code that
manages A4 correctly. Here's an example:

callback int MyCallback()
{

/I code which can safely access globals

}
NOTE:

Others want a more radical solution. They want to be able to use all functions as callbacks without any
special declaration.

FrmDispatchEvent

Thisfourth and last routine in the event loop is the one that indirectly provides form-specific handling. This
routine handles standard form functionality (for example, a pen-down event on a button highlights the
button, a pen-up on a button postsact | Sel ect Event to the event queue). Cut/copy/paste in text fields
are other examples of functionality handled by Fr nDi spat chEvent . In order to provide form-specific
handling, Fr nDi spat chEvent also calsthe form'sinstalled event handler. Therefore, when

FrnDi spat chEvent getsanevent, it callsour own MyFor mHandl eEvent routine:

static Bool ean MyFornHandl eEvent (Event Ptr event)
{

Bool ean handl ed = fal se;

switch (event->eType) {

case ctl SelectEvent: // A control button was pressed and rel eased.
FrmAl ert (Goodni ght MoonAl ert);
handl ed = true;
br eak;

case frnOpenEvent:
Fr nDr awFor m(Fr nGet Act i veForm());
handl ed = true;
br eak;

case menuEvent:
if (event->data.nenu.item D == FirstBeep)
SndPI aySyst enSound(sndl nf 0) ;
el se
SndPl aySyst enSound(sndSt art Up) ;
handl ed = true;
br eak;

}

return handl ed;
}

Asthe code indicates, we take an action if the user taps on our button or chooses either of the two menu
items. We beep in either case.

Hello World Summary

In this simple application, we have all the major elements of any Palm application. In review, these are:

A set of necessary include files

A startup routine called St ar t Appl i cat i on, which handles al our initial setup

A Pi | ot Mai n routine, which starts an event loop to handle events passed to it by the system

An event loop, which continually hands eventsto a series of four managing routines-

SysHand| eEvent , MenuHandl eEvent , Appl i cati onHandl eEvent , and

Fr nDi spat chEvent

A set of routines to handle our form-specific functionality

e A closing routine called St opAppl i cat i on, which handles the proper closing of our application

Scenarios .&

Now that you have a better understanding of the code in the Hello World application, let's take a close ook
at what happens as events are passed from the event queue into the event loop. Unlike our earlier example,
where we hand-waved through the technical parts of what happens when a menu was chosen, we will now
look with great detail at three different user actions and the flow through the code as these scenarios occur.

Thisfirst code excerpt shows what happens when a user opens the application by tapping on the
application'sicon. Example 4-9 shows the flow of events. Pay particular attention to thef r rLoadEvent ,
whichishandledby Appl i cati onHandl eEvent, andthefr mOpenEvent , whichishandled by
My For nHandl eEvent .

-Example 4- 9. Flow of Control asHello World Application |s Opened

Pi |l ot Main (enter)
StartApplication (enter)

Fr nGot oFor m(Hel | oWor | dFor m open the HelloWorldForm
StartApplication (exit) returns O (proceed)
Event Loop (enter)

EvtGetEvent returns frmLoadEvent (formlD

HelloworldForm)

SysHandl eEvent returns false

MenuHandl eEvent returns false

Appl i cati onHandl eEvent (enter)

Fr m ni t For m(Hel | oWor | dFor m) load the form
Fr nSet Acti veForm(frm activate the form
Fr nSet Event Handl er (frm MFor nHandl eEvent) set the event handler

Appl i cati onHandl eEvent (exit) returnstrue
Evt Get Event returns frmOpenEvent
SysHandl eEvent returns false
MenuHandl eEvent returns false
Appl i cat i onHandl eEvent returns false
Fr nDi spat chEvent (enter) calls form's event handler

MyFor nHandl eEvent (enter)

Fr nDr awFor m(Fr mGet Acti veForm()) draws the form and its contents

MyFor nHandl Event (exit) returnstrue

In Example 4-10 our user taps on the button labeled "Button,” which in turn puts up an alert. Notice that
eventually, the penDownEvent istransformed intoact | Sel ect Event , whichishandled by our
routine, My For nHand| eEvent .

Example 4- 10. Flow of Control in Event Loop When " Button" Button Is Pressed

Evt Get Event returns penDownEvent
SysHandl eEvent returns false
MenuHandl eEvent returns false
Appl i cati onHandl eEvent returns false

FrnDi spat chEvent (enter)

My For mHandl eEvent
Ct | Handl eEvent

returns false
standard control-manager routine that posts

ctlEnter Event to the event queue and returns true.

Fr nDi spat chEvent (exit)

Evt Get Event
SysHandl eEvent
MenuHandl eEvent
Appl i cat i onHandl eEvent
Fr nDi spat chEvent (enter)
MyFor nHandl eEvent
Ct | Handl eEvent

FrnDi spat chEvent (exit)

Evt Get Event
SysHandl eEvent
MenuHandl eEvent
Appl i cat i onHandl eEvent
Fr nDi spat chEvent (enter)
MyFor nHandl eEvent (enter)
FrmAl ert

MyFor nHandl eEvent (exit)

Evt Get Event

SysHandl eEvent

MenuHandl eEvent

Appl i cat i onHandl eEvent

Fr nDi spat chEvent (enter)
My For nHandl eEvent

FrnDi spat chEvent (exit)

atap hits a usable control; a ctlEnterEvent is sent
returnstrue

returns ctlEnter Event
returns false
returns false
returns false

returns false

inverts the button and waits for the pen to be lifted
(EvtGetPen); when the pen islifted, inverts
the button; posts ctl SelectEvent to the event queue
as the pen islifted fromthe control; returnstrue

returnstrue

returns ctl Sel ectEvent
returns false
returns false
returns false

returns after the OK button has been pressed
(FrmDoAlert has its own event loop)
returnstrue

returns penUpEvent
returns false
returns false
returns false

returns false
returns false

Last, but not least, examine Example 4-11 to see what happens when the user finally chooses a menu item.
The penDownEvent istransformed into akeyEvent (tapping on the hardware keys or on the soft
buttons causes akeyEvent to be posted). When the user finally taps on a particular menu item, a
menuEvent is posted to the event queue, which is once again handled by MyFor nHandl eEvent .

Example 4- 11. Event Loop Handlinga Menu Item

Evt Get Event
SysHandl eEvent

Evt Get Event
SysHandl eEvent

Evt Get Event

SysHandl eEvent
MenuHandl eEvent

Evt Get Event
SysHandl eEvent
MenuHandl eEvent

Evt Get Event

SysHandl eEvent

MenuHandl eEvent

Appl i cat i onHandl eEvent

Fr nDi spat chEvent (enter)
MyFor nHandl eEvent

FrnDi spat chEvent (exit)

Evt Get Event
SysHandl eEvent

Tap on Menu button
returns penDownEvent
tracks pen; doesn't return until pen up; returnstrue

returns penUpEvent
posts keyDownEvent on the event queue and returns true

returns keyDownEvent with key: menuChr (0x105). This
isa special System key event that triggers menu
code in MenuHandleEvent

returns false

puts up menu bar and "First" menu and returns true

Tap on Second menu

returns penDownEvent

returns false

puts up " Second" menu and returns true

returns penUpEvent
returns false

returns false

returns false

calls MyFormHandl eEvent
returns false

returns false

Tap on Beep Another Item
returns penDownEvent
returns false

MenuHand| eEvent

Evt Get Event

SysHandl eEvent

MenuHandl eEvent

Appl i cati onHandl eEvent

FrnDi spat chEvent (enter)
My For mHandl eEvent

FrnDi spat chEvent (exit)

removes menubar and menu and posts menuEvent to the
event queue and returnstrue

returns menuEvent with iteml D: 1000
returns false

returns false

returns false

calls MyFormHandleEvent

beeps and returns true

returnstrue

Evt Get Event returns penUpEvent

SysHandl eEvent returns false

MenuHandl eEvent returns false

Appl i cati onHandl eEvent returns false

FrnDi spat chEvent (enter) calls MyFormHandleEvent
My For mHandl eEvent returns false

Fr nDi spat chEvent (exit) returns false

Memory |'s Extremely Limited

=8

Now that you have an idea of how the system hands events off to the application, it's time to ook at how
memory is handled. To start off, it will help if you remember one crucial point: memory is an extremely
limited resource on Palm OS devices. Because of this, Palm OS applications need to be written with careful
attention to memory management.

To that end, let's examine the memory architecture on Palm devices. RAM is divided into two areas. storage
and dynamic (see Figure 4-5). The storage area of memory is managed by the Database Manager, which we
discuss in Chapter 6, Databases. It is dynamic memory, which is handled by the Memory Manager, that we

discuss here.

Figure 4- 5. Memory map

Starage drea
Hotvory on peim 05 D

W Dymiamic Area

The dynamic memory is used for Palm OS globals, Palm OS dynamic allocations, your application's global
variables (note that C statics are aform of globals), your application's stack space, and any dynamic memory
allocations you make. Asyou can seein Table 4-1, the size available depends on the operating system and
on the amount of total memory on the device.

-Table 4- 1. Dynamic Memory Usage for Various Palm OS Configurations

0S20(1MB; 0S2.0(512KB:
hasTCP/IP) noTCP/IP)

System Globals 6KB 2.5KB 2.5KB
System dynamic allocation

System Resour ces 0S3.0(>1MB)

50KB 47KB 15KB
(TCP/IP, IRDA, €tc.)
Application stack (call stack and 4KB
local variables) (by defauilt) 2.5KB 2.5KB
Remai nder (appl ication globals 36KB 19KB 19KB
dynamic allocation)
Total dynamic memory 96KB 64KB 32KB

The Dynamic Heap

The dynamic memory areais called the dynamic heap. Y ou can allocate from the heap as either

nonrel ocatable chunks (called pointers) or relocatable chunks (called handles). It is always preferable to use
handles wherever possible (if you're going to keep something locked for its entire existence, you might as
well use a pointer). This gives the memory manager the ability to move chunks around as necessary and to
keep free space contiguous.

In order to read or modify the contents of arelocatable block, you temporarily lock it. When a memory
allocation occurs, any unlocked relocatable block can be rel ocated (see Figure 4-6 for a diagram of unlocked
rel ocatabl e blocks moving due to a memory allocation).

Figure 4- 6. The dynamic heap before and after doing an allocation

Before Allocation After Allocation
T rlocaloble block | b relocatable block
12 locked relocatable block | 2 Incked relocatble black
3 relocotable block
3 relocotable block |1 locked relocatoble block |
|4 non relocatable block | |4 non redocatoble black |
'5 non relocotable block | '5 non relocotable block |

Memory API

Hereisthe API for using handlesin your code. MenHandl eNewletsyou alocate a handle like this:

Voi dHand nyHandl e = MenHandl eNew(chunkSi ze)
MenmHandl eNewwill return NULL if the allocation was unsuccessful.

Before you read from or write to a handle in your program, you need to lock it. You do so by calling
MermHand| eLock, which returns a pointer to the locked data. While the handle is locked, the rel ocatable
block can't be moved and you can do things like reading and writing of the data. In general, you should keep
ahandle locked for as short atime as possible (keeping in mind, however, that there is a performance cost to
repetitive locking and unlocking); locked handles tend to fragment free memory when compaction takes
place. Here is the code to lock and unlock a memory handle:

voi d *nyPoi nter = MenHandl eLock(nyHandl e) ;
/1 do sonething wi th myPointer

MermHandl eUnl ock(myHandl e) ;

MenmHandl eLock and MenHandl eUnl ock calls can be nested, because MenHand| eLock
increments a lock count (you can have a maximum of 15 outstanding locks per handle).
MenmHandl eUnl ock decrements the lock count. Note that it doesn't actually allow the chunk to move
unless the lock count hits 0. If you get overeager and try to lock a handle that's already been locked 15 times,
you get a runtime "chunk overlocked" error message. Similarly, unlocking a handle that is already unlocked
(whose lock count is 0) generates a " chunk underlocked" error message.

Alternatively, you can call MenPt r Unl ock. Thismay be more convenient, especially when the unlock is
in a separate routine from the lock. Thisway you only have to pass around the locked pointer.

Lock Counts

A lock count alows nested locking to work. For example, imagine the
following code:

void A(VoidHand h)

{

VoidPtr p = MemHandleL ock(h);
/I do stuff with P

B(h);

/I code after B
MemHandleUnlock(h);

}

void B(VoidHand h)

{
VoidPtr s= MemHandleL ock(h);
/ do stuff with s

MemHandleUnlock(h);

}

When A locks h, itslock count goesto 1. When A calls B, it passesthis
locked handle. When B locksit again, the lock count goesto 2. When B
unlocksit, it goes down to 1. After B returns, the handleis still locked,
with alock count of 1. After A unlocksit, it isreally unlocked.

If MenHandl eLock and MenHandl eUnl ock didn't use lock counts
(some operating systems do provide handle locking but don't use lock
counts), there would be a problem with the previous code. When B
unlocked the handle, it would in fact be unlocked. Then, in A's code after
the call to B, but before the call to unlock the handle, the handle would be
unlocked. If A's code used the pointer p during that time, havoc could
ensue, as p isno longer valid once its handle is unlocked (actudly, it's till
valid until the chunk moves, but that could happen any time after the
handle is unlocked).

Lock counts add a small amount of complexity to the Memory Manager,
but make applications easier to code.

To allocate apointer, use MenPt r New:

struct s *nyS = MenPtrNew sizeof (struct s));

Tofreeachunk,use MenPtr Free or MenHandl eFr ee:

MenPt r Free(nyPoi nter);
MenHandl eFr ee(nyHandl e) ;

Asachunk isallocated, it is marked with an owner ID. When an application is closed, the Memory Manager
deallocates all chunks with that owner I1D. Other chunks (for instance, those allocated by the system with a
different mark) are not deallocated.

Y ou shouldn't rely on this cleanup, however. Instead, you should code your application to free al its
allocated memory explicitly. Just consider the system cleanup to be a crutch for those application writers
who aren't as fastidious as you. However, in the rare case that you might forget a deallocation, the system
will do it for you.

This cleanup makes the lives of Palm device users much happier. They are no longer prey to every poorly
written application with a memory leak. Without this behavior, there would be no cleanup of memory
allocated by an application but never deallocated. Imagine an application that allocates 50 bytes every time it
isrun but never deallocates it. Running the application twice a day for two weeks uses 1,400 bytes of
dynamic memory that could be reclaimed only by areset. A Palm device isn't like a desktop computer that is
rebooted fairly often (at least we know our desktop computers are rebooted fairly often!). Instead, a Palm
device should run months or years without areset. The fact that handhelds need areset button is aflaw.
(Don't get us wrong, though; given the current state of affairs, handhelds do need reset buttons.)

The Memory Manager provides other facilities, including finding the size of a chunk, resizing a chunk, and
finding a handle given alocked pointer. For more information about these routines, you should see the
Memory Manager documentation (or the include file MemoryMgr.h).

Last, there are two useful memory utility routines you should know about. They are MenfSet and
Mem\bve:

MenSet (void *p, ULong nunBytes, Byte val ue)
Memvbve(void *from void *to, ULong nunBytes)

MenSet setsarange of memory to the specified byte value. Menivbv e copies the specified number of bytes
from a particular range to another range (it correctly handles the case where the two ranges overlap).

Other Times Your Application Is Called B

The Palm OS makes a distinction between communicating with the active application and communicating
with apossibly inactive application. In thisfirst case, the active application is busy executing an event loop
and can be communicated with by posting events to the event queue. As shown in Hello World, thiswas
how our application got closed; theappSt opEvent was posted to the event queue. When the active
application gets that event, it quits.

Because there are other times that your application gets called by the Palm OS, there needs to be away to
communicate with it in those instances. First, let's ook at alist of the circumstances under which the system
might want to talk to your application:

o When the user does a Find, the system must ask each installed application to look for any records that
match the Find request.

o When beamed datais received, the system must ask the appropriate application (the one that is

registered to receive the data) to handle the incoming item.

When a synchronization occurs, each application is notified after its data has been synced.

After areset, each application is notified that a reset has occurred.

If the system time or date changes, each application is notified.

If the country changes, each application is notified.

In al these cases, a communication must take place to an inactive or closed application. The question is how
the system does this. The answer islaunch codes; all these communications are handled by your
application's launch codes.

Launch Codes

Within the Palm OS, the launch code specifies to the application which of the circumstances just listed exist
and what the application needs to do. These codes arrive at the application's Pi | ot Mai n routine by way
of its| aunchCode parameter. Here are some common launch codes:

sysAppLaunchFind

This code tells the application to ook up a particular text string and return information about any matching
data.

sysAppLaunchGoTo

This code tells the application to open, if it isn't aready open, and then to go to the specified piece of data.
sysAppLaunchNormal

Aswe have already seen, this code opens the application normally.

Launch Flags

Associated with these launch codes are various launch flags. The launch flags specify important information
about how the application is being executed. Here are some examples:

Whether the application's global variables are available. Globals are not available on many launch
codes.

Whether the application is now the active application.

Whether it had already been open as the active application.

o Whether some other application is active.

A Few Scenarios

To help make this whole relationship between the application and when it gets called by the system clear,
let'slook at some examples of when this happens and what the flow of the code islike.

Example 4-12 shows what happens when a user does a Find when the built-in application Memo Pad is
open. The Pi | ot Mai n of Hello World is called with the sys AppLaunchCndFi nd launch code and with
no launch flags.

-Example 4- 12. Flow of Control When User Chooses Find When MemoPad Is Open

MenoPad' s sysAppLaunchFlagNewStack AND
Pi | ot Mai n(sysAppLaunchCndNor mal Launch, par ans, sysAppLaunchFlagNewGlobals AND

flags) sysAppLaunchFlagUI App
MenoPad' s Event Loop

SysHandl eEvent (enter)
after user taps Find
Loop through all applications:
MenoPad' s Pi | ot Mai n(sysAppLaunchCndFi nd,
paraneters, sysAppLaunchFl agSubCall)
Pi | ot Mai n(sysAppLaunchCndFi nd, calls HelloWorld's PilotMain

paraneters, 0)
SysHandl eEvent (exit)

Now take alook in Example 4-13. Thisiswhat happens when we do a Find with our application already
open. In this case, HelloWorld's Pi | ot Mai n is called with the same launch code,

sysAppLaunchCndFi nd, but with the launch flag sysAppLaunchFl agSubCal | , specifying that the
HelloWorld application is already open and running. This signifies that global variables are available and
that the St ar t Appl i cat i on routine has been called.

Example 4- 13. Flow of Control When User Chooses Find When Hello World |s Open

Hel | oWorl d's Pil ot Mai n(sysAppLaunchFlagNewStack AND
sysAppLaunchCndNor mal Launch, parans, sysAppLaunchFlagNewGlobals AND
flags) sysAppLaunchFlagUIApp

Hel | oWorl d's Event Loop
SysHandl eEvent (enter)
after user taps Find
Loop through all applications:
Hel | oworl d' s Pil ot Mai n(sysAppLaunchCndFi nd,
paraneters, sysAppLaunchFl agSubCal)
Pi | ot Mai n(sysAppLaunchCndFi nd, par anet er s,
0)
SysHandl eEvent (exit)

Summary 2

In this chapter, we have given you a description of how an application interacts with the system on a Palm
device. We have also done a code walkthrough of a sample program that contains all the code components
that are standard to al Palm applications. Y ou have learned that the Palm application is an event driven
system. The system's event queue feeds a constant flow of events to your application, and it is up to you to
handle them. Y ou have a so seen the wide variety of instances under which your application may get called
by the system and the resources available to you to deal with these instances. Last, but not least, we have
discussed some of the more important elements in handling memory in a Palm application.

From all thisinformation, you should now be well on your way to understanding this application
architecture. In the following chapters, you will use this information to create a full-featured application.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PaaPaaac

Thispage intentionally left blank

Palm Programming: The Developer’s Guide ~

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

PRt

In this chapter:

o Resources

e Forms

e Form Objects

¢ Resources, Forms, and Form Objects
in the Sales Application

5. Formsand
Form Objects

This chapter describes forms and form objects. Before we cover these subjects, however, we explain how the
resources associated with the forms are created and used. Y our application is stored in the form of resources.
Once we discuss resources and forms in general, we give you some programming tips for creating specific
types of forms (like aerts). Last, we turn to a discussion of resources and forms in the sample application.

Resources '&

A resource is arelocatable block marked with afour-byte type (usually represented as four characters, like
CODE or tSTR) and atwo-byte ID. Resources are stored in a resource database (on the desktop, these files
end in the extension .PRC).

An application is aresource database. One of the resources in this database contains code, another resource
contains the application's name, ancther the application'sicon, and the rest contain the forms, alerts, menus,
strings, and other elements of the application. The Palm OS uses these resources directly from the storage
heap (after locking them) via the Resource Manager.

The two most common tools to create Palm OS application resources are CodeWarrior's Constructor tool or
PIIRC as part of the GCC collection of tools. Our discussion turns to Constructor first and PilIRC second.

Creating Resources in Constructor

CodeWarrior's Constructor isavisual resource editor: you lay out the user interface object resources using a
graphical layout tool.

In the following example, we take a peek at the Forms section of the resource file. Y ou will see how to use
the New Form Resource menu item and select the name and change it to be called "Main" (see Figure 5-1).

Figure 5- 1. Creating a form resourcein Constructor

{E. MyForm_rsrc
Resgurce Type and Hame 10
- Forms 1 itam =
- oo |
ﬁ Henu Barg 0 hems
m Henus [Litems
5 string Lists i Frams
g Arings [dsms
B werts 0 hams
5 #pp Info string Liss [iems
ﬁ o 0 Asms
By mitmeps 0 ftems -
7 | o
L |
[BFrefect seteqs
Generale App Resourcss [wl Gorweate Spp Resources
Sppieation leon Name Uit [Hex
Wrsion StAng 10
#oplication lcon 1000
#unto Gererate Hesder File E gy Oenerste Header File
Header file name bty Formn _res b
Irclude Datails in heoder D Include Details in header
Feep 1D inosyno E Ezep 0= in =ymo |_

The following discussion is not a tutorial on how to use Constructor. The Code Warrior documentation does
afinejob at that. Rather, it isintended to be just enough information to give you a clear idea of what it's like
to create aresource using Constructor.

To add a particular type of object resource to aform-a button, for instance-you drag it from the catalog
window and drop it into the form (see Figure 5-2). Clicking on any item that has been dropped into the form
allows you to edit its attributes. Double-clicking brings up a separate window.

If you look at Figure 5-3, you will see several windows: one shows you all the itemsin your form; another
shows you the hierarchy of your form and its objects (as shown in the Object Hierarchy window); and last,
but not least, another shows editing aform. In Figure 5-3, the top left window is the form window used to
edit the form shown at the top right. The bottom left window is an editor for the Done button. The bottom
right window shows the hierarchy of items on this particular form.

Figure 5- 2. The catalog window from which you can drag-and-drop an item to aform

E Ul Object Hame

Eution

Chackbox

Fald

Form Bitmap
Cepciget

Graflitti Shifl Ind cator
Lkl

List

Fepup Trigger
Push Button
FRepeating Button
Sorollbar
Selector Triggsr
Tabda

FAEEHRNO~LEEzEE

Figure5- 3. Editingaform

£ B
|E Layout Properties |E Layoul Appearance
= Form J
Laft Origine o
Top Origin o
idth 180
Haight 180
Usable B vsatie
Ioioddal 1wt
Sawe Behind D Gawe Behind
Form 1D 00
telenu Bar 1D o
Datzauit Button 1D o
Form Title Form title
s
Banton |0 BOOZ
B Propeny Wl
T e B Otgees Type Obfact |0 Thia
Latt Drighn w = [=] Form 5000 Msin -
::;Eﬂuﬂ :;:B ﬁm Fiald BoO1 Hame =
Haight 2 =1 Button aoog Done
Uzable BA weatie LT Labw 003 Unnameddng +
Anohor Lett E Enchor Left 1 | | - |_
Frams B Frame
Han-bald Frame B manbiola Frame
Font Standard |E|_
I Lk Do] Hex |l

There are a couple of worthwhile things to know about creating resources in Constructor.
Use constants rather than raw resource IDs

When using Constructor to create resources, you won't be embedding resource IDs directly in your code as
raw numberslike this:

FrmAl ert (1056) ;

Instead, you should create symbolic constants for each of the resource IDs.

#define Tell User Sonet hi ngAl ert 1056

Thus, when you use the resource with a function, you will have code that looks like this:

FrmAl ert (Tel | User Sonet hi ngAl ert);

Using constants for your resources

Constructor rewards you for creating symbolic constants for your resources. When it saves the resourcefile,
it also saves a corresponding header file with all symbolic constant definitions nicely and neatly laid out for
you (Figure 5-4 shows you how to choose the header filename). The names it creates are based on the type of
the resource and the resource name you've provided.

Figure 5- 4. Specifying the header file Constructor generateswith ID definitions

|E Projact 5 ettings
Gererate fpp Resources [Cererme fpp Resources

dgploation loon Name
Wersion String

dpploation loon

Aing Garsralg Hemdar Fils
Irclude Details in header
Keep D2 in 2yne

Uritrtiad

D Hex
1.0
oo

Ay Gengrate Haader Fik

Includa Deizils in hesder

[Essp 103 in sy

I

Thisis Constructor's way of keeping you from editing the resource file directly-that's Constructor's job and
strictly hands off to you. For one thing, Constructor can change IDs on an item. Further, your project

devel opment or maintenance will not work correctly. Y ou are supposed to use Constructor only for resource
editing, whether that is adding, deleting, or renumbering them. To keep things all lined up nicely,
Constructor regenerates the header file after any change, ensuring that your constant definitions match
exactly the resources that exist.

NOTE:

Constructor creates constants not only for resource IDs, but for form object 1Ds (see "Form Objects,” later
in this chapter) as well.

Here's the header file generated by Constructor for the resource file we created in Figure 5-3. Asyou can see
in the comments, you are not supposed to fiddle with thisfile:

/| Header generated by Constructor for Pilot 1.0.2

/1

/] Generated at 10:55:44 AMon Friday, July 10, 1998
/1

/'l Generated for file: Macintosh HD:: MyFormrsc

/1

/1 THI S |'S AN AUTOVATI CALLY GENERATED HEADER FI LE FROM
/1 CONSTRUCTOR FOR PALMPI LOT;

/1 - DO NOT EDIT - CHANGES MADE TO THI S FILE WLL BE LOST
/1

/1 Pilot App Name: "Untitled"

/1

/] Pilot App Version: "1.0"

/1 Resource: tFRM 8000

#define Mai nForm 8000
#defi ne Mai nDoneBut t on 8002
#define Mai nNaneFi el d 8001
#defi ne Mai nUnnanmed8003Label 8003

Constructor has generated constants for every resource in the file; one for the form and three for the form
objects.

Creating Resourcesin PiIRC

PIIRC is aresource compiler that takes textual descriptions (stored in an .RCP file) of your resources and
compiles them into the binary format required by a .PRC file. Unlike Constructor, PiIRC doesn't allow you
to visually create your resources; instead, you type in text to designate their characteristics. Thereisaway to
see what that PilRC text-based description will look like visually, however. Y ou can use PIIRCUI, atool
that reads an .RCP file and displays a graphic preview of that file. This allows you to see what your resource
objects are going to look like on the Palm device (see Figure 5-5).

Figure5- 5. PIIRCUI displaying a preview of aform from an .RCP file

=12 PilRe - C:\o... [H[=]E3

File Options Form

Test ETH

The pretty points of PIIRC

PiIIRC does do some of the grunt work of creating resources for you. For example, you don't need to specify
anumber for every item'stop and left coordinates, and every item's width and height. PIIRC has a
mechanism for automatically calculating the width or height of an item based on the text width or height.
Thisworks especially well for things like buttons, push buttons, and checkboxes.

It al'so allows you to specify the center justification of items. Beyond this, you can even justify the
coordinates of one item based on those of another; you use the width/height of the previous item. These
mechanisms also make it possible to specify the relationships between items on aform, so that changes
affect not just one, but related groups of items. Thus, you can move an item or resize it and have that change
affect succeeding items on the form as well.

PiIRC example
Here'sa PiIRC example. It isa simple form that contains:

o A labe

o Three checkboxes whose left edges line up under the right edge of the label

o Three buttons at the bottom of the form, each with three pixels of space between the borders of the
buttons

Figure 5-5 shows you what this text description looks like graphically:

FORM ID 1 AT (2 2 156 156)
USABLE
MODAL
BEG N
TI TLE " Foo"
LABEL "Choose one:" 2001 AT (8 16)

CHECKBOX " Check 1" | D 2002 AT (PrevRi ght PrevBottom+3 AUTO AUTO GROUP 1

CHECKBOX " Anot her choice" | D 2003 AT (PrevLeft PrevBottom+3 AUTO AUTO)
GROUP 1

CHECKBOX "Maybe" | D 2004 AT (PrevLeft PrevBottom+3 AUTO AUTO GROUP 1

BUTTON "Test1" I D 2006 AT (7 140 AUTO AUTO
BUTTON "Anot her" | D 2007 AT (PrevRi ght+5 PrevTop AUTO AUTO)

BUTTON "3rd" |1 D 2008 AT (PrevRi ght+5 PrevTop AUTO AUTO
END

Just as Constructor discourages you from embedding resource IDs directly into your code as raw numbers
(see Figure 5-3), similarly, you shouldn't embed resource I Ds directly into your .RCP files. The right way to
do thiswith PIIRC isto use constants.

Using constants for your resources

PiIRC doesn't automatically generate symbolic constants, as Constructor does. PilIRC does, however, have a
mechanism for unification. If you create a header file that defines symbolic constants, you can include that
header file both in your C code and in your PiIIRC .RCP definition file. PIIRC alows you to include afile

using #i ncl ude and understands C-style #def i ne statements. Y ou'll smply be sharing your #def i nes
between your C code and your resource definitions.

NOTE:

PiIIRC does have an - Hflag that automatically creates resource IDs for symbolic constants you provide.

Here's a header file we've created, ResDefs.h, with constant definitions (ssmilar to the kind that Constructor
generates automatically):

#define Mai nForm 8000

#defi ne Mai nDoneBut t on 8002
#define Mai nNaneFi el d 8001

Weinclude that in our .c file and then include it in our resources.rcp file:

#i ncl ude "ResDefs. h"

FORM | D Mai nForm AT (0 0 160 160)
BEG N
TITLE "Form title"
LABEL "Name:" AUTO D AT (11 35) FONT 1
FI ELD |1 D Mai nNareFi el d AT (PrevRi ght PrevTop 50 AUTO UNDERLI NED
MULTI PLELI NES MAXCHARS 80

BUTTON "Done" | D Mai nDoneButton AT (CENTER 143 AUTO AUTO)
END

Note that the label doesn't have an explicit ID but uses AUTO D. An ID of AUTO D causes PiIIRC to create a
unique ID for you automatically. Thisis handy for items on aform that you don't need to refer to
programmatically from your code as is often the case with labels, for example.

Reading Resources

Occasionaly, you may need to use the Resource Manager to directly obtain a resource from your
application's resource database. Here's what you do:

1. Get ahandle to the resource.

2. Lock it.

3. Messwith it, doing whatever you need to do.
4. Unlock it.

5. Releaseit.

You modify aresourcewithacall to DmGet Resour ce. Thisfunction gives you a handle to that resource
as an unlocked relocatable block. To find the particular resource you want, you specify the resource type and
ID when you make the call. DnGet Resour ce searches through the application's resources and the system's
resources. When it finds the matching resource, it marksit busy and returnsits handle. Y ou lock the handle
with acall to MenHandl eLock. When you are finished with the resource, you call

DnRel easeResour ce toreleaseit.

Here's some sample code that retrieves a string resource, usesit, and then releases it:

Handl e h;
CharPtr s;

h DnGet Resource('t STR, 1099);
s MenHandl eLock(h) ;
/] use the string s

MenmHandl eUnl ock(h) ;
DnRel easeResource(h);

Actually, DntGet Resour ce searches through the entire list of open resource databases, including the
system resource database stored in ROM. Use DmGet 1Resour ce to search through only the topmost
open resource database; thisis normally your application.

Wkiting Resources

Although it is possible to write to resources (see "Modifying a Record" on page 149), it is uncommon; most

resources are used only for reading.

Forms .&

Aswe discussed earlier, aformis acontainer for the application’'s visual elements. A formis created based
on information from aresource (of type "tFRM™) that describes the elements. There are both modal and
modeless forms in an application. The classic example of amodal form is an aert. Other forms can be made
modal but require extrawork on your part.

NOTE:

A modal dialog is different from amodeless formin:

- Appearance: amodal dialog has a full-width titlebar with the title centered and with buttons from left to right aong the bottom.
Most modal dialogs should have an info button that provides additional help.

- Behavior: the Find button doesn't work while amodal dialog is being displayed.

In the following material, we first discuss aerts and then modal forms. We also offer several tipsin each
section.

Alerts

Andertisavery constrained form (based on a"Talt" resource); it isamodal dialog with an icon, a message,
and one or more buttons at the bottom that dismiss the dialog (see Figure 5-6). Aswe discussed in

Chapter 3, Designing a Solution, there are four different types of aerts (information, warning, confirmation,
and error). The user can distinguish the alert type by the icon shown.

-Figure5- 6. An alert showing an icon, a message, and a button

@ Yournust haove a record
selected to perform
this carnmand. To
select a record, tap the
description of the
event.

Cox)

Thereturnresult of Fr mAl er t isthe number of the button that was pressed (where the first button is
number 0).

Customizing an alert

It isworth noting that you can customize the message in an alert. Y ou do so with runtime parameters that
allow you to make up to three textual substitutions in the message. In the resource, you specify a placeholder
for the runtime text with~1, 22, or 3. Instead of calling Fr mAl ert ,youcal FrnCust omAl ert. The
first string replaces any occurrence of 1, the second replaces any occurrence of 2, and the third replaces
occurrences of ~ 3.

NOTE:

When you call Fr nCust omAl er t, you can pass NULL as the text pointer only if thereis no corresponding
placeholder in the alert resource. If there is a corresponding placeholder, then passing NULL will cause a
crash; pass a string with one spaceinit (" ") instead.

NOTE:

That is, if your dert messageis" My Message "1 (”~2)",youcancal:
FrmCustomAlert(MyAlertID, "string”, " ", NULL)
NOTE:

but not this:
FrmCustomAlert(MyAlertID, "string”, NULL, NULL)

User interface guidelines recommend that modal dialogs have an info button at the top right that provides
help for the dialog. To do so, create a string resource with your help text and specify the string resource ID
asthe help ID in the aert resource.

NOTE:

Make sure that any alerts you display with Fr mAl ert don't have™1, 2, or 3 inthem. Fr mAl ert
(alertID) isequivalentto Fr nCust omAl ert (al ert I D, NULL, NULL, NULL).TheForm
Manager will try to replace any occurrences of ~1, 2, or ~3 with NULL, and thiswill certainly cause a
crash.

Alert example

Here's aresource description of an alert with two buttons:

#define MyAlert 1000

ALERT I D WA ert
CONFI RVATI ON
BEG N
TITLE "My Alert Title (~1)"
MESSAGE "My Message (~1) (22) (~1)"
BUTTONS " OK" " Cancel
END

If you display the dert with Fr nCust omAl ert , it appears as shown in Figure 5-7:

if (FrnCustomAl ert(MAl ert, "foo", "bar", NULL) == 0) {
/| user pressed K
} else {

/] user pressed Cancel

}

Figure5- 7. An alert displayed with Fr nCust omAl er t ; notethat FrmCustomAlert doesn't replace stringsin thetitle

@ My Message {foa)} {(bar}
{fon)

(oK) (Concel)

Tipson creating alerts

Here are afew tipsthat will help you avoid common mistakes:

Button capitalization

Buttonsin an alert should be capitalized. Thus, a button should be titled "Cancel" and not "cancel”.
OK buttons

An"OK" button should be exactly that. Don't use "Ok", "Okay", "ok", or "Okey-dokey". OK?
Using 1, "2, "3

The”1, 22, "3 placeholders aren't replaced in the alert title or in buttons but are replaced only in the alert
message.

Modal Dialogs

The easiest way to display amodal dialog isto use Fr mAl ert or Fr nCust onAl er t . Thefixed structure
of aerts (icon, text, and buttons) may not always match what you need, however. For example, you may
need a checkbox or other control in your dialog.

Modal form template

If you need this type of flexible modal dialog, use aform resource (setting the nodal attribute of the form)
and then display the dialog using the following code:

/] returns object ID of hit button
static Word D spl ayMyFor mivbdal | y(voi d)

{
FornmPtr previousForm = FrnGet Acti veForm();

FormPtr frm= Frm nitFornm(MyForm;
Wor d hi t But t on;

FrnSet Acti veForm(frm;

/1 Set an event handler, if you wish, wth FrnSet Event Handl er
/1 Initialize any formobjects in the form

hi tButton = FrnDoDi al og(frm;

/1 read any values fromthe formobjects here
/] before the formis deleted

if (previousForm

Fr nSet Acti veFor m(pr evi ousForm ;
FrmDel et eForm(frm;
return hitButton;

NOTE:

Fr mDoDi al og is documented to return the number of the tapped button, where the first button is 0. Actually, it returnsthe
button 1D of the tapped button.

NOTE:

For example, if you've got aform with anicon, alabel, and two buttons, where the first button has a button

ID of 1002 and the second button has a button 1D of 1001, Fr nDoDi al og will return either 1002 or 1001,
depending on whether the first or second button is pressed.

Modal form example

Here we have an example that displays amodal dialog with a checkbox in it (see Figure 5-8). Theinitia
value of the checkbox is determined by the parameter to Tr ueOr Fal se. Thefinal value of

Tr ueOr Fal se isthe value of the checkbox (if the user taps OK) or theinitial value (if the user taps
Cancel). This demonstrates setting form object values in amodal form before displaying it and reading
values from amodal form's objects after it is done:

/] takes a true/false value and allows the user to edit it
static Bool ean TrueO Fal se(Bool ean initial Val ue)
{

FornmPtr previousForm = FrnGet Acti veForm();

FormPtr frm= FrmnitFornm(TrueOr Fal seForm;

Wor d hi t But t on;

Control Ptr checkbox = FrnGet ObjectPtr(frm

Fr mCGet Obj ect I ndex(frm TrueO Fal seCheckbox));
Bool ean newval ue;

FrnSet Acti veForm(frm;
/1 Set an event handler, if you wi sh, wth FrnSet Event Handl er
Ct | Set Val ue(checkbox, initial Val ue);
hi tButton = FrnDoDi al og(frm;
newal ue = Ctl Get Val ue(checkbox) ;
if (previousForm
Fr nSet Act i veFor m(pr evi ousForm ;
FrmDel et eForm(frm;
if (hitButton == TrueO Fal seCKButt on)
return newval ue;

el se
return initial Val ue;

}

Figure 5- 8. Themodal form that allows you to edit a true/false value with a checkbox

A tip for modal forms

Whenyoucall FrnDoDi al og withamodal form, your event handler won't get af r mOpenEvent , and
it doesn't have to call Fr nDr awFor m Since your event handler won't be notified that the form is opening,
any form initialization must be done before you call Fr nDoDi al og.

Modal form sizes

Y ou don't want your modal form to take up the entire screen real estate. Center it horizontally at the bottom
of the screen, and make sure that the borders of the form can be seen. Y ou'll need to inset the bounds of your
form by at least two pixelsin each direction.

Help for modal forms

The Palm user interface guidelines specify that modal dialogs should provide online help through the "i"

button at the top right of the form (see Figure 5-9). Y ou provide this help text as a string resource (t STR)
that contains the appropriate help message. In your form (or aert) resource, you then set the help ID to the

string resource |D. The Palm OS takes care of displaying the"i" button (only if the help ID is nonzero) and
displaying the help text if the button is tapped.

Figure5- 9. Modal dialog (left) with "i" button bringing up help (right)

Event Details ___6

Timme: : Mo time * To create an event that
starts ona tinme not shown
Dete: | Thy 7/2/9%8 on the screen, tap the timnme
Alarem: O next toa blank event. This
R t N displays the Set Tirne dialog.

Private: O = To create an event that
lasts several days, such as a

@ [Concel) [Delete_) (Hote) trip, set a daily repeat with

an end date.

4

Form Objects 2

The elements that populate aform are called form objects. Before we get into the details of specific form
objects, however, there are some very important things to know about how forms deal with all form objects.

Many of the form objects post specific kinds of events when they are tapped on, or used. To use a particular

type of form object, you need to consult the PAlm OS documentation to see what kinds of events that form
object produces.

Dealing with Form Objects in Your Form Event
Form objects communicate their actions by posting events. Most of the form objects have a similar structure:
1. When the stylusis pressed on the object, it sends an enter event.
2. In response to the enter event, the object responds appropriately while the stylus is pressed down. For
example: a button highlights while the pen is within the button and unhighlights while it is outside the
button; ascrollbar sendsscl Repeat Event swhile the user has a scroll arrow tapped; alist highlights the
row the stylusis on and scrolls, if necessary, when the pen reaches the top or bottom of the list.
3. When the stylusis released:

a If itison the object, it sends a select event.

b. If it is outside the object, it sends an exit event.
In al these events, the ID of the tapped form object and a pointer to the form object itself are provided as
part of the event. The ID allows you to distinguish between different instances that generate the same types
of events. For example, two buttons would both generateact | Sel ect Event when tapped; you need the
IDsto know which iswhich.

Events generated by a successful tap

Most often, you want to know only when an object has been successfully tapped; that is, the user lifts the
stylus while still within the boundaries of the object. Y ou'll be interested in these events:

e Ctl| Sel ect Event

frnfitl eSel ect Event
| st Sel ect Event
popSel ect Event
t bl Sel ect Event

Events generated by repeated taps

Sometimes, you'll need to be notified of arepetitive action while aform object is being pressed. The events
arect | Repeat Event (used for repeating buttons) and scl Repeat Event .

Events generated by the start of a tap

Occasionally, you'll want to know when the user startsto tap on aform object. For example, when the user
starts to tap on a pop-up trigger you may want to dynamically fill in the contents of the pop-up list before it
isdisplayed. You'd do that inthect | Ent er Event , looking for the appropriate control 1D. The events sent
when the user startsto tap on aform object are:

ct| Ent er Event
f 1 dEnt er Event
frniitl eEnt er Event
| st Ent er Event
scl Ent er Event
t bl Ent er Event

Events generated by the end of an unsuccessful tap

Rarely, you'll want to know when aform object has been unsuccessfully tapped (the user tapped the object,
but scuttled the stylus outside the boundaries before lifting it). For example, if you allocate some memory in
the enter event, you'd deallocate the memory in both the select event and in the corresponding exit event
(covering all your bases, so to speak). Theeventsarect | Exi t Event, | st Exi t Event,

scl Exi t Event ,andt bl Exi t Event .

NOTE:

Note that although thereisaf r nili t | eSel ect Event , thereis no corresponding
frnilitl eExi t Event . We know of no reason why thisis so.

Getting an Object froma Form

Whenever you need to do something with an object, you will need to get it from the form. Y ou do thiswith
apointer and the function Fr ntcet Obj ect Pt r . Note that Fr mGet Obj ect Pt r takes an object index and
not an object ID. The return result of Fr mGet Obj ect Pt r depends on the type of the form object.

Types of form object pointers

Fr net Obj ect Pt r returns one of the following, depending on the type of the form object kept at that
index:

Fi el dPtr
Control Ptr

Li stPtr

Tabl ePtr

For nBi t mapPt r
For mLabel Ptr
FornilitlePtr
For mPopupPt r

e Formaffiti StatePtr
e Fornzadget Ptr
e Scrol |l BarPtr

Code example

If you pass the correct index into Fr mGet Obj ect Pt r, you can safely typecast the return result. For
example, here we get afield from theformand castittoaFi el dPt r:

FornmPtr frm = FrnGetActiveForm();
FieldPtr fld = FrnGet ObjectPtr(frm FrnGet Objectlndex(frm MinWField));

NOTE:

C doesn't require an explicit typecast when casting fromavoi d * such asthe return result of
Fr ncet Obj ect Pt r . It automatically typecasts for you. C++, on the other hand, requires an explicit
typecast in that situation.

Error checking

Youcanuse FrnGet Obj ect Type with Fr nGet Obj ect Pt r to ensure that the type of the form object
you retrieve is the type you expect. Here's an example that retrievesaFi el dPt r , using additional error
checking to verify the type:

FieldPtr GetFieldPtr(FornPtr frm Word objectlndex)

{
Er r NonFat al Di spl ayl f (FrnGet Obj ect Type(frm objectlndex <> frnFiel dObj,

"Formobject isn't a field"
return (FieldPtr) FrnmCGetObjectPtr(frm objectlndex);
}

In afinished application, of course, your code shouldn't be accessing form objects of the wrong type. During
the devel opment process, however, it isfrightfully easy to accidentally pass the wrong index to

Fr mGet Obj ect Pt r. Thus, using a safety checking routine like Get Fi el dPt r can be helpful in catching
programming errors that are common in early development.

Form Object "Gotchas"

Here are a couple of problems to watch out for when dealing with form functions and handling form objects:
Remember which form functions require object I Ds ver sus object indexes

Y ou must keep track of which form functions require form object 1Ds and which require form object
indexes. If you pass an object ID to aroutine that expects an object index, you'll probably cause the deviceto
crash. Remember that you can translate back and forth between these two using Fr mGet Cbj ect | Dand

Fr nGet Obj ect | ndex whenever it's necessary.

Bitmaps don't have object IDs

Bitmaps on aform don't have an associated object ID. This can be a problem if you want to do hit-testing on
abitmap, for instance. In such cases, you can create a gadget that has the same bounds as the bitmap and do
hit-testing on it. This has an associated object ID.

Soecific Form Objects

Now that you have an idea how forms interact with form objects, it istime to look at the quirks associated

with programming particular form objects. Concerning these form objects there is both good news and bad.
Let's start with the good.

We don't discuss any of the following objects, because their creation and coding requirements are well
documented and straightforward:

Buttons

Checkboxes

Form bitmaps

Graffiti shift indicators
Push buttons
Repeating buttons
Selector triggers

The bad news is that the rest of the form objects require further discussion. Indeed, some objects, like
editable text field objects, require extensive help before you can successfully add them to an application.
Hereisthe list of objects that we are going to discuss further:

Labels

Gadgets

Lists

Pop-up triggers

Text

Scrollbars

Tables (we actually describe these later in Chapter 8, Extras, on page 204)

Label Objects

Label objects can be alittle bit tricky if you are going to change the label at runtime. They are asnap if the
label values don't switch.

Changing the text of a |abel

To change the text of alabel form object, use Fr nCopyLabel . Unfortunately, Fr nCopyLabel only
redraws the new label, while not erasing the old one. Y ou can have problems with thisin the case where the
new text is shorter than the old text; remnants of the old text are left behind. One way to avoid this problem
isto hide the label before doing the copy and then show it afterward. Here is an example of that:

FornPtr frm = FrnGetActiveForm();
Wor d nyLabel Obj ect | ndex = FrnGet Obj ect | ndex(frm Mai nMyLabel);

FrnHi deObj ect (frm nyLabel Obj ect | ndex) ;
Fr nCopyLabel (FrnGet Acti veForn(), Mi nMyLabel, "newText");
Fr nShowObj ect (frm nyLabel Obj ect | ndex) ;

NOTE:

To change the label of a control (like a checkbox, for instance), use Ct | Set Label , not Fr nCopyLabel .

Problems with labels longer than the resour ce specification

Y ou will also have troubleif the length of the new label islonger than the length specified in the resource.
Longer strings definitely cause errors, since Fr nCopyLabel blindly writes beyond the space allocated for
the label.

In general, you should realize that labels aren't well suited for text that needs to change at runtime. In most

cases, if you've got some text on the screen that needs to change, you are better off not using alabel. A
preferable choice, in such instances, is afield that has the editable and underline attributes turned off.

Gadget Objects

Once you have rifled through the other objects and haven't found anything suitable for the task you have in
mind, you are left with using a gadget. A gadget is the form object you use when nothing else will do.

A gadget is a custom form object with an on-screen bounds that can have data programmatically associated
with it. (You can't set datafor a gadget from aresource.) It also has an object ID. That's all the Form
Manager knows about a gadget: bounds, object 1D, and a data pointer. Everything else you need to handle
yourself.

What the gadget is responsible for
The two biggest tasks the gadget needs to handle are:

o All the drawing of the gadget on the screen
o All the taps on the gadget

There are two times when the gadget needs to be drawn-when the form first gets opened and whenever your
event handler receives af r nJpdat eEvent (these are the same times you need to call
Fr mUpdat eFor m).

If you'll be saving data associated with the gadget, use the function Fr nSet Gadget Dat a. You aso need
to initialize the data when your form is opened.

NOTE:

Although you could draw and respond to taps without a gadget, it has three advantages over atotally
custom-coded structure:

- The gadget maintains a pointer that allows you to store gadget-specific data.
- The gadget maintains a rectangular bounds specified in the resource.

- Gremlins, the automatic random tester (see page 293), recognizes gadgets and taps on them. This is an enormous advantage,
because Gremlins relentlessly tap on them during testing cycles. Whileit is true that it will tap on areasthat lie outside the
bounds of any form object, it is arare event. Gremlins are especially attracted to buttons and objects and like to spend time
tapping in them. If you didn't use gadgets, your code would rarely receive taps during this type of testing.

A sample gadget

Let'slook at an example gadget that stores the integer O or 1 and displays either avertical or horizontal line.
Tapping on the gadget flips the integer and the line. Here's the form's initialization routine that initializes the
datain the gadget and then drawsiit:

FormPtr frm = FrnGetActiveForn();
Voi dHand h = MenmHandl eNew(si zeof (Word)) ;

if (h) {
* (Word *) MenHandl eLock(h) = 1;
MenHandl eUnl ock(h);
Fr nSet Gadget Dat a(frm FrnGet Cbj ect | ndex(frm Mai nGlGadget), h);

}

/1 Draw the form

Fr nDr awFor m(frm ;
Gadget Draw(frm Mai nGlGadget) ;

When the form is closed, the gadget's data handle must be deall ocated:

Voi dHand h;
FormPtr frm = FrnGetActiveForn();

h = FrnGet Gadget Dat a(frm FrmGet Obj ect| ndex(frm M nGlGadget));

if (h)
MenHandl eFree(h);

Here's the routine that draws the horizontal or vertical line:

// draws | or - depending on the data in the gadget
static void GadgetDrawm(FornPtr frm Word gadget| D)
{
Rect angl eType bounds;
Ul nt fromk, fromy, tox, toy;
Word gadget | ndex = FrnGet Obj ect| ndex(frm gadgetl|D);
Voi dHand data = FrnCet Gadget Data(frm gadget| ndex);
if (data) {
Wor dPt r wor dP = MenHandl eLock(dat a) ;

Fr nGet Obj ect Bounds(frm gadget | ndex, &bounds);
switch (*wordP) {
case 0:
from = bounds.topLeft.x + bounds.extent.x / 2;
fromy = bounds.topLeft.y;
tox = fronk;
toy = fromy + bounds.extent.y - 1;
br eak;
case 1:
fromk = bounds.topLeft.x;
fromy = bounds.topLeft.y + bounds.extent.y / 2;
tox = fromk + bounds.extent.x - 1;
toy = frony;
br eak;
defaul t:
from = tox = bounds.topLeft.x;
fromy = toy = bounds.topLeft.y;
br eak;
}
MenHandl eUnl ock(dat a) ;
W nEr aseRect angl e(&ounds, 0);
W nDrawLi ne(fromx, fromy, tox, toy);

Every time the user taps down on the form, the form's event handler needs to check to see whether thetap is
on the gadget. It does so by comparing the tap point with the gadget's bounds. Here is an example:

case penDownEvent:

{
FormPt r frm= FrmGetActiveForm();
Wor d gadget | ndex = FrnGet Obj ect | ndex(frm Mai nGlGadget) ;
Rect angl eType bounds;
Fr nGet Obj ect Bounds(frm gadget | ndex, &bounds);
if (RctPtlnRectangle (event->screenX, event->screenY, &bounds)) {
Gadget Tap(frm Mai nGlGadget, event);
handl ed = true;
}
}
br eak;

The Gadget Tap function handles atap and acts like a button (highlighting and unhighlighting as the
stylus moves in and out of the gadget):

/1 it'll work like a button: Invert when you tap init.

/] Stay inverted while you stay in the button. Leave the button, uninvert,
/1 let go outside, nothing happens; let go inside, data changes/redraws
static void Gadget Tap(FornPtr frm Wrd gadgetl D, EventPtr event)

{
Wor d gadget | ndex = FrnGet Cbj ect |l ndex(frm gadgetlD);
Voi dHand data = FrnGet Gadget Dat a(frm gadget| ndex);
SWor d X, Y,
Bool ean penDown;

Rect angl eType bounds;
Bool ean was| nBounds = true;

if (data) {
Fr nGet Obj ect Bounds(frm gadget | ndex, &bounds);
W nl nvert Rect angl e(&ounds, 0);
do {
Bool ean now nBounds;

PenGet Poi nt (&x, &y, &penDown);
nowl nBounds = Rct Pt | nRectangl e(x, y, &bounds);
i f (now nBounds != wasl nBounds) {

W nl nvert Rect angl e(&ounds, 0);

was| nBounds = nowl nBounds;

}
} while (penDown);
i f (waslnBounds) {
WordPtr wPtr = MenHandl eLock(dat a);
*wPtr = I (*wPtr)
MenHandl eUnl ock(dat a) ;

/'l GadgetDraw will erase--we don't need to invert
Gadget Draw(frm gadget|D);
} // else gadget is already uninverted

}
}

If we wanted to have multiple gadgets on a single form, we'd need to modify the form open and close
routines to allocate and deall ocate handles for each gadget in the form. In addition, we'd have to modify the
event handler to check for taps in the bounds of each gadget, rather than just the one.

List Objects

A list can be used as is without any programmeatic customization. In the resource, you can specify the text of
each list row and the number of rows that can be displayed at one time (the number of visible items). The list
will automatically provide scroll arrows if the number of itemsis greater than the number that can be shown.

Lists are used both alone and with pop-up triggers (see "Pop-up Trigger Objects" later in this chapter). If you
are using astandalone list, you'll receiveal st Sel ect Event when the user tapson alist item. Thelist
manager highlights the selected item.

Y ou can manipulate the display of alist in two ways:

e You can programmatically set the default selectionusing Lst Set Sel ecti on.
e You can make a specific item visiblewith Lst Makel t enVi si bl e; thelist will scroll, if
necessary, to display that item.

Y ou can get information from it using three different routines:

e You can retrieve information from thelist by using Lst Get Nunber O | t ens,
Lst Get Visi bleltens,or LstGetSel ectionText.

Sample that displays a specific list item

Here's some sample code that selectsthe 11th item in alist (the first item isat 0) and scrollsthe list, if
necessary, so that it isvisible:

FornmPtr frm = FrnGetActiveForm();
ListPtr list = FrnGetObjectPtr(frm FrnGetObjectlndex(frm MinMList));

Lst Set Sel ection(list, 10);
Lst Makel tenVi si bl e(list, 10);

Custom ver sus noncustom lists

If you want to specify the contents of thelist at runtime, there are two waysto do it:

e Use Lst Set ArrayChoi ces to passan array of strings that will become the new items. The List
Manager retains the strings and draws each string as necessary.

e Use Lst Set Dr awfunct i on to provide acallback function that is responsible for drawing the
contents of each row.

You'll find that the second way is almost always easier than the first. Let'slook at a sample written twice,
using the first approach and again using the second.

The sample draws alist composed of itemsin astring list resource. A string list resource contains;
¢ A null-terminated prefix string which Sys St ri ngBy| ndex prepends to each of the stringsin the
list
o A two-byte count of the number of stringsin the list
o The null-terminated strings concatenated together

There's no particular significance to retrieving the items from a string list resource; we just needed some
example that required the runtime retrieval of the strings.

Here's a C structure defining a string resource:

typedef struct StrListType {

char prefixString; /1 we assume it's enpty

char nunStringsHi Byt e; /'l we assunme it's O

char nunStrings; /1 1ow byte of the count

char firstString[1]; /1 more than 1-all concated together

} *StrListPtr;

NOTE:

This sample asssumes that the prefix string is empty, and that there are no more than 255 stringsin the

string list. For a sample that has been modified to correctly handle more general cases, see
http: //www.calliopeinc.con/PalmProgramming.

Using the first approach, we need to create an array with each element pointing to a string. The easiest way
to create such an array iswith SysFor nPoi nt er ArrayToSt ri ngs. Thisroutine takes a
concatenation of null-terminated strings and returns a newly allocated array that points to the beginning of
each string in the concatenation. We lock the return result and passitto Lst Set Li st Choi ces:

static void MinView nit(void)

{
FormPt r frm= FrmGet ActiveForm();

gStringsHandl e = DnGet Resource('tSTL', MyStringList);
if (gStringsHandle) {
ListPtr list = FrnGetObjectPtr(frm
FrnGet Obj ect | ndex(frm Mai nMyList));
StrLstPtr stringsPtr = = MenHandl eLock(gStri ngsHandl e);

gStringArrayH = SysFornPoi nter ArrayToSt ri ngs(
stringsPtr->firstString, stringsPtr->nunStrings);
Lst Set Li st Choi ces(list, MenHandl eLock(gStringArrayH),
stringsPtr->nunStrings);
}
// Draw the form
Fr nDr awFor m(frm ;
}

The resource handle and the newly allocated array are stored in global variables so that they can be
deallocated when the form closes:

static VoidHand gStringArrayH = 0;
static VoidHand gStringsHandl e = 0;

Here's the deall ocation routine where we deall ocate the allocated array, and unlock and rel ease the resource:

static void MainViewDel nit(void)
{
if (gStringArrayH {
MenHandl eFree(gStri ngArrayH);
gStringArrayH = NULL;

if (gStringsHandle) {
MenHandl eUnl ock(gStri ngsHandl e) ;
DnRel easeResour ce(gStri ngsHandl e) ;
gStringsHandl e = NULL;

}
}

Here's the alternative way of customizing the list at runtime. Our drawing function to draw each row is
similar. Our initialization routine must initialize the number of rowsin the list and must install a callback
routine:

static void MinView nit(void)

{
FormPt r frm= FrmGet ActiveForm();

Voi dHand stringsHandl e = DrGet Resource('tSTL', MyStringList);
if (stringsHandle) {
StrListPtr stringsPtr;
ListPtr list = FrnGetObjectPtr(frm
FrnGet Obj ect | ndex(frm Mai nMyList));

stringsPtr = MenHandl eLock(stringsHandl e);

Lst Set Li st Choi ces(list, NULL, stringsPtr->nuntrings);
MenHandl eUnl ock(stringsHandl e) ;

DnRel easeResour ce(stringsHandl e);

Lst Set DrawFuncti on(list, ListDrawrunc);
}

// Draw the form
Fr nDr awFor m(frm ;
}

Li st Dr awFunc gets the appropriate string from the list and drawsit. If the callback routine had wanted
to do additional drawing (lines, bitmaps, etc.), it could have:

static void ListDrawFunc(U nt itenNum RectanglePtr bounds, CharPtr *data)
{
Voi dHand stringsHandl e = DntGet Resource('tSTL', MyStringList);
if (stringsHandle) {
StrListPtr stringsPtr;
FornPtr frm= FrnGet Acti veForn();
ListPtr list = FrmGet ObjectPtr(frm
Fr mCGet Obj ect I ndex(frm Mi nMyList));
Char Pt r S;

stringsPtr = MenHandl eLock(stringsHandl e);
s = stringsPtr->firstString;
while (itemNum- > 0)

s += StrLen(s) + 1; // skip this string, including null byte
W nDr awChars(s, StrLen(s), bounds->topLeft.x, bounds->toplLeft.y);
MenHandl eUnl ock(stringsHandl e) ;
DRel easeResour ce(stringsHandl e);

Thereis no cleanup necessary when the form is completed.

Note that the two different approaches had roughly the same amount of code. The first used more memory
(because of the allocated array). It also kept the resource locked the entire time the form was open, resulting

in possible heap fragmentation.

The second approach was somewhat slower, since, for each row, the resource was obtained, locked, iterated
through to find the correct string, and unlocked. Note that if we'd been willing to keep the resource locked as
we did in thefirst case, the times would have been very similar. The second approach had more flexibility in
that the drawing routine could have drawn text in different fonts or styles, or could have done additional
drawing on arow-by-row basis.

Pop-up Trigger Objects

Pop-up triggers need an associated list. The list's bounds should be set so that when it pops up, it will be
equal to or bigger than the trigger. Otherwise, you get the ugly effect of atelltale fragment of the origina
trigger under the list. In addition, the usabl e attribute must be set to false so that it won't appear until the
pop-up trigger is pressed.

When the pop-up trigger is pressed, the list is displayed. When alist item is chosen, the pop-up label is set to
the chosen item. These actions occur automatically; no code needs to be written. When a new item is chosen
from the pop-up, apopSel ect Event issent. Some associated data goes with it that includesthelist 1D,
the list pointer, a pointer to the trigger control, and the indexes of the previously selected item and newly
selected items.

Here's an example resource:

#defi ne Mai nForm 1100
#define MainTriggeriD 1102
#define MainListlD 1103

FORM | D 1100 AT (0 O 160 160)
BEG N
POPUPTRI GGER " St ates" | D MainTriggerl D AT (55 30 44 12)
LEFTANCHOR NOFRAME FONT O
POPUPLI ST | D Mai nTrigger! D MainListlD
LI ST "California" "Kansas" "New Mexico" "Pennsylvania" "Rhode I|sland"

"Wom ng" | D MainListlD AT (64 29 63 33) NONUSABLE DI SABLED FONT 0O
END

Here's an example of handling apopSel ect Event inan event handler:

case popSel ect Event:
/1 do sonething with followi ng fields of event->data.popSel ect
11 control I D
11 control Ptr
11 listlD
11 listP
11 sel ection

/1 priorSel ection
br eak;

Text Objects
Editable text objects require attention to many details.
Setting text ina field

Accessing an editable field needs to be done in a particular way. In the first place, you must use a handle
instead of a pointer. The ability to resize the text requires the use of ahandle. Y ou must also make sure to
get the field's current handle and expressly freeit in your code. Here is some sample code that shows you
how to do this:

static FieldPtr SetFiel dText FromHandl e(Word fiel dl D, Handl e txtH)
{

Handl e ol dTxt H;

For nPt r frm= FrnGet ActiveForn();

Fiel dPtr f1dPp;

/1 get the field and the field' s current text handle.

fldpP = FrnGet Obj ectPtr(frm FrnGet Obj ectlndex(frm fieldlD));
ErrNonFatal Di splayl f(!fldP, "mssing field");

ol dTxtH = Fl dGet Text Handl e(f | dP);

/1 set the field s text to the new text.
FI dSet Text Handl e(f1 dP, txtH);
FI dDr awFi el d(f 1 dP);

/1 free the handl e AFTER we cal |l FIl dSet Text Handl e().
if (oldTxtH)
MenHandl eFr ee(ol dTxt H) ;

return fldPp;
}

The previous bit of code is actually quite tricky. The Palm OS documentation doesn't tell you that it's your
responsibility to dispose of the field's old handle. (We get the field handle with FI dGet Text Handl e and
dispose of it with MenHand| eFr ee at the end of the routine.)

Were we not to dispose of the old handles of editable text fields in the application, we would get slowly
growing memory leaks all over the running application. Imagine if every time an editable field were
modified programmaticaly, its old handle were kept in memory, along with its new handle. It wouldn't take
long for our running application to choke the application heap with its vampire-like hunger for memory.
Further, debugging such a problem would require diligent sleuthing as the cause of the problem would not
be readily obvious.

Last, we redraw the field with Fl dDr awFi el d. If we had not done so, the changed text wouldn't be
displayed.

Note that when aform closes, each field within it freesits handle. If you don't want that behavior for a
particular field, call FI dSet Text Handl e(f1d, NULL) beforethefieldisclosed. If afield has no
handle associated with it, when the user starts writing in the field, the Field Manager automatically allocates
ahandlefor it.

Here are some utility routines that are wrappers around the previous routine. The first one sets afield's text
to that of a string, alocates a handle, and copies the string for you:

/1 Allocates new handl e and copies incomng string
static FieldPtr SetFiel dTextFronStr(Wrd fieldl D, CharPtr strP)

{
Handl e txtH;

/1 get some space in which to stash the string.
txtH = MenHandl eNew(StrLen(strP) + 1);

if ('txtH
return NULL;

/'l copy the string to the | ocked handl e.
St r Copy(MenHandl eLock(txtH), strP);

/1 unlock the string handle.
MermHandl eUnl ock(txtH);

// set the field to the handle

return SetFiel dText FronHandl e(fiel dI D, txtH);
}

The second utility routine clears the text from afield:

static void ClearFieldText(Wrd fieldlD)
{

}

Set Fi el dText FronHandl e(fi el dl D, NULL);

Modifying text in a field

One way to make changesto textistouse Fl dDel et e, Fl dSet Sel ecti on,andFl dl nsert.

FI dDel et e deletes a specified range of text. Fl dl nsert insertstext at the current selection

(FI dSet Sel ect i on setsthe selection). By making judicious calls to these routines, you can change the
existing text into whatever new text you desire. The routines are easy to use. They have aflaw, however, that
may make them inappropriate to use in some cases. Fl dDel et e and Fl dl nsert redraw thefield. If
you're making multiple callsto these routines for asingle field (let's say, for example, you were replacing
every other character with an "X"), you'd see the field redraw after every call. Users might find this
distracting. Be careful with FI dChanged events, aswell, as they can overflow the event queue if they are
to0 numerous.

An dternative approach exists that involves directly modifying the text in the handle. However, you must
not change the text in a handle whileit is being used by afield. Changing the text while the field isusing it
confuses the field and itsinternal information is not updated correctly. Among other things, line breaks
won't work correctly.

To properly change the text, first remove it from the field, modify it, and then put it back. Here's an example
of how to do that:

FormPt r frm= FrmGet ActiveForm();
Fi el dPtr fld;
Handl e h;

/1 get the field and the field' s current text handle.
fld = FrnGet Gbj ectPtr(frm FrnGet Obj ectlndex(frm MinlField));
h = Fl dGet Text Handl e(f1d);
if (h) {
CharPtr s;

FI dSet Text Handl e(f1d, NULL);
s = MenHandl eLock(h);
/'l change contents of s
while (*s !'='\0") {
if (*s >="'A && *s <= '2Z")
StrCopy(s, s+1);
el se
S++;

}

MerHandl eUnl ock(h) ;
Fl dSet Text Handl e(fld, h);
FI dDr awFi el d(fld);

}

This no-brainer example ssmply removes any uppercase charactersin the field.
Getting text froma field

To read the text from afield, you canuse Fl dGet Text Handl e. It is often more convenient, however, to
obtain apointer instead by using Fl dGet Text Pt r . It returns alocked pointer to the text. Note that this
text pointer can become invalid if the user subsequently edits the text (if there isn't enough room left for new
text, the field manager unlocks the handle, resizesiit, and then relocksit).

If thefield isempty, it won't have any text associated with it. In such cases, FI dGet Text Pt r returns
NULL. Make sure you check for this case.

Other aspects of a field that require attention
When aform containing editable text fieldsis displayed, one of the text fields should contain the focus; this

means it displays an insertion point and receives any Graffiti input. Y ou must choose the field that has the
initial focus by setting it in your code. The user can change the focus by tapping on afield. The Form

Manager handles changing the focusin this case.

Y ou must aso handlethe pr evFi el dChr and next Fi el dChr characters; these allow the user to move
from field to field using Graffiti (the Graffiti strokes for these charactersare © and).

To movethefocus, use Fr nSet Focus. Here's an example that sets the focus to the
MyFor mWText Fi el d field:

FornPtr frm = FrnGetActiveForm();

FrnSet Focus(frm FrnGet Obj ect | ndex(frm M/FormWTextField));

NOTE:

Do not use FI dGr abFocus. It changes the insertion point, but doesn't notify the form that the focus has changed.
Fr nSet Focus endsup calling Fl dG abFocus anyway.

Field "gotchas"

As might be expected with such a complicated type of field, there are a number of things to watch out for in
your code:

Preventing deallocation of a handle

When aform containing afield is closed, the field frees its handle (with FI dFr eeMenor y). In some cases,
thisisfine (for instance, if the field automatically allocated the handle because the user started writing into
an empty field). In other cases, it is not. For example, when you've used Fl dSet Text Handl e so that a
field will edit your handle, you may not want the handle deall ocated-you may want to deallocate it yourself
or retain it.

To prevent the field from deallocating your handle, call FI dSet Text Handl e(fl d, NULL) to setthe
field'stext handleto NULL. Do thiswhen your form receivesaf r nCl oseEvent .

Preventing memory |eaks

When you call FlI dSet Text Handl e, any existing handle in the field is not automatically deallocated. To
prevent memory leaks, you'll normally want to:

1. Get the old handle with FI dGet Text Handl e
2. Set the new handle with FI dSet Text Handl e
3. Deallocate the old handle

Don't use FldSetTextPtr and FldSetTextHandl e together

FI dSet Text Pt r should be used only for noneditable fields for which you'll never call
FI dSet Text Handl e. The two routines do not work well together.

Remove the handle when editing a field

If you're going to modify the text within afield's handle, first remove the handle from the field with
Fl dSet Text Handl e(fl d, NULL), modify the text, and then set the handle back again.

Compacting string handles

The length of the handle in afield may be longer than the length of the string itself, since afield expands a

handle in chunks. When a handle has been edited with afield, call Fl dConpact Text to shrink the
handle to the length of the string (actually, one longer than the length of the string for the trailing null byte).

Scrollbar Objects

A scrollbar doesn't know anything about scrolling or about any other form objects. It isjust aform object
that stores a current number, along with a minimum and maximum. The user interface effect is aresult of
the scrollbar's allowing the user to modify that number graphically within the constraints of the minimum
and maximum.

NOTE:

Scrollbars were introduced in Palm OS 2.0 and therefore aren't available in the 1.0 OS. If you intend to run
on 1.0 systems, your code will need to do something about objects that rely on scrollbars.

Scrollbar coding requirements
There are afew things that you need to handle in your code:

¢ You must respond to a change in the scrollbar's current value by scrolling the objects the scrollbar is
supposed to be moving over.

Here is how you do that. Your event handler receivesascl Repeat Event while the user holds the stylus
downand ascl Exi t Event when the user releases the stylus. Y our code is on the lookout for one or the
other event, depending on whether your application wants to scroll immediately (as the user is scrolling with
the scrollbar) or postpone the scrolling until the user has gotten to the final scroll position with the scrollbar.

¢ You must change the scrollbar if the current scroll position changes through other appropriate user
actions; for example, if the user pushes the built-in Scroll buttons or does drag-scrolling through text.

¢ You must change the scrollbar if the scroll maximum value changes. It would do so, for example,
when typing changes the total number of lines. A field sendsaf | dChangedEvent at thispoint if
its resource attribute has Scr ol | bar is set.

Updating the scrollbar based on the insertion point
Let'slook at the code for a sample application that has a field connected to a scrollbar. We need aroutine

that will update the scrollbar based on the current insertion point, field height, and number of text lines
(FI dGet Scrol | Val ues isdesigned to return these values):

static void UpdateScroll bar(void)
{

FormPt r frm= FrmGet ActiveForm();
Scrol | BarPtr scrol | ;

Fiel dPtr field;

Wor d currentPosition;

Wor d t ext Hei ght ;

Wor d fiel dHei ght;

Wor d maxVal ue;

field = FrnGet Obj ectPtr(frm FrnmGet Objectlndex(frm MinlField));
FI dGet Scrol | Val ues(field, ¤tPosition, &textHeight, &fieldHeight);

/1 if the field is 3 lines, and the text height is 4 lines
/1 then we can scroll so that the first line is at the top
/1 (scroll position 0) or so the second line is at the top
/1 (scroll postion 1). These two values are enough to see
/'l the entire text.
if (textHeight > fiel dHei ght)

maxVal ue = textHeight - fiel dHeight;
else if (currentPosition)

maxVal ue = current Position;
el se

maxVal ue = 0;
scroll = FrimGet ObjectPtr(frm FrnGet Obj ectlndex(frm MainWScrollBar));

/1 on a page scroll, want to overlap by one line (to provide context)
Scl Set Scrol | Bar (scrol |, currentPosition, 0, maxValue, fieldHeight - 1);

}
We update the scrollbar when the form isinitially opened:

static void MinView nit(void)

{

Updat eScrol | bar () ;

// Draw the form

Fr nDr awfFor m{ Fr nGet Act i veForm());
}

Updating the scrollbar when the number of lines changes

WEe've also got to update the scrollbar whenever the number of linesin the field changes. Since we set the
hasScr ol | bar attribute of the field in the resource, when the lines change, thef | dChangedEvent
passes to our event handler (in fact, thisis the only reason for the existence of thehasScr ol | bar
attribute). Here's the code we put in the event handler:

case fl dChangedEvent:
Updat eScrol | bar () ;

handl ed = true;
br eak;

At this point, the scrollbar updates automatically as the text changes.
Updating the display when the scrollbar moves

Next, we've got to handle changes made via the scrollbar. Of the two choices open to us, we want to scroll
immediately, so we handlethe scl Repeat Event :

case scl Repeat Event:
Scrol | Li nes(event - >dat a. scl Repeat . newal ue -

event - >dat a. scl Repeat . val ue, fal se);
br eak;

Scr ol | Li nes isresponsible for scrolling the text field (using FI dScr ol | Fi el d). Things can get
tricky, however, if there are empty lines at the end of the field. When the user scrolls up, the number of lines
is reduced. Thus, we have to make sure the scrollbar gets updated to reflect this change (note that up and
down are constant enumerations defined in the Palm OS include files):

static void ScrollLines(int nunlinesToScroll, Bool ean redraw)
{

FornPtr frm= FrnGet Acti veForn();

Fiel dPtr field;

field = FrmGet Obj ectPtr(frm FrnGet Ooj ectlndex(frm MainlField));
i f (nuniinesToScroll < 0)

Fl dScrol | Fiel d(field, -nuniinesToScroll, up);
el se

Fl dScrol | Fiel d(field, nuniinesToScroll, down);

/1 if there are blank lines at the end and we scroll up, FldScrollField
/1 makes the blank lines disappear. Therefore, we've got to update
/1 the scrollbar
i f ((FIdGetNunber O Bl ankLi nes(field) && nuniinesToScroll < 0) ||
redr aw)
Updat eScrol | bar () ;
}

Updating the display when the scroll buttons are used

Next on the list of things to do is handling the Scroll buttons. When the user taps either of the Scroll buttons,
we receive akeyDownEvent . Here's the code in our event handler that takes care of these buttons:

case keyDownEvent :
if (event->data.keyDown.chr == pageUpChr) {
PageScrol | (up);
handl ed = true;
} else if (event->data.keyDown.chr == pageDownChr) {
PageScrol | (down) ;
handl ed = true;

}

br eak;
Srolling a full page

Finally, here's our page scrolling function. Of course, we don't want to scroll if we've already scrolled as far
aswecan. Fl dScr ol | abl e tellsusif we can scroll in aparticular direction. Weuse Scr ol | Li nes to
do the actual scrolling and rely on it to update the scrollbar:

static void PageScroll (DirectionType direction)
{
FornPtr frm= FrnGet Acti veForn();
Fiel dPtr field;

field = FrmGet Obj ectPtr(frm FrnGet Ooj ectlndex(frm MainlField));
if (FldScrollable(field, direction)) {
int linesToScroll = FldGetVisibleLines(field) - 1;

if (direction == up)
linesToScroll = -linesToScroll;
Scrol I Lines(linesToScroll, true);

}

Resources, Forms, and Form Objects
in the Sales Application i

Now that we have given you general information about resources, forms, and form objects, we will add them
to the Sales application. We'll show you the resource definitions of al the forms, alerts, and help text. We
won't show you all the code, however, asit would get exceedingly repetitious and not teach you anything
new. In particular, we won't show the code to bring up every alert. We aso postpone adding the table to the
order form until "Tablesin the Sample Application” on page 216.

We cover the forms and the code for them in order of increasing complexity. Thisyields the following
sequence:

Alerts

The Delete Customer dialog
The Edit Customer form
The Item Details form

The Customers form
Switching forms

All the resources are shown in text as PIIRC format. (Thisformat is easier to explain than a bunch of screen
dumps from Constructor.)

Alerts

Here are the defines for the aert IDs and for the buttons in the Delete Item alert (thisis the alert that has
more than one button):

#defi ne Rom nconpati bl eAl ert 1001
#define DeleteltemAl ert 1201
#defi ne Del etel temX 0
#defi ne Del etel tenCancel 1
#defi ne Nol t enSel ect edAl ert 1000
#defi ne About BoxAl ert 1100

Here are the alerts themselves:

ALERT | D Nol t entSel ect edAl ert

| NFORMATI ON

BEG N
TITLE "Sel ect Itent
MESSAGE "You nust have an itemselected to performthis command. " \

"To select an item tap on the product name of the item"

BUTTONS " OK"

END

ALERT | D Rom nconpati bl eAl ert

ERROR

BEG N

TI TLE "System I nconpati bl e"
MESSAGE "System Version 2.0 or greater is required to run this " \
"application."
BUTTONS " OK"
END

ALERT I D Del eteltemAl ert

CONFI RVATI ON

BEG N
TITLE "Del ete Itent
MESSAGE "Del ete sel ected order itenP"
BUTTONS "OK" "Cancel "

END

ALERT | D About BoxAl ert
| NFORMATI ON
BEG N
TITLE "Sales v. 1.0"
MESSAGE "This application is fromthe book \"Pal m Programm ng: The " \
Devel oper's Guide\" by Neil Rhodes and Julie MKeehan."

BUTTONS " K"
END

We won't show every call to Fr mAl ert (the call that displays each of these alerts). Here, however, isa
piece of code from Or der Handl eMenuEvent , which showstwo calsto Fr mAl ert . The codeiscalled
when the user chooses to delete an item. If nothing is selected, we put up an aert to notify the user of that. If
an item is selected, we put up an alert asking if they really want to deleteit:

if (!gCell Sel ected)
FrmAl ert (Nol t enSel ectedAl ert);
else if (FrmAlert(DeleteltemAlert) == DeleteltenX) {
// code to delete an item

}

Delete Customer

Our Delete Customer dialog has a checkbox init, so we can't use an alert. We use amodal form, instead.
Here are the resources for the form:

#def i ne Del et eCust oner For m 1400
#def i ne Del et eCust onmer OKBut t on 1404
#def i ne Del et eCust oner Cancel Button 1405
#def i ne Del et eCust oner SaveBackupCheckbox 1403

We have only one define to add:

#defi ne Del et eCust oner Hel pString 1400

Here isthe Delete Customer dialog:

STRING | D Del et eCust oner Hel pString "The Save Backup Copy option will " \
"store deleted records in an archive file on your desktop conputer " \
"at the next Hot Sync. Sonme records will be hidden but not deleted " \

"until then."

FORM | D Del et eCust omer Form AT (2 40 156 118)
MODAL
SAVEBEH ND
HELPI D Del et eCust oner Hel pStri ng
BEG N
TI TLE "Del ete Customer”
FORMBI TMAP AT (13 29) BI TMAP 10005
LABEL "Del ete sel ected custoner?" |ID 1402 AT (42 30) FONT 1
CHECKBOX " Save backup copy on PC?" |D Del et eCust oner SaveBackupCheckbox
AT (12 68 140 12) LEFTANCHOR FONT 1 GROUP 0 CHECKED
BUTTON "OK" | D Del et eCust omer OKButt on AT (12 96 36 12) LEFTANCHOR FRAME
FONT 0
BUTTON " Cancel " | D Del et eCust oner Cancel Button AT (56 96 36 12)

LEFTANCHOR FRAME FONT O
END

The bitmap is aresource in the system ROM; the Palm OS header files define
Confirmati onAl ert Bi t map asitsresource ID.

Here's the code that displays the dialog. Note that we set the value of the checkbox before calling
FrmDoDi al og. Wetakealook at it again to seeif the user has changed the value after Fr nDoDi al og
returns but before we delete the form:

stati c Bool ean AskDel et eCust oner (voi d)

{
FornPtr previousForm = FrnGet Acti veForm();
FornPtr frm = Frm nitForn{Del et eCust oner Form ;
Word hitButton;
Wword ctllndex;

FrBet Acti veForm(frm;

/1 Set the "save backup" checkbox to its previous setting.

ctllndex = FrnGet Obj ectl ndex(frm Del et eCust omer SaveBackupCheckbox) ;
FrnSet Control Val ue(frm ctl | ndex, gSaveBackup);

hi t Button = FrnDoDi al og(frm;
if (hitButton == Del et eCust omer OKBut t on)
{
gSaveBackup = FrntGet Control Val ue(frm ctllndex);
}
if (previousForm
Fr nSet Act i veFor m(pr evi ousForm ;
FrnDel et eForm(frm;
return hitButton == Del et eCust omer OKBut t on;

Edit Customer

We have a bunch of resources for the Edit Customer form. Here arethe #def i nes:

#def i ne Custoner Form 1300
#def i ne Cust omer OKBut t on 1303
#def i ne Cust omer Cancel Button 1304
#def i ne Cust omer Del et eButton 1305
#def i ne Custoner Privat eCheckbox 1310
#def i ne Cust oner NanmeFi el d 1302
#def i ne Custonmer Addr essFi el d 1307
#define CustomerCityField 1309

#defi ne Custoner PhoneFi el d 1313

Now we get down to business and create the form:

FORM | D Cust onmer Form AT (2 20 156 138)
MODAL
SAVEBEHI ND
HELPI D Cust oner hel pString
MENUI D Di al ogW t hl nput Fi el dMenuBar
BEG N
TI TLE "Customer | nformation”
LABEL "Nane:" AUTO D AT (15 29) FONT 1
FI ELD | D Cust oner NaneFi el d AT (54 29 97 13) LEFTALI GN FONT O UNDERLI NED
MULTI PLELI NES MAXCHARS 80
BUTTON "OK" | D Custoner OKButton AT (7 119 36 12) LEFTANCHOR FRAMVE
FONT 0
BUTTON "Cancel " | D Custoner Cancel Button AT (49 119 36 12) LEFTANCHOR
FRAME FONT 0O
BUTTON "Del ete" | D CustonerDel eteButton AT (93 119 36 12) LEFTANCHOR
FRAME FONT 0O
LABEL "Address:" AUTO D AT (10 46) FONT 1
FI ELD | D Cust oner Addr essFi el d AT (49 46 97 13) LEFTALIGN FONT 0O
UNDERLI NED MULTI PLELI NES MAXCHARS 80
LABEL "City:" AUTO D AT (11 67) FONT 1
FIELD I D CustonerCityField AT (53 66 97 13) LEFTALI GN FONT O UNDERLI NED
MULTI PLELI NES MAXCHARS 80
CHECKBOX "" | D Custoner Privat eCheckbox AT (54 101 19 12) LEFTANCHOR
FONT 0 GROUP 0
LABEL "Private:" AUTO D AT (9 102) FONT 1
LABEL "Phone:" AUTO D AT (12 86) FONT 1
FI ELD | D Cust oner PhoneFi el d AT (51 86 97 13) LEFTALIGN FONT 0O

UNDERLI NED MUJLTI PLELI NES MAXCHARS 80
END

Here's the event handler for the form. It's responsible for bringing up the Delete Customer dialog if the user
taps on the Delete button:

static Bool ean Custoner Handl eEvent (Event Ptr event)
{
#ifdef __ GNUC__
CALLBACK_PROLOGUE
#endi f
if (event->eType == ctl Sel ect Event &&
event - >dat a. ct| Sel ect.control I D == Cust oner Del et eButton) {
if (!AskDel eteCustoner())
return true; /1 don't bail out if they cancel the delete dialog
} else if (event->eType == nenuBEvent) {
i f (Handl eCommpnMenul t ens(event - >dat a. nenu.item D))
return true;
}
#ifdef __ GNUC__
CALLBACK_EPI LOGUE
#endi f
return fal se;

}
Last, but not least, here is the code that makes sure the customer was handled correctly:

static void EditCustomerWthSel ection(U nt recordNunber, Bool ean i sNew,

Bool ean *del et ed, Bool ean *hi dden, struct frnGoto *gotoDat a)
{

FornPtr previousForm = FrnGet Acti veForm();

FornmPtr frm

Ul nt hi t But t on;

Bool ean dirty = fal se;

Control Ptr privat eCheckbox;

Ul nt attributes;

Bool ean i sSecret;

Fi el dPtr naneFi el d;

Fi el dPtr addressFi el d;

Fiel dPtr cityField;

Fi el dPtr phoneFi el d;

Cust onmer t heCust omer;

Ul nt of fset = of f set of (PackedCust omer, nane);
Voi dHand cust omer Handl e = DnGet Recor d(gCust omer DB, recor dNunber);

*hi dden = *del eted = fal se;
/1 code deleted that initializes isSecret based on the record

frm= Frm nitForm CustomerForm;
Fr nSet Event Handl er (frm Cust oner Handl eEvent) ;
FrBet Acti veForm(frm;

UnpackCust oner (& heCust oner, MenHandl eLock(cust onmer Handl e)) ;

nanmeFi el d = Get Obj ect FromAct i veFor n{ Cust onmer NaneFi el d) ;
addressFi el d = Get Obj ect FromAct i veFor m(Cust omer Addr essFi el d) ;
cityField = Get Obj ect FromActi veFor m(Customer CityFi el d);
phoneFi el d = Get Obj ect FromAct i veFor n{ Cust onmer PhoneFi el d) ;

Set Fi el dText FronSt r (Cust omer NanmeFi el d, (CharPtr) theCustomner.nane);
Set Fi el dText FronSt r (Cust omer Addr essFi el d,

(CharPtr) theCustomner. address);
Set Fi el dText FronSt r (Cust omer Gt yFi el d, (CharPtr) theCustomer.city);
Set Fi el dText FronSt r (Cust omer PhoneFi el d, (CharPtr) theCustomner. phone);

/'l select one of the fields
if (gotoData && gotoData->mat chFi el dNum) {
Fiel dPtr selectedField =
Get Obj ect FromAct i veFor m(got oDat a- >mat chFi el dNun) ;
FI dSet Scrol | Posi tion(sel ect edFi el d, got oDat a- >mat chPos) ;
FrnSet Focus(frm FrnGet Obj ect | ndex(frm got oDat a- >mat chFi el dNum)) ;
FI dSet Sel ecti on(sel ect edFi el d, got oDat a- >mat chPos,
got oDat a- >mat chPos + got oDat a- >mat chLen) ;
} else {
FrnSet Focus(frm FrnGet Obj ect | ndex(frm Custoner NaneFi el d));
FI dSet Sel ecti on(naneFi el d, 0, FldGet TextLength(naneField));
}
/1 unlock the customer
MenHandl eUnl ock(cust oner Handl e) ;

privat eCheckbox = Get Obj ect FromAct i veFor n{ Cust oner Pri vat eCheckbox) ;
Ct | Set Val ue(privat eCheckbox, isSecret);

hitButton = FrnDoDi al og(frm;

if (hitButton == Custonmer OKButton) {

dirty = FldDirty(nameField) || FldD rty(addressField) ||
FldDirty(cityField) || FldDirty(phoneField);
if (dirty) {

t heCust ormer. name = Fl dGet Text Ptr (nameFi el d) ;
if (!theCustoner.nane)
t heCust omer. name = "";
t heCust omer . address = Fl dGet Text Ptr(addressFiel d);
if (!theCustoner.address)
t heCust omer. address = "";
theCustomer.city = Fl dGet TextPtr(cityField);
if (!theCustoner.city)
theCustomer.city = "";
t heCust omer . phone = Fl dGet Text Ptr (phoneFi el d);
if (!theCustoner. phone)
t heCust omrer . phone = "";
}
PackCust oner (& heCust oner, custoner Handl e) ;
if (CilGetValue(privateCheckbox) != isSecret) {
/1 code deleted that sets information about secret records
}
}

if (hitButton == CustonerDel eteButton) {
/'l code del eted that deletes the record

}

else if (hitButton == Custoner OKButton && i sNew &&
I(StrLen(theCustoner.nane) || StrlLen(theCustoner. address) ||
StrLen(theCustoner.city) || StrLen(theCustomner.phone))) {
/'l code deleted that deletes the record

}

else if (hitButton == CustonerCancel Button &% i sNew) {

/1 code del eted that deletes the record

}

if (previousForm
Fr nSet Act i veFor m(pr evi ousForm ;
FrnDel eteForm(frm;
}

Note that in the code we set Cust oner Handl eEvent asthe event handler, and we initialize each of the
text fields before calling Fr nDoDi al og. After the call to Fr nDoDi al og, thetext from the text fieldsis
copied if the OK button was pressed and any of the fields have been changed.

Item Details

This modal dialog allows editing the quantity and product for an item. The interesting part of thisdialog is
the pop-up trigger that contains both product categories and products.

The code uses the following globals:

static U nt gCurrent Category = O;
static Long gCurrent Sel ectedl tem ndex = -1;
static U nt gNuntat egori es;

gCur r ent Cat egor y contains the current category number. Pr oduct sOf f set | nLi st showswhere
in the list the products start.

When the Item Details form opens, here is the code that gets called:

static void I|tenfFormOpen(void)

{
ListPtr [|ist;

FormPtr frm = FrnGetActiveForn();
FieldPtr fld = Get Obj ect FromActi veForn{ltemuantityField);
char quantityString[kMaxNunericStringLength];

/1 initialize quantity
StrlToA(quantityString, gCurrentltem >quantity);
Set Fi el dText FronfStr (I temuantityField, quantityString);

/] select entire quantity (so it doesn't have to be selected before
/1l witing a new quantity)

Fr nSet Focus(frm FrnGet Obj ectIndex(frm ItenuantityField));

Fl dSet Sel ection(fld, 0, StrLen(quantityString));

list = GetObject FromActi veForn{ItenProductsList);
Lst Set Dr awFuncti on(list, DrawOneProduct!| nList);

if (gCurrentltem >productlD) {

Product p;

Voi dHand h;

Ul nt i ndex;
Ul nt attr;

h = Get Product FronProduct | D(gCurrentltem >product| D, &p, & ndex);
Err NonFat al Di spl ayl f(!h, "can't get product for existing iteni);
/1 deleted code that sets finds attr--the category;
Sel ect ACat egory(list, attr & dmRecAttr CategoryMask);
Lst Set Sel ection(li st,
DmPosi ti onl nCat egor y(gProduct DB, index, gCurrentCategory) +
(gNuntCat egories + 1));

Ct | Set Label (Get Obj ect FromAct i veFor n{ |t enPr oduct PopTri gger),
(CharPtr) p.nane);
MenHandl eUnl ock(h);
} else
Sel ect ACat egory(list, gCurrentCategory);

First, we set the quantity field. Next, we set a custom draw function. Finally, if the current item aready has a
product selected, weinitialize thelist using Sel ect ACat egory. WeuseLst Set Sel ect i on to set the
current list selection and Ct | Set Label to set the label of the trigger. If no product is selected, we
initialize the list using whatever category has been previously used.

Here's Sel ect ACat egor y, which sets the current category, initializes the list with the correct number of
items, and sets the list height (the number of items shown concurrently):

static void Sel ect ACategory(ListPtr list, U nt newCategory)

{
Wor d num t ens;

gCurrent Cat egory = newCat egory;
/1 code deleted that sets numtens based on the
/1 product category
Lst Set Hei ght (1'i st, num tens);
Lst Set Li st Choi ces(list, NULL, numtens);
}

When the user taps on the trigger, the list is shown. We'veused Dr awOnePr oduct | nLi st to draw the
list. It draws the categories at the top (with the current category in bold), a separator line, and then the
products for that category:

static void DrawOneProductInList(U nt itenNunber, Rectangl ePtr bounds,
CharPtr *text)
{
Font |1 D cur Font ;
Bool ean setFont = fal se;
const char *toDraw = ""

#ifdef __GNUC__
CALLBACK_PROLOGUE
#endi f
if (itemNunber == gCurrentCategory) {
cur Font Fnt Set Font (bol dFont) ;
set Font true;
}
if (itemNunber == gNuntCat egories)
toDraw = " "
else if (itemNunber < gNuntCategories) {
/1 code deleted that sets toDraw based on category nane
} else {
/1 code deleted that sets toDraw based on product name
}
Dr awChar sToFi t W dt h(t oDraw, bounds);
if (setFont)
Fnt Set Font (cur Font) ;
#ifdef __GNUC__
CALLBACK_EPI LOGUE
#endi f
}

When the user selects an item from the pop-up, apopSel ect Event isgenerated. Here's the event handler
for that event:

static Bool ean |tenHandl eEvent (EventPtr event)

{

Bool ean handl ed = fal se;

#ifdef _ GNUC__
CALLBACK_PROLOGUE
#endi f
switch (event->eType) {
/'l code del eted that handl es other kinds of events

case popSel ect Event:
if (event->data.popSelect.listlD == |tenProductsList){
Handl ed i ckl nProduct Popup(event);
handl ed = true;

}

br eak;

}
#ifdef _ GNUC__
CALLBACK_EPI LOGUE
#endi f
return handl ed;

}

Handl eCl i ckl nPr oduct Popup actually handles the selection. If a product is selected, the trigger's
label is updated (asistheitem). If anew category is selected, the list is updated with a new category, and
Ct |1 H t Control iscaledtosimulate tapping again on the trigger. This makes the list reappear without
work on the user's part:

static void Handl eC i ckl nProduct Popup(EventPtr event)

{
ListPtr list = event->data.popSel ect.listP;
Control Ptr control = event->data. popSel ect.control P,

if (event->data.popSel ect.selection < (gNuntCategories + 1)) {
if (event->data.popSel ect.sel ection < gNuntat egori es)
Sel ect ACat egory(list, event->data.popSel ect. sel ection);
Lst Set Sel ection(list, gCurrentCategory);
CtlH tControl (control);
} else {
/1 code deleted that sets s.name to product nane
Ct| Set Label (control, (CharPtr) s.nane);

Customers Form

Here's the form containing only one form object, the list. Here are the resource definitions of the form, the
list, and a menu:

#define CustonersForm 1000
#defi ne CustonersCustonerslLi st 1002
#def i ne Cust onmer sMenuBar 1000

Here is the Customers form:

FORM | D Cust omer sForm AT (0 O 160 160)
MENUI D Cust omer sCust omer Menu

BEG N

TI TLE " Sal es”

LI ST "" I D CustomersCustonersList AT (0 15 160 132) DI SABLED FONT 0
END

Our initiaization routine (which we call on af r mOpenEvent) setsthe draw function callback for the list
and sets the number (by calling | ni t Nunber Cust oner s):

static void CustomersFormOpen(voi d)

{
ListPtr 1list = GetObjectFromActi veFor m(Cust omer sCust oner sLi st);
I ni t Nunber Cust orrer s() ;
Lst Set Dr awFuncti on(list, DrawOneCustonerl|nListWthFont);

/1 code deleted that sets different nmenus on a pre-3.0 device

I ni t Nunmber Cust oner s callsLst Set Li st Choi ces to set the number of elementsin thelist. Itis

called when the form is opened and when the number of customers changes (this happensiif a customer is
added):

static void | nitNunberCustoners(void)

{
ListPtr list = GetObjectFromActi veForn{ Cust omer sCust oner sLi st);

/1 code del eted that sets numCustonmers from the databas
Lst Set Li st Choi ces(list, NULL, nunCustoners);
}

Our event handler handles an open event by calling Cust oner sFor nOpen, then draws the form:

case frmOpenEvent:
Cust omer sFor mOpen() ;
Fr nDr awFor n{ Fr mGet Acti veForm());

handl ed = true;
br eak;

Al st Sel ect Event issent when the user taps (and releases) on alist entry. Our event handler calls
OpenNt hCust oner to open the Order form for that customer:

case | st Sel ect Event:
OpenNt hCust oner (event - >dat a. | st Sel ect. sel ecti on);

handl ed = true;
br eak;

OpenNt hCust oner calsSwi t chFor mto switch to a different form:

static void OpenNt hCustomer (U nt customner| ndex)

{

Long custonerl D = Get Custoner | DFor Nt hCust onmer (cust oner | ndex) ;

if ((gCurrentOrder = Get O CreateO der For Cust oner (
custoner| D, &jCurrent Orderlndex)) != NULL)
Swi t chFor m(Or der For) ;

Swi t chFor mcalls Fr mGot oFor mto open anew form (and to save the ID of the new form):

static void Sw tchForn{Werd formn D)
{

Fr mGot oFor n(f orm D) ;

gCurrent View = formnl D,
}

The event handler has to handle the up and down scroll keys. It callsthelist to do the actual scrolling (note
that we scroll by one row at atime, instead of by an entire page):

case keyDownEvent:
i f (event->data. keyDown.chr == pageUpChr ||
event - >dat a. keyDown. chr == pageDownChr) {
ListPtr 1list = GetObjectFromActi veFor m(Cust omer sCust oner sLi st);
enum di recti ons d;
if (event->data.keyDown.chr == pageUpChr)

d = up;
el se
d = down;

LstScrol I List(list, d, 1);
}

handl ed = true;
br eak;

When anew customer is created, codein Cust oner Handl eMenuEvent calls Edi t Cust oner to put
up amodal dialog for the user to enter the new customer data. When the modal dialog is dismissed, the Form
Manager automatically restores the contents of the Customers form. The Customers form also needs to be
redrawn, as anew customer has been added to the list. Cust oner Handl eMenuEvent cals

Fr mJpdat eFor m which sends our event handler af r mpdat eEvent :

Edi t Cust oner (r ecor dNunber, true);
Fr mUpdat eFor n{ Cust oner sForm f r mRedr awUpdat eCode) ;

By default, the Form Manager redraws the form when af r mpdat eEvent occurs. However, it doesn't
erase the form first. We need to have the list erased before it is redrawn, since we've changed the contents of

thelist. So, we erasethelist with Lst Er aselLi st and then update the list with the new number of
customers. We set hand| ed tof al se so the default behavior (redrawing the form) will occur.

case frmpdat eEvent:
Lst Er aseLi st (Get Cbj ect Fr omAct i veFor n(Cust oner sCust onmer sLi st));
I ni t Nunber Cust orrer s() ;

handl ed = fal se;
br eak;

Switching Forms

The Applicati onHandl eEvent needstoload formswhenaf r nLoadEvent occurs (not necessary
for forms shown with Fr nDoDi al oQ):

static Bool ean ApplicationHandl eEvent (Event Ptr event)

{
FormPtr frm

I nt formd;
Bool ean handl ed = fal se;

if (event->eType == frnloadEvent)
{
/1 Load the formresource specified in event then activate the form
formd = event->data.frnLoad. form D;
frm= FrmnitFormformd);
FrBet Acti veForm(frm;

/1 Set the event handler for the form The handler of the currently
/'l active formis called by FrnDi spatchEvent each time it receives
/1 an event.

switch (formd)

{

case OrderForm
FrnSet Event Handl er (frm Or der Handl eEvent) ;
br eak;

case CustonersForm
Fr nSet Event Handl er (frm Cust oner sHandl eEvent) ;
br eak;

}

handl ed = true;

}
return handl ed;

}

We keep avariable that tells uswhich is the current form, the Cust omer sFor mor the Or der For m This
variable can be saved in the application's preferences entry so that when the application is reopened, it can
return to the form the user was last viewing:

static Word gCurrentView = Cust ormer sForm

Inour Pi | ot Mai n, we open the form specified by gCur r ent Vi ew. We also check to make sure that
we're running on a 2.0 OS or greater (since we want our application to take advantage of some calls not
present in the 1.0 OS):

error = RonVersi onConpati bl e(0x02000000, | aunchFl ags);
if (error)
return error;

if (cnd == sysAppLaunchCndNor mal Launch)
{
error = StartApplication();
if (lerror)
{
Fr nGot oFor n{ gCur rent Vi ew) ;
Event Loop() ;

St opAppl i cation();

The RomVer si onConpat i bl e checks whether the OS version of the handheld deviceis at least that
required to run. It puts up an alert telling the user that anewer OSisrequired (only if the application's launch
flags specify that it should interact with the user):

static Err RonmVersi onConpati bl e(DWord requiredVersi on, Word | aunchFl ags)

{
DWor d r omVer si on;
/] See if we're on a mninmumrequired version of the ROMor |ater.
/1 The systemrecords the version nunber in a feature. A feature is a
/1 piece of information that can be | ooked up by a creator and feature
/1 numnber.
Ftr Get (sysFtrCreator, sysFtrNunmROWersion, &ronVersion);
if (ronVersion < requiredVersion)
{
/1 1f the user |aunched the app fromthe | auncher, explain
/1 why the app shouldn't run. If the app was contacted for
/1 something else, like it was asked to find a string by the
/1 systemfind, then don't bother the user with a warning dial og.
/] These flags tell how the app was | aunched to decided if a
/1 warning should be displ ayed.
if ((launchFlags &
(sysAppLaunchFl agNewd obal s | sysAppLaunchFl agU App))
== (sysAppLaunchFl agNewd obal s | sysAppLaunchFl agU App)) {
FrmAl ert (Rom nconpati bl eAlert);
/] Pilot 1.0 will continuously relaunch this app unless we switch
/1 to another safe one. The sysFileCDefaultApp is
/1 considered "safe".
if (ronVersion < 0x02000000) {
Err err;
AppLaunchW t hCommand(sysFi | eCDef aul t App,
sysAppLaunchCrmdNor mal Launch, NULL);
}
}
return sysErrRoml nconpati bl e;
}
return O;
}

That isall thereis of interest to the resources, forms, and form objects in the Sales application. This material
took so much space simply because of the large number of objects we needed to show you, rather than
because of the complexity of the subject material. Thisisal good news, however, as arich set of forms and
form objects means greater flexibility in the types of applications you can create for Palm OS devices.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PaaPaaac

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! &

PRt

In this chapter:

Overview of Databases and Records
Creating, Opening, and Closing Databases
Working with Records

Examining Databases in the Sales Sample

6. Databases

Aswe described earlier, permanent data resides in memory. This memory is divided into two sections: the
dynamic and storage heaps. Permanent data resides in the storage heap and is controlled by the Data
Manager (the dynamic heap is managed strictly by the Memory Manager).

Datais organized into two components. databases and records. The relationship between the two is

straightforward. A database is arelated collection of records. Records are rel ocatabl e blocks of memory
(handles). Anindividual record can't exceed 64KB in size.

Overview of Databases and Records '&

A database, as a collection of records, maintains certain key information about each record (see Figure 6-1):

e Thelocation of the record.

o A three-byte unique ID. ThisID isunique only within a given database. It is assigned automatically by
the Data Manager when the record is created.

¢ A one-byte attribute. This attribute contains a 4-bit category: a deleted bit, an archived bit, a busy bit,
and a secret (or private) bit.

Inthe Palm 3.0 OS, there is one large storage heap; in previous versions, there were many small ones. A
database resides in a storage heap, but its records need not be in the same heap (see Figure 6-1).

Figure 6- 1. Database with two recordsin a databasein persistent memory

Storage Heap Storage Heap
Dutabase
Home
(roatar
Type .
Npp knfo w Inf .
Sort Info in ¢ D','HLII‘HI(
Heap
Aifribates for Rec D
Unigue 1D for Rec 0
Record 0w Record 0
e e doka

RIribules Tor e |

Unigue 10 for Rec |

Record | » Record 1
datn

Databases also contain the following other types of information:

An application info block

This usually contains category names as well as any other database-wide information.
A sort info block

Thisiswhere you store alist of record numbersin avariant order. For example, address book entries might
be sorted by company rather than by a person’'s name. Most applications don't use a sort info block.

Name, type, and creator

Databases are created with a name (which must be unique), atype, and a creator. When a user deletes an
application, the Palm OS automatically deletes all databases that share the same creator. The preferences
record is removed at the same time. So that this cleanup can happen correctly, it'simportant that your
databases use the creator of their application.

Write-Protected Memory

In order to maintain the integrity of the storage heap, it is hardware write-protected. This ensures that a
rogue application referencing a stray pointer can't accidentally destroy important data or applications.
Therefore, changes to the databases can only be made through the Data Manager API. These APIs check that
writes are made only within an allocated chunk of memory-writes to random areas or past the end of an
allocated chunk are not allowed.

Palm 3.0 OS Heap Changes

In pre-3.0 versions of the OS, a database heap is limited to at most 64KB. The persistent area of memory is
therefore divided into many different database heaps. In this pre-3.0 world, it is much harder to manage
memory, since each allocated record must fit within one heap. The 3.0 OS does not have that 64KB limit on
database heaps. Instead, the persistent memory area contains just one large database heap.

NOTE:

The multiple database heaps lead to a problem: although there is free memory available, there might not be
enough available for arecord. The situation occurs when you have, for example, 10 databases heaps, each
of size 64KB, and each half full. Although there is 320KB memory available, arecord of size 40KB can't
be allocated (because no single heap can hold it). The original 1.0 OS exacerbated this problem with an ill-
chosen strategy for database allocations: records were allocated by attempting to keep heaps equally full.
This made large record allocations more and more difficult as previous alocations were made.

NOTE:

The 2.0 OS switched to afirst-fit strategy (arecord is allocated in the first heap in which it will fit). A
change to the 2.0 OS (found in the System Update 2.0.4) modified the strategy (if there isn't room in an
existing heap for a chunk, chunks from the most empty heap are moved out of that heap until thereis
enough space). It isn't until 3.0, however, that afull fix (one large heap) isin place.

Where Databases Are Sored

Although all current Palm OS devices have only one memory card, the Palm OS supports multiple cards.
Cards are numbered, starting with the internal card, which is 0. When you create a database, you specify the
card on which it is created. If and when multiple cards are supported, there will need to be some user
interface to decide default locations. Until that time, you create your databases on card 0.

NOTE:

While creating databases on card O isfine, other code in the application shouldn't rely on the value of the
card being 0. By not hardcoding this value, the application will work with multiple card devices.

How Records Are Stored Versus How They
Are Referenced

While your application is running, reference database records using handles. Database records are not stored
this way, however. Within the database heap they are stored aslocal IDs. A local ID is an offset from the
beginning of the card on which it islocated. Because items are stored this way, the base address of the card
can change without requiring any changes in the database heap.

A future Palm device OS with multiple card slots would have separate base addresses for each slot. Thus,
the memory address for a chunk on a memory card would depend on what slot it wasin (and thus what its
base address was).

Thisisrelevant to your job as an application writer when you get to the application info block in the
Database. Application info (and sort info) blocks are stored as local IDs. Also, if you need to store a
reference to a memory chunk within arecord, you can't store a handle (because they are valid only while
your application is running). Instead, you'd need to convert the handleto alocal ID (using a Memory
Manager function) and store the local ID.

Creating, Opening, and Closing Databases 2

Y ou handle these standard operations in a straightforward manner in Palm applications.
Creating a Database

To create adatabase, you normally use DnCr eat eDat abase:

Err DntCreat eDat abase(Ul nt cardNo, CharPtr naneP, ULong creator,
ULong type, Bool ean resDB)

Thecr eat or isthe unique creator you've registered at the Palm devel oper web site
(http://www.palm.com/devzone). You usethet ype to distinguish between multiple databases with different
types of information in them. The nanmeP is the name of the database, and it must be unique.

NOTE:

Until Palm Developer Support issues guidelines on how to use multiple card numbers, just use O as your
card number when creating databases.

In order to guarantee that your database name is unique, you need to include your creator as part of your
database name. Developer Support recommends that you name your database with two parts, the database
name followed by a hyphen (-) and your creator code. An application with a creator of "Neil" that created
two databases might name them:

Dat abasel- Nei |
Dat abase2- Nei |

Create your database in your StartApplication routine

Y ou normally create your database from withinyour St ar t Appl i cat i on routine. Thisisin cases where
the database does not yet exist. Hereis atypical code sequence to do that:

/1 Find the Custoner database. |If it doesn't exist, create it.
gDB = DnOpenDat abaseByTypeCr eat or (kCust Type, kSal esCreator, node);
if (! gDB) {

err = DnCreat eDat abase(0, kCustNane, kSal esCreator,
kCust Type, false);

if (err)
return err;

gDB = DmOpenDat abaseByTypeCr eat or (kCust Type, kSal esCreator, node);
if (!gDB)
return DmCet LastErr();

/] code to initialize records and application info

}

Creating a database from an image

If your application has a database that should be initialized with a predefined set of records, it may make
sense to "freeze-dry" a database as aresource in your application. Thus, when you build your application,
add an existing database image to it. Then, when your application's St ar t Appl i cat i on routineis called,
if the database doesn't exist, you can create it and initialize it from this freeze-dried image.

Of course, you could just provide your user with a Palm database (PDB) file to download. The advantage is
that your application is smaller; the disadvantage is that the user might not download the file. In this case,
you'd still need to check for the existence of your databases.

Here's an example:

gDB = DmOpenDat abaseByTypeCr eat or (kCust Type, kSal esCreator, node);
if (1gDB) {
Voi dHand i mageHandl e = DnmGet Resource(' DBIM, 1000);

err = DnCr eat eDat abaseFr onl nage(MenHandl eLock(i mageHandl e)) ;
MenHandl eUnl ock(i mageHandl e) ;
DRel easeResour ce(i mageHandl e) ;

if (err)
return err;
gDB = DmOpenDat abaseByTypeCr eat or (kCust Type, kSal esCreator, node);
if (!gDB)
return DmCet LastErr();
}

This code assumes that there's a resource of type DBI Mwith ID 1000 in your application's resource database
that contains an appropriate image.

Y ou can create the database on a Palm OS device, and then do a HotSync to back up the database. Thefile
that Palm Desktop createsis a database image (a PDB file).

The exercise of getting a datafile into aresource in your application is not covered here. Y our devel opment
environment determines how you do this.

Opening a Database

Y ou usually open your database by type and creator with acall like this:

gDB = DmOpenDat abaseByTypeCr eat or (kCust Type, kSal esCreator, node);

In your application, use anode of dmvbdeReadW i t e, since you may be modifying recordsin the
database. If you know that you aren't making any modifications, then use adnmvbdeReadOnl y mode.

If your application supports private records, then you should honor the user's preference of whether to show
private records by setting dmvbde ShowSecr et to the mode, as necessary. Here's code that adds the
dmvbdeShowSecr et appropriately:

Syst enPr ef er encesType sysPrefs;

/Il Determne if secret records should be shown.
Pr ef Get Pref erences(&sysPrefs);

if (!sysPrefs. hideSecretRecords)
node | = dmvbdeShowSecr et ;

gDB = DmOpenDat abaseByTypeCr eat or (kCust Type, kSal esCreator, node);
Closing a Database

When you are finished with adatabase, call DnCl oseDat abase:

err = DnCl oseDat abase(gDB);

Don't leave databases open unnecessarily, because each open database takes approximately 100 bytes of
room in the dynamic heap. A good rule of thumb might be that if the user isn't in aview that has access to
the datain that database, it shouldn't be open.

Note that when you close a database, records in that database that are locked or busy remain that way. If for
some reason your code must close a database while you have locked or busy records, call
DnrReset Recor dSt at es before calling DnCl oseDat abase:

err
err

DnReset Recor dSt at es(gDB) ;
DnCl oseDat abase(gDB) ;

The Data Manager doesn't do this resetting automatically from DnCl oseDat abase because of the
performance penalty. The philosophy is that you shouldn't penalize the vast majority of applications that
have released and unlocked al their records. Instead, force the minority of applications to make the extra
call and incur the speed penalty in these rare cases.

Creating the Application Info Block in a Database

The application info block is ablock of memory that is associated with your database as awhole. You can
use it for database-wide information. For example, you might have a database of checks and want to keep
the total value of all the checks. Or you might allow the user to choose from among more than one sort order
and need to keep track of the current sort order. Or you might need to keep track of category names. In each
of these cases, the application info block is an appropriate place to keep thisinformation. Here's a snippet of
code (normally used when you create your database) to allocate and initialize the application info block:

Ul nt car dNo;
Local I D dbl D;
Local I D appl nf ol D

MyAppl nf oType *appl nf oP;

i f (DnOpenDat abasel nfo(gDB, &dbl D, NULL, NULL, &cardNo, NULL))
return dnErrlnval i dPar am

h = DnNewHandl e(gDB, si zeof (MyAppl nfoType));
if ('h)
return dnErr MenError;

appl nf ol D = MenHandl eToLocal | D(h) ;
DnfSet Dat abasel nf o(cardNo, dbl D, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, &applnfolD, NULL, NULL, NULL);

appl nfoP = (MyAppl nf oType *) MenHandl eLock(h);
Dnfset (appl nfoP, 0, sizeof (M/Appl nfoType), 0);

/1 Code deleted to initialize fields in applnfoP

/1 Unl ock
MenPt r Unl ock(appl nf oP) ;

Note that you can't use MemHand| eNewto allocate the block, because you want the block to be in the same
heap as the database and not in the dynamic heap. Therefore, use DniNewHand| e. Also, you can't directly
store the handle in the database. Instead, you must convert it to alocal ID.

NOTE:

Remember that alocal ID is an offset from the beginning of the card. Thisis necessary for the futurein
case multiple cards are supported. In such a case, the memory addresses would be dependent on the slot in
which the card was placed.

If you use the Category Manager to manage your database, you need to make sure the first field in your
application info block is of type Appl nf oType (this stores the mapping from category number to category
name). To initializethisfield, call Categorylnitiali ze:

Cat egorylnitialize(&pplnfoP->applnfo, LocalizedApplnfoStr);
The second parameter is the resource ID of an application string list (resource typet Al S) that contains the

initial category names. Y ou need to add one of these to your resource file (it's common to initialize it with
"Unfiled", "Business", and "Personal™).

Working with Records 2

Now that you know how to set up databases, you need to populate them with records. How you sort and
therefore find arecord is usually determined when you create it. Let'sfirst look at the mechanics of finding a
record. After that, we'll create a new record.

Finding a Record

If your records are sorted based on the value of afield (or fields) within the record, you can do a binary
search to find a particular record. If your records aren't sorted (or you are looking for a record based on the
value of an unsorted field), you need to iterate through all the records, testing each record to see whether it is
the one you want. "lterating Through the Records in a Database or Category" later in this chapter shows how
to iterate through all records. If you are looking for aunique ID, there'sa call to find a record.

Finding a record given a unique ID

If you've got the unique 1D, you get the record number using Dni ndRecor dBy| D:

Ul nt recor dNunber ;
err = DnfindRecor dByl D(gDB, uni quel D, &recordNunber);

Note that this search starts at the first record and keeps looking until it finds the one with a matching unique
ID.

Finding a record given a key

If you have records sorted by some criterion (see "Sorting the Records in a Database” later in this chapter),
you can do a binary search to find a specific record. First, you need to define a comparison routine that
compares two records and determines the ordering between the two. Here are the possible orderings:

e Thefirst isgreater than the second
e The second is greater than the first
e They areequal

The comparison routine takes six parameters:

Record 1

Record 2

An"other" integer for your own use

The attributes and unique ID for record 1
The attributes and unique ID for record 2
The application info block

The extra parameters (beyond just the records) are there to allow sorting based on further information. This
isinformation found outside the record and includes such things as attributes (its category, for instance), a
unique 1D, and a specified sort order. The "other" integer parameter is necessary whenever you call aroutine
that requires a comparison routine; it is then passed on to your comparison routine. This parameter is
commonly used to pass a sort order to your sorting routine. Note that the application info block is rarely used
as part of a comparison routine-perhaps to sort by alphabetized categories (Business first, then Personal, then
Unfiled). Since the category names are stored in the application info block, it's needed by a comparison
routine that wants to take into account category names.

Here's an example comparison function that comparesfirst by | ast Nane field andthen by f i r st Nane
field. The attributes, unique ID, application info block, and extrainteger parameter are not used:

static Int ConpareRecordFunc(MRecordStruct *recl, MyRecordStruct *rec2,
Int unusedlnt, SortRecordlnfoPtr unusedl, SortRecordlnfoPtr unused2,
Voi dHand appl nf oH)

{

I nt result;

result = StrConpare(recl->l astNane, rec2->l ast Nane);
if (result == 0)

result = StrConpare(recl->firstNanme, rec2->firstNane);
return result;

}

The DnFi ndSort Posi ti onisusedtofind arecord (or to find where arecord would be placed if it
werein the database). It takes five parameters:

The database

The record to search for (filled in with the fields the comparison routine will ook for)

The attributes and the unique ID for the record (necessary because the record you're passing in isn't
necessarily part of the database and doesn't really have attributes or a unique ID)

e The comparison function

o Theadditional integer parameter to be passed to the comparison routine

Here's a search for a specific record. Note that Dnfi ndSor t Posi t i on returns a number in the range

0. . nunmber O Recor ds. A return result of O signifiesthat the passed-in record is less than any existing
records. A return result equal to the number of records signifies that the passed-in record is __ the last record.
A returnresult, i ,intherange 1. . nunber O Recor ds- 1 signifiesthat record i -1 _ passed-in record <
record i. Here'sause of DnFi ndSor t Posi t i on that finds the record, if present:

Bool ean foundlt = fal se;
MyRecor dSt ruct findRecord;
Ul nt recor dNunber ;

findRecord. | ast Name = "Rhodes";

findRecord.firstName = "Neil";

recor dNunber = DnFi ndSort Posi tion(gDB, &findRecord, O,
(DmConpar F *) Conpar eRecor dFunc, 0);

if (recordNunber > 0) {
MyRecor dSt ruct *record;
Handl e t heRecor dHandl e;

t heRecor dHandl e = DmQuer yRecord(gDB, recordNunmber - 1);

record = MenHandl eLock(t heRecor dHandl e) ;

foundlt = StrConpare(findRecord.|astNanme, record->lastNane) == 0 &&
Str Conpar e(findRecord. firstName, record->firstNanme);

MenHandl eUnl ock(t heOr der Handl e) ;

}
if (foundlt) {
/'l recordNunmber - 1 is the matching record
} else {
/1 record at recordNunmber < findRecord < record at recordNunber+1

}
Creating a New Record

Y ou create a new record with DniNewRecor d:

nyRecor dHandl e = DnNewRecor d(gDB, &recordl ndex, recordSize)

Ther ecor dSi ze istheinitial record size; you can change it later with MenHand| eSet Si ze, just asyou
would with any handle. Make sure you specify a positive record size; zero-size records are not valid.

Y ou'll notice that you need to specify the index number of the record as the second parameter. You initialize
it with the desired record index; when DrmiNewRecor d returns, it contains the actual record index.

Record indexes are zero-based; they range from 0O to one less than the number of records. If your desired
record index isin this range, the new record will be created with your desired record index. All the records
with that index and above are shifted up (their record indexes are increased by one). If your desired record
index is__the number of records, your new record will be created after the last record, and the actual record
index will be returned.

Adding at the beginning of the database

To add to the beginning of the database, use 0 as a desired record index:

U nt recordl ndex = O;
nyRecor dHandl e = DnNewRecor d(gDB, &recordl ndex, recordSize)

Adding at the end of the database

To add to the end of the database, use dnivaxRecor dl ndex asyour desired record index:

Ul nt recordl ndex = dmvaxRecor dl ndex;
nyRecor dHandl e = DnNewRecor d(gDB, &recordl ndex, recordSize)
/1 now recordl ndex contains the actual index

Y ou should rarely add to the end of the database, because archived and deleted records are kept at the end.
Adding in sort order

Use DnFi ndSort Posi ti on to determine where to insert the record:

Ul nt recor dl ndex;
MyRecor dSt ruct newRecor d;
Voi dHand nyRecor dHandl e;

MyRecor dStruct *newRecordPtr;

/1 initialize fields of newRecord
recordl ndex = DnFi ndSort Position(gDB, &newRecord, O,
(DmConpar F *) Conpar eRecor dFunc, 0);
nyRecor dHandl e = DnNewRecor d(gDB, &recordl ndex, sizeof (M/RecordStruct));
newRecor dPtr = MenHandl eLock(nyRecor dHandl e) ;

DmWite(newRecordPtr, 0, &newRecord, sizeof(newRecord));
MenHandl eUnl ock(myRecor dHandl e) ;

Ther ecor dNunber returned by DnFi ndSor t Posi t i on isthe record number you use with
DmNewRecor d.

Reading from a Record

Reading from arecord is very simple. Although records are write-protected, they are still in RAM; thus you
can just get arecord from a database, lock it, and then read from it. Here's an example:

Voi dHand myRecord = DmQuer yRecord(gDB, recordNunber);
Struct Type *s = MenHandl eLock(nmyRecord);

DoSonet hi ngReadOnl y(s->field);
MenHandl eUnl ock(nyRecord);

The DmQuer yRecor d call returns arecord that is read-only; it can't be written to, as it doesn't mark the
record as busy.

Modifying a Record

In order to modify arecord, you must use Dntcet Recor d, which marks the record busy. Call
DnRel easeRecor d when you're finished with it. Because you can't just write to the pointer (the storage
areaiswrite-protected), you must use either DnSet (to set arange to a particular character value) or
DmVite.

Often, arecord has a structure associated with it. Y ou usually read and write the entire structure:

Voi dHand myRecord = DmGet Record(gDB, recordNunber);
Struct Type *s = MenHandl eLock(nmyRecord);
Struct Type theStructure;

theStructure = *s;
theStructure.field = newal ue;
DmWite(gDB, s, 0, & heStructure, sizeof(theStructure));

MenHandl eUnl ock(nyRecord);
DnRel easeRecor d(gDB, recordNunber, true);

Another aternative isto write specific fields in the structure. A very handy thing to use in this case isthe
standard C of f set of macro (of f set of returns the offset of afield within a structure):

Voi dHand myRecord = DnGet Recor d(gDB, recordNunber);
Struct Type *s = MenHandl eLock(myRecord);

DmWVite(s, offsetof(StructType, field), &ewval ue, sizeof (newval ue));

MenmHandl eUnl ock(myRecord) ;
DRel easeRecor d(gDB, recordNunber, true);

The second approach has the advantage of writing less data; it writes only the data that needs to change.

The third parameter to DrRel easeRecor d tells whether the record was actually modified or not. Passing
the value true causes the record to be marked as modified. If you modify arecord but don't tell

DnrRel easeRecor d that you changed it, during a HotSync the database's conduit may not realize the
record has been changed.

Handling Secret Records

In order for aPalm OS user to feel comfortable maintaining sensitive information on his device, the Palm
OS supports secret (also called private) records. In the Security application, the user can specify whether to
show or hide private records. The user can specify a password that is required before private records are
shown.

Each record has a bit associated with it (in the record attributes) that indicates whether it is secret. As part of
the mode you use when opening a database, you can request that secret records be skipped. "Opening a
Database" on page 143 shows the code you need. Once you make that request, some of the database
operations on that open database completely ignore secret records. The routines that take index numbers
(like Dntcet Recor d or DnfQuer yRecor d) don't ignore secret records, nor does DniNunRecor ds.

DmNunRecor dsl nCat egor y and DnSeekRecor dl nCat egor y do ignore secret records, though.
Y ou can use these to find a correct index number.

The user sets the secret bit of arecord in a Details dialog for that record. Here is some code that handles that
request:

Control Ptr pri vat eCheckbox;
Ul nt attributes;
Bool ean i sSecret;

DnRecor dl nf o(Cust oner DB, recordNunber, &attributes, NULL, NULL);
isSecret = (attributes & dnRecAttrSecret) == dnRecAttrSecret;

privat eCheckbox = Get Obj ect FromAct i veFor n(Det ai | sPri vat eCheckbox) ;
Ct | Set Val ue(privat eCheckbox, isSecret);

hitButton = FrnDoDi al og(frm;

if (hitButton == Detail sOKButton) {
if (ClGetValue(privateCheckbox) != isSecret) {

if (CtlGetValue(privateCheckbox)) {
attributes | = dnRecAttr Secret;
/1 tell user how to hide private records
if (!gH deSecretRecords)

FrmAl ert (privateRecordl nfoAlert);

} else
attributes & ~dnRecAttrSecret;

DnfSet Recor dl nf o(Cust onmer DB, recordNunber, &attributes, NULL);

}
}

Note that we must put up an alert (see Figure 6-2) if the user marks arecord as private while show all

recordsis enabled. Aswe are still showing private records, this might be confusing for a new user, who sees
this private checkbox, marks something as private, and expects something to happen as a result.

-Figure 6- 2. Alert shown when user marksarecord as private while showing private records

Private Records

@ You have marked this
record Private. Go te
the Secwrity application
and tap the Hide button
to hide all Private
records.

Cox)

Iterating Through the Recordsin a Database
or Category

Whether you want only the itemsin a particular category or all the records, you still need to use category
calls. These calls skip over deleted or archived (but still present) and private records (if the database is not
opened with dmVbdeShowSecr et).

Here's some code to visit every record:

U nt theCategory = dmAl | Cat egori es; /1 could be a specific category
unt totalltens = DnmNunRecor dsl nCat egor y(gDB, theCategory);
unt i;

U nt recordNum = 0;

for (i =0; i <totalltems; i++) {
Voi dHand recordH = DmQuer yNext I nCat egory (gDB, & ecordNum
t heCat egory) ;
/1 at this point, recordNum contains the desired record nunber.

/1 You could use DmGet Record to get wite-access, and then
/| DnRel easeRecord when fi ni shed

// do something with recordH

}

Sorting the Records in a Database

Just asfinding an item in a sorted database requires a comparison routine, sorting a database requires a
similar routine. There are two different sort routines you can use. Thefirst, Dm nserti onSort, usesan
insertion sort (similar to the way most people sort ahand of cards, placing each card in its proper location
one by one). The insertion sort works very quickly on an almost-sorted database. For example, if you change
one record in a sorted database it may now be out of place while all the other records are till in sorted order.
Use the insertion sort to put it back in order.

The second routine, DmQui ckSor t , usesaquicksort (it successively partitions the records). If you don't
know anything about the sort state of the database, use the quicksort. Changing the sort order (for instance,
by name instead of by creation date) causes all recordsto be out of order. Thisis an excellent time to use the
quicksort.

Insertion sort

err = DminsertionSort(gDB, (DnConparF *) ConpareRecordFunc, 0);
Quicksort

err = DmQui ckSort (gDB, (DmConparF *) ConpareRecordFunc, 0);

Both sorting routines put deleted and archived records at the end of the database (deleted records aren't
passed to the comparison routine, since there's no record data). Keeping deleted and archived records at the
end of the database isn't required, but it isawidely followed convention used by the sorting routines and by
DnFi ndSor t Posi ti on.

One other difference between the two sorting routinesisthat Dm nserti onSort isastable sort, while
DmQui ckSort isnot. That is, two records that compare the same will remain in the same relative order
after Dl nserti onSort but might switch positions after DnQui ckSor't .

Deleting a Record

Deleting arecord is slightly complicated because of the interaction with conduits and the data on the
desktop. The simplest record deletion isto completely remove the record from the database (using

DRenpveRecor d). Thisis used when the user creates arecord but then immediately decides to delete
it. Since there's no corresponding record on the desktop, there's no information that needs to be maintained
in the database so that synchronization can occur.

When a preexisting record is deleted, it also needs to be deleted on the desktop during the next Hotsync. To
handle this deletion from the desktop, the unique ID and attributes are still maintained in the database (but
the record's memory chunk is freed). The deleted attribute of the record is set. The conduit looks for this bit
setting and then del etes such records from the desktop and from the handheld on the next HotSync.

DDel et eRecor d doesthiskind of deletion, leaving the record's unique ID and attributes in the database.

Thefinal possibility isthat the user requests that a deleted record be archived on the desktop (see Figure 6-
3). In this case, the memory chunk can't be freed (because the data must be copied to the desktop to be
archived). Instead, the archived bit of the record is set, and it istreated on the handheld as if it were deleted.
Once a HotSync occurs, the conduit copies the record to the desktop and then deletes it from the handheld
database. DmAr chi veRecor d does thisarchiving.

Figure 6- 3. Dialog allowing the user to archive a record on the desktop (it shows up after the user asksto delete a record)

Delete Ta Da "

Delete selected To Do
item ¥

= Save archive copy on PO

)

Newly archived and deleted records should be moved to the end of the database (the sorting routines and
DnFi ndSor t Posi ti on rely on archived and deleted records being only at the end of the database).
Here'sthe logic you'll probably want to use when the user deletes arecord:

if (isNew && !gSaveBackup)
DmRenpveRecor d(gDB, recordNunber); // renove all traces
el se {
if (gSaveBackup) //need to archive it on PC
DmAr chi veRecor d(gDB, recordNunber);
el se
DnDel et eRecord(gDB, recordNunber); // leave the unique ID and attrs
/| Deleted records are stored at the end of the database
DmvoveRecord (gDB, recordNunber, DnmNunmRecords(gDB));
}

If the user doesn't explicitly request that a record be deleted, but implicitly requestsit by deleting necessary
data (for instance, ending up with an empty memo in the Memo Pad), you don't need to archive the record.
Here's the code you use:

if (recordlsempty) {
if (isNew)
DmRenoveRecor d(gDB, recordNunber); // renove all traces
el se {
DnDel et eRecord(gDB, recordNunber); // leave the unique ID and attrs
/] Deleted records are stored at the end of the database
DmvoveRecord (gDB, recordNurmber, DnmNunmRecords(gDB));

}
}

Dealing with Large Records

The maximum amount of data a record can hold is dlightly less than 64KB of data. If you've got larger
amounts of data to deal with, there are a couple of ways to tackle the problem.

File streaming

If you're using Palm OS 3.0, you can use the File Streaming Manager. The File Streaming Manager provides
afile-based API (currently implemented as separate chunks within a database heap). Y ou create a uniquely
named file and a small record that stores only that filename. We suggest you use as a filename the database
creator followed by the database type, followed by the record'sunique ID. Use Fi | eQpen to create a
file:

Fil eHand fil eHandl e;
Ul nt cardNo = 0;

fileHandl e = Fil eOpen(cardNo, uniqueFil eName, kCustType, kSal esCreator,
fileModeReadWite, &err);

Store the filename as the contents of the record. Read and write with Fil eRead andFi l eWite.
When you are done reading and writing, close the filewith Fi | e ose. When you delete the record, you
can delete thefilewith Fi | eDel et e.

NOTE:

One disadvantage of file streamsis that your conduit has no accessto these files.

Multiple chunks in a separate database

If you are running PaAlm OS 2.0 or earlier, the File Stream Manager isn't available. Therefore, you need to
allocate multiple chunks in a separate database yourself. The record stores the unique IDs of each of the
chunks in the separate chunk database. Here's a rough idea of how you might support arecord of up to
180K B (we'll have 18 records of 10KB each-we don't want each record to be too big, since it's easier to pack
smaller objectsinto the many 64KB heaps than it isto pack fewer larger ones). We assume we've got two
open databases. gDB, where our "large" records are, and gChunk DB, which contains our chunks:

#defi ne kNumChunks 18
#defi ne kChunkSi ze (10 * 1024)
typedef struct {
ULong uni quel Ds[kNunChunks] ;
} MyRecordType;
MyRecor dType newRecor d;
MyRecor dType *newRecordPtr = O;
Handl e h;
i nt i
Ul nt nunRecor ds| nChunkDat abase;

/'l keep track of original number of records

/'l so in case a problemoccurs we can delete

/1 any we've added

nunRecor dsl nChunkDat abase = DmNunRecor ds(gChunkDB) ;

for (i = 0; i < kNumChunks; i++) {
U nt chunkRecor dNunber = dmvaxRecor dl ndex;
h = DnmNewRecor d(gChunkDB, &chunkRecor dNunber, kChunkSi ze);
if ('h)

br eak;

i f (DnRecordl nfo(gChunkDB, chunkRecor dNunber, NULL,
&newRecord. uni quel Ds[i], NULL) != 0)
br eak;

DnRel easeRecor d(gChunkDB, chunkRecor dNunber, true);

if (i >= kNunChunks) {

/! we were able to allocate all the chunks

Ul nt recordNunber = 0;

h = DnNewRecor d(gDB, &recordNunber, sizeof (M/RecordType));

if (h) {
newRecor dPtr = MenHandl eLock(h);
DmWite(newRecordPtr, 0, &newRecord, sizeof(newRecord));
DnRel easeRecor d(gDB, recordNunber, true);

}

if (!newRecordPtr) {
/1 unable to allocate all chunks and record
/1 delete all the chunks we allocated
U nt recordNunmToDel et €;
recordNunfoDel et e = DmNunRecor ds(gChunkDB) - 1;
whi | e (recordNunToDel ete >= nunRecor dsl nChunkDat abase)
DnRenpveRecor d(gChunkDB, recor dNunmToDel ete--);
}

Now that you've alocated the record (and the chunksit pointsto), it's fairly straightforward to edit any of the
180KB bytes of data. Y ou use the unique ID to go into the appropriate chunk (reading it from the chunk
database after finding the index with Dni ndRecor dBy| D).

Editing a Record in Place

The Field Manager can be set to edit a string field in place. The string need not take up the entire record; you
specify the starting offset of the string and the current string length. The Field Manager resizes the handle as
necessary while the string is edited.

This mechanism is agreat way to handle editing a single string in arecord. However, you can't have multiple
fields simultaneously editing multiple strings in arecord. For example, if you have arecord containing both
last name and first name, you can't create two fields in a single form to edit both the last name and first name
in place. (This makes sense, because each of the fields may want to resize the handle.)

The following sections explain this mechanism.

Initialize the field with the handle

This code shows how to initialize the field with the handle:

typedef struct {

i nt field;
/1 other fields
char textField[1]; /1 may actually be longer, null-term nated
} M/RecType;
Handl e t heRecor dHandl e;
Handl e ol dText Handl e = FI dGet Text Handl e(fld);
if (fld) {
/1 must dispose of the old handle, or we'll |eak nenory

MenHandl eFr ee(ol dText Handl e) ;

}
t heRecor dHandl e = DnGet Recor d(gDB, recordNunber);
recPtr = MenHandl eLock(t heRecor dHandl e) ;

Fl dSet Text (f1d, theRecordHandl e, offsetof (MRecType, textField),
StrLen(theRecordHandl e.textField) + 1);

Cleanup once the editing is finished
When the editing is done (this usually occurs when the form is closing), three things need to be done:

o Compact the text. When afield is edited, the text handle is resized in chunks rather than one byte at a
time. Compacting the text resizes the text block to remove the extra space at the end of the block.

o Reset thetext handle. When afield isfreed, it freesits text handle. We don't want the record in the
database to be freed, so we set the field's handle to O.

¢ Release the record back to the database.

Here's the code:

Bool ean dirty = FldDirty(fld);
if (dirty)
FI dConpact Text (f1d);
FI dSet Text Handl e(f1d, NULL);
DnRel easeRecor d(gDB, recordNunber, dirty);

Examining Databases in the Sales Sample 2

Now that you understand how databases and records function within the storage heap space, let's look at
how we use them in our Sales application.

Defining the Sales Databases

The Sales application has three different databases. The first holds customers, the second orders (one record
for each order), and the third items. Here are the constant definitions for the names and types:

#defi ne kCustoner DBType ' Cust'’

#def i ne kCust oner DBNanme "Cust onmer s- Sl es”
#define kOrder DBType "Ordr!

#define kOr der DBNane "Orders-Sles"
#defi ne kProduct DBType ' Prod'

#defi ne kProduct DBNanme "Product s- Sl es”

Reading and Writing the Customer

The customer is stored as the customer 1D followed by four null-terminated strings back to back (it's
"packed,” so to speak). Here's a structure we use for the customer record (there's no way to represent the four
strings, so we just specify the first one):

typedef struct {
SDWord cust omer | D

char nanme[1]; // actually may be longer than 1
} PackedCust omer ;

When we're working with a customer and need to access each of the fields, we use a different structure:

typedef struct {
SDWor d cust oner | D
const char *nane;
const char *address;
const char *city;
const char *phone;

} Customer;

Here's aroutine that takes alocked PackedCust omer and fills out a customer-it unpacks the customer.
Note that each field pointsinto the PackedCust oner (to avoid allocating additional memory). The
customer isvalid only while the PackedCust onmer remains locked (otherwise, the pointers are not valid):

/| packedCustoner nust remain | ocked while customer is in use
static void UnpackCust omer (Cust oner *custoner,
const PackedCust omer *packedCust oner)
{
const char *s = packedCust oner - >nane;
cust omer - >cust oner | D = packedCust oner - >cust oner | D;
cust omer - >nanme = s;
s += StrlLen(s) + 1;
cust oner - >address = s;
s += StrlLen(s) + 1;
customer->city = s;
s += StrlLen(s) + 1;
cust omer - >phone = s;
s += StrlLen(s) + 1;
}

We have an inverse routine that packs a customer:

static void PackCustoner (Custonmer *custoner, VoidHand custoner DBEntry)

{
/] figure out necessary size
Ul nt | ength = 0;
Char Pt r S;
Ul nt of fset = 0;

| ength = sizeof (custoner->custonerl D) + StrlLen(custoner->nane) +
StrLen(custoner->address) + StrlLen(custoner->city) +
StrLen(custoner->phone) + 4; [/ 4 for string termnators

/'l resize the Voi dHand

i f (MenHandl eResi ze(custoner DBEntry, length) == 0) {
/1 copy the fields
s = MenHandl eLock(cust omer DBEntry) ;
of fset = 0O;
DmWite(s, offset, (CharPtr) &custoner->custonerl D,

si zeof (cust onmer - >custoner| D)) ;

of f set += si zeof (customer->custoner|D);
Dnft r Copy(s, offset, (CharPtr) custoner->nane);
of fset += StrlLen(customner->nanme) + 1;
Dnft r Copy(s, offset, (CharPtr) custoner->address);
of fset += StrlLen(customner->address) + 1;
Dnft r Copy(s, offset, (CharPtr) custoner->city);
of fset += StrlLen(customer->city) + 1;
Dnft r Copy(s, offset, (CharPtr) custoner->phone);
MenHandl eUnl ock(cust omer DBEnt ry) ;

Reading and Writing Products

Similarly, we have structures for packed and unpacked products:

typedef struct {
ULong product!| D;

ULong price; /1 in cents
const char *nane;
} Product;

typedef struct {
DWord product! D;
DWord price; /!l in cents

char nane[1]; // actually may be longer than 1
} PackedProduct ;

Since the structure for packed and unpacked products is so similar, we could write our code to not
distinguish between the two. However, in the future, we may want to represent the data in records differently
from the datain memory. By separating the two now, we prepare for possible changes in the future.

The pr oduct | Disunique within the database. We keep the price in cents so we don't have to deal with
floating-point numbers.

We have routines that pack and unpack:

static void PackProduct(Product *product, VoidHand product DBEntry)
{

/1 figure out necessary size

Ul nt length = 0;

CharPtr s;

Ul nt of fset = 0O;

I ength = si zeof (product->product!| D) + sizeof (product->price) +
StrLen(product->name) + 1;

/1 resize the Voi dHand
i f (MenHandl eResi ze(product DBEntry, |ength) == 0) {
/Il copy the fields
s = MenHandl eLock(product DBEntry);
DmWite(s, offsetof(PackedProduct, productlD), &product->productl D,
si zeof (product - >product 1 D)) ;
DmWite(s, offsetof(PackedProduct, price), &product->price,
si zeof (product->price));
Dnft r Copy(s, of fsetof (PackedProduct, nane), (CharPtr) product->nane);
MenHandl eUnl ock(product DBEntry);

}

/| packedProduct nust remain | ocked while product is in use
static void UnpackProduct (Product *product,
const PackedProduct *packedProduct)

{
product - >product | D = packedPr oduct - >pr oduct | D,

product - >price = packedProduct->pri ce;
product - >nane = packedPr oduct - >nane;

Working with Orders

Orders have avariable number of items:

typedef struct {
DWord product! D;
DWord quantity;
} ltem

typedef struct {
SDWor d custoner| D,
Wrd nuntens;

Item itens[1]; /1 this array will actually be nunitens |ong.
} Oder;

Thereis zero or one order per customer. An order is matched to its customer viathe
cust oner Uni quel D.

We have variables for the open databases:

static DnOpenRef gCust oner DB;
static DnOpenRef gOr der DB;
static DnOpenRef gPr oduct DB;

Opening, Creating, and Closing the Sales Databases

Here'sour St art Appl i cat i on that opens the databases (after creating each one, if necessary):

static Err StartApplication(void)

{
Ul nt pref sSi ze;
Ul nt node = dmvbdeReadWi te;
Err err = 0;
Cat egori esStruct *c;
Bool ean created;

/1 code that reads preferences del eted

/] Determinme if secret records should be shown.
gHi deSecr et Records = Pref Get Pref erence(prefH dePrivat eRecords);
if (!gH deSecretRecords)

node | = dmvbdeShowSecr et ;

/! Find the Custoner database. |If it doesn't exist, create it.
OpenOr Cr eat eDB(&gCust oner DB, kCust oner DBType, kSal esCreator, node,
0, kCustoner DBNane, &created);
if (created)
InitializeCustomers();

/! Find the Order database. |If it doesn't exist, create it.
OpenOr Cr eat eDB(&gOr der DB, kOr der DBType, kSal esCreator, node,
0, kOrder DBNane, &created);
if (created)
InitializeOrders();

/! Find the Product database. |If it doesn't exist, create it.
OpenOr Cr eat eDB(&gPr oduct DB, kProduct DBType, kSal esCreator, node,
0, kProduct DBNane, &created);
if (created)
InitializeProducts();

¢ = GetLockedAppl nfo();
gNuntat egori es = c->nuntat egori es;
MenPt r Unl ock(c);

return err;

It uses a utility routine to open (and create, if necessary) each database:

/'l open a database. If it doesn't exist, create it.
static Err OpenO Creat eDB(DnOpenRef *dbP, ULong type, ULong creator,
ULong node, Ul nt cardNo, char *nanme, Bool ean *creat ed)

{

Err err;

*created = fal se;
*dbP = DmOpenDat abaseByTypeCreator(type, creator, node);
err = DmGetLastErr();
if (! *dbP)
{
err = DnCreat eDat abase(0, name, creator, type, false);
if (err)
return err;
*created = true;

*dbP = DmOpenDat abaseByTypeCreator(type, creator, node);
if (! *dbP)
return DnGetLastErr();
}

return err;

It uses another utility routine to read the categories from the application info block for the product database:

static CategoriesStruct * GetLockedAppl nfo()

{
U nt cardNo;
Local I D dbl D,
Local I D appl nfol b
Err err;
if ((err = DnDpenDat abasel nf o(gProduct DB, &dbl D, NULL, NULL,
&cardNo, NULL)) != 0)
return NULL;
if ((err = DnDatabasel nfo(cardNo, dblD, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, &applnfolD, NULL, NULL, NULL)) != 0)
return NULL;
return Menmlocal | DToLockedPtr (appl nfol D, cardNo);
}

When the application closes, it has to close the databases:

static void StopApplication(void)
{

/1 code that saves preferences del eted

// Cose all open forms, this will force any unsaved data to
/'l be witten to the database.

FrnCl oseAl | Forns();

/1 O ose the databases.

DnCl oseDat abase(gCust oner DB) ;

DnCl oseDat abase(gOr der DB) ;
DnCl oseDat abase(gPr oduct DB) ;

Initializing the Sales Databases

We have routinesto initialize each of the databases. At some point, these routines could be removed
(instead, our conduit would initialize the database during a HotSync).

Initializing the customer database

Here's the initialization routine for customers:

static void InitializeCustoners(void)

{

Cust omer

cl =

{1,

"(123) 456-7890"};

Cust omer
Cust omer
Cust omer
Cust omer
Cust omer
Cust omer
Cust omer
Ul nt
unt i;

cust omer
cust omer
cust omer
cust omer
cust omer
cust omer
cust omer

for (i =

Ul nt

PackCust orer (custoners[i],
DnRel easeRecor d(gCust oner DB,

c2 =
c3 =
c4 =
ch5 =
c6 =
c7 =

{2
{3
{4, "a"
{5, "b"
{6, "c",
{7, "a"

"Joe's toys-1",

"Bucket of Toys-2",
"Toys we be-3",

*custoners[7];
si zeof (custoners) / sizeof (custonmers[0]);

S
S
S
S

0]
1]
2]
3]
s[4]
s[5]
s[6]
0; i

nunCust oners =

&cl;
&c2;
&c3;
&c4;
&c5;
&C6;
&c7;

< nunCust oners;

}

}
A

}

i++) {

i ndex = dmvaxRecor dl ndex;
Voi dHand h

if (h) {

= DnNewRecor d(gCust oner DB, &i ndex,

h)

Initializing the product database

Here's the routine to initialize products:

static void InitializeProducts(void)

{

#def i ne

#def i ne
Pr oduct
Pr oduct
Pr oduct
Pr oduct
Pr oduct
Pr oduct
Pr oduct
Pr oduct
Pr oduct
Pr oduct
Pr oduct
Pr oduct
Pr oduct
unt i;
unt j;

prodl
prod2
prod3
prod4
pr od5
prod6
prod7
prod8
prod9

prodl0

= {125,
= {135,
= {145,
= {9,

= {126,
= {127,
= {138,
= {199,
= {120,
= {129,

kMaxPer Cat egory 4
kNuntat egori es 3

253 ,
1122
752
852
253 ,
350 ,
650 ,
950 ,
999 ,
888 ,

prodll= {10, 899 ,
prodi2= {20,
*product s[kNunCat egor i es] [kMaxPer Cat egory] ;

Voi dHand h;

product s[0] [O]
product s[0] [1]
product s[0] [2]
product s[0] [3]
product s[1] [0]
product s[1] [1]
product s[1] [2]
product s[1] [3]
product s[2] [0]
product s[2] [1]
products[2] [2]
products[2] [3]
=0; i

0;

for (i
for (
ul

j =
nt

1199 ,

= &prodl;
= &prod2;
= &prod3;
= &prod4;
= &prod5;
= &pr od6;
= &prod7;
= &prods;
= &prod9;
= &prodl0;
= &prodll;
= &prodl2;

< kNuntat egori es;

"d-Joe"};
, " Barbie"};
"Ken"};
" Ski pper"};
"Kite"};

i ndex,

"123 Main St."

"}

true);

"Silly-Putty"};

"Yo-yo0"};

"Legos"};

"Monopol y"};
"Yaht zee"};
"Life"};

"Battleship"};

i++) {

, "Anyt own",

"}

1);

j < kMaxPerCategory && products[i][j]->nang;
i ndex;

PackedPr oduct

fi ndRecord;

j++)

Voi dHand h;

findRecord. product I D = products[i][j]->productlD;
i ndex = DnFi ndSort Posi tion(gProduct DB, &findRecord, O,
(DConpar F*) Conpar el DFunc, 0);
h = DnmNewRecor d(gProduct DB, & ndex, 1);
if (h) {
unt attr;
/'l Set the category of the newrecord to the category it
/1 belongs in.
DnRecor dl nf o(gProduct DB, index, &attr, NULL, NULL);
attr &= ~dnRecAttr Cat egor yMask;
attr | = i; /] category is kept in low bits of attr

DnfSet Recor dI nf o(gProduct DB, index, &attr, NULL);
PackProduct (products[i][j], h);
DnRel easeRecor d(gProduct DB, index, true);

h = DnmNewHandl e(gPr oduct DB,
of f set of (Cat egori esStruct, names[kNuntCat egories]));

if (h) {
char *categories[] = {"Dolls", "Toys", "Games"};
Cat egoriesStruct *c = MenHandl eLock(h);
Local I D dbl D;
Local I D appl! nf ol D;
Ul nt car dNo;
Ul nt num = kNuntCat egori es;
Err err;

DmWite(c, offsetof(CategoriesStruct, nunCategories), &um
si zeof (num));
for (i = 0; i < kNunCategories; i++)
Dnfst r Copy(c,
of f set of (Cat egori esStruct, names[i]), categories[i]);
MenHandl eUnl ock(h) ;
appl nf ol D = MenHandl eToLocal I D(h);
err = DmOpenDat abasel nf o(gProduct DB, &dbl D, NULL, NULL,
&car dNo, NULL);
if (err == 0) {
err = DnSet Dat abasel nf o(cardNo, dbl D, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, &applnfolD, NULL, NULL, NULL);
Err NonFat al Di spl ayl f (err, "Dnfet Dat abaselnfo failed");

The code inserts the products sorted by product ID (an alternative would be to create the productsin
unsorted order and then sort them afterward). Note a so that the attributes of each record are modified to set
the category of the product.

The comparison routine for sorting

Here's the comparison routine used for sorting products, companies, and orders:

static Int Conparel DFunc(SDWrd *pl, SDWrd *p2, Int i,
Sort Recordl nfoPtr sl1, SortRecordlnfoPtr s2, VoidHand appl nf oH)
{
// can't just return *pl - *p2 because that's a long that may overfl ow
/1 our return type of Int. Therefore, we do the subtraction ourself
/1 and check
long difference = *pl - *p2;
if (difference < 0)
return -1;
else if (difference > 0)
return 1;
el se
return O;
return (*pl - *p2);

Initializing the orders database

Finally, the orders must be initialized:

static void InitializeO ders(void)

{
Itemiteml = {125, 253};
Itemiten? = {126, 999};
Itemiten8 = {127, 888};
Itemitemd = {138, 777};
Itemitenb = {125, 6};
Itemitent = {120, 5};
Itemiteny = {129, 5};
Itemiten8 = {10, 3};
Itemiten® = {20, 45};
ItemitemlO = {125, 66};
Itemitemll = {125, 75};
Itemiteml2 = {125, 23};
Itemiteml3d = {125, 55};
Itemitemld4 = {125, 888};
Itemiteml5 = {125, 456};
Itemitens[15];
Voi dHand h;
Or der *order;

U nt recordNum
Unt numtens = sizeof(itens) / sizeof(itenms[0]);

items[0] = itent;
items[1] = iteng;
items[2] = itenB;
items[3] = itemd;
items[4] = itenb;
items[5] = iteng;
itemrs[6] = itenv;
items[7] = itens;
itemrs[8] = iteny;
itemrs[9] = itemlO;
iters[10] = itemll;
itemrs[11] = iteml2;
itemrs[12] = iteml3;
items[13] = iteml4;
items[14] = iteml5;

order= Cet O Creat eOrder For Cust orrer (1, &recordNun;

/] wite numtens
DmWVite(order, offsetof (Order, numtens), &umnltens, sizeof(numtens));

/'l resize to hold nore itens

h = MenPtrRecover Handl e(order);

MenHandl eUnl ock(h);

MenHandl eResi ze(h, offsetof (Order, itens) + sizeof(lten) * nunltens);
order = MenHandl eLock(h);

/'l wite newitens
DmNVite(order, offsetof (Order, itens), itens, sizeof(itens));

/1 done with it
MenHandl eUnl ock(h);
DRel easeRecor d(gOrder DB, recordNum true);

Adding Records

All we do is add some items to the first customer. The remaining customers we treat as still needing an
order. (We do this primarily to test later code that shows which customers do and do not have orders.) We
use aroutine that takes a customer ID and returns the corresponding order (or createsit as necessary). This
routine is used not only for initializing the database, but also at other pointsin the program:

static Order * Get O CreateO der For Customer (Long customner| D,

ulnt *recordNunPtr)

Voi dHand t heOr der Handl e;
O der *order;
Bool ean exi sts;

*recordNunPtr = Order Recor dNunber (cust omer I D, &exi sts);
if (exists) {
t heOrder Handl e = DmGet Record(gOrder DB, *recordNunPtr);
Err NonFat al Di spl ayl f (!t heOrder Handl e, "DMcet Record failed!'");
order = MenHandl eLock(theOr der Handl e) ;
} else {
Order o;
t heOrder Handl e = DmNewRecor d(gOrder DB, recordNunPtr, sizeof (Order));
if (!theOrderHandle) {
FrmAl ert (Devi ceFul | Alert);
return NULL;
}
o.numtems = 0;
o.custoner! D = custonerl D;
order = MenHandl eLock(theOr der Handl e) ;
DmWite(order, 0, &o, sizeof(0));
}

return order;

Or der Recor dNunber returns the record number of a customer's order or the location at which the order
should beinserted, if no such order exists:

/1l returns record nunber for order, if it exists, or where it
/1 should be inserted
static U nt OrderRecordNunber(Long customer| D, Bool ean *orderExi sts)
{
Or der findRecord;
Ul nt recor dNunber ;

*order Exi sts = fal se;

findRecord. custoner| D = custonerl D;

recordNunber = DnFi ndSort Position(gOrderDB, &findRecord, O,
(DnConpar F *) Conpar el DFunc, 0);

if (recordNunber > 0) {
Order *order;
Voi dHand t heOr der Handl e;
Bool ean foundlt;

t heOrder Handl e = DmQuer yRecor d(gOrder DB, recordNunber - 1);
Err NonFat al Di spl ayl f (!t heOrder Handl e, "DMGet Record failed!");

order = MenHandl eLock(theOrderHandl e);
foundlt = order->custonerl D == custonerl| D,
MenHandl eUnl ock(t heOr der Handl e) ;
if (foundlt) {

*order Exi sts = true;

return recordNunber - 1;

}
}

return recor dNunber;

The Customers Form

Let's now look at how the customers are displayed in the Customers form. Customers are displayed in alist
that has a drawing callback function that displays the customer for a particular row (sinceit's called by the
system, it must have the CALLBACK macros for GCC). The customers that already have an order are shown
in bold, to distinguish them from the others. The text pointer is unused, since we don't store our customer
names in the list but obtain them from the database. Here's the routine:

static void DrawOneCustonerlnListWthFont (U nt itenmNunber, RectanglePtr bounds, CharPtr *text)

{
Voi dHand h;

I nt seekAmount = item\unber;
Unt index = 0;

#ifdef __ GNUC__
CALLBACK_PROLOGUE
#endi f
/1 must do seek to skip over secret records
DnfSeekRecor dl nCat egor y(gCust onmer DB, & ndex, seekAmount, dnBSeekForward,
dmAl | Cat egori es);
h = DnQuer yRecor d(gCust oner DB, i ndex);
if (h) {
Font | D cur Font ;
Bool ean setFont = fal se;
PackedCust oner *packedCust omer = MenHandl eLock(h);

i f (!OrderExistsForCustoner(packedCustoner->custonerID)) {
set Font = true;
cur Font = Fnt Set Font (bol dFont) ;

}

Dr awChar sToFi t W dt h(packedCust oner - >nane, bounds) ;

MenHandl eUnl ock(h) ;

if (setFont)
Fnt Set Font (cur Font) ;
}
#ifdef __ GNUC__
CALLBACK_EPI LOGUE
#endi f
}

The routine uses two other routines: one that finds the unique ID for a specific row number and one that tells
whether an order exists. Here's the routine that returns a unique ID:

static ULong Get Custoner| DFor Nt hCustomer (U nt itenmNunber)
{

Long cust oner | b;

Ul nt i ndex = 0;

I nt seekAmount = item\unber;

Voi dHand h;

PackedCust oner *packedCust oner ;

/1 must do seek to skip over secret records

DnfSeekRecor dl nCat egor y(gCust onmer DB, & ndex, seekAmount, dnBSeekForward,
dmAl | Cat egori es);

h = DnQuer yRecor d(gCust oner DB, i ndex);

Err NonFat al Di spl ayl f (! h,
"can't get customer in GetCustomner| DFor Nt hCustomer");

packedCust omer = MenHandl eLock(h);

custonmer| D = packedCust oner - >cust oner | D;

MenHandl eUnl ock(h) ;

return customnerl D,

Notetheuse of DnfSeekRecor dl nCat egor y, which skips over any secret records. Here's the code that
callsOr der Recor dNunber to figure out whether an order exists (so that the customer name can be
bolded or not):

static Bool ean OrderExi stsForCustoner(Long custoner| D)

{
Bool ean order Exi st s;
O der Recor dNunber (cust onmer | D, &or der Exi sts) ;
return orderExists;

}

Editing Customers

Heresthe Edit Cust omer Wt hSel ect i on routine that handles editing customers, deleting customers,
and setting/clearing the private record attribute. The got oDat a parameter is used to preselect sometext in
afield (used for displaying the results of a Find):

static void EditCustonerWthSel ection(U nt recordNunber, Bool ean isNew,
Bool ean *del et ed, Bool ean *hi dden, struct frnGoto *gotoDat a)

FormPtr previ ousForm = FrnGet Acti veForm();
FornPtr frm

Ul nt hi t But t on;

Bool ean dirty = false;

Control Ptr privat eCheckbox;

Ul nt attributes;

Bool ean i sSecret;

Fi el dPtr naneFi el d;

Fi el dPtr addressFi el d;

FieldPtr cityField;

Fi el dPtr phoneFi el d;

Cust oner theCustoner;

Ul nt of fset = of fsetof (PackedCust omer, nane);
Voi dHand cust omer Handl e = DmGet Recor d(gCust oner DB, recor dNunber) ;

*hi dden = *del eted = fal se;
DmRecor dl nf o(gCust omer DB, recordNunber, &attributes, NULL, NULL);
isSecret = (attributes & dnmRecAttrSecret) == dnmRecAttrSecret;

frm= Frm nitForm Customer Form;
Fr nSet Event Handl er (frm Cust oner Handl eEvent) ;
FrnSet Acti veForm(frm;

UnpackCust oner (& heCust oner, MenHandl eLock(cust oner Handl e)) ;
/'l code deleted that initializes the fields

/1 unlock the custoner
MenHandl eUnl ock(cust orrer Handl e) ;

privat eCheckbox = Get Obj ect FromAct i veFor m(Cust oner Pri vat eCheckbox) ;
Ct | Set Val ue(pri vat eCheckbox, isSecret);

hi tButton = FrnDoDi al og(frm;

if (hitButton == Custoner OKButton) {
dirty = FldDirty(naneField) || FldDi rty(addressField) ||
FldDirty(cityField) || FIdDirty(phoneField);
if (dirty) {
/1 code deleted that reads the fields into theCustoner
}
PackCust orer (& heCust omer, cust omer Handl e) ;
if (ClGetValue(privateCheckbox) != isSecret) {
dirty = true;
if (Cl GetValue(privateCheckbox)) {
attributes | = dnRecAttr Secret;
/1 tell user how to hide private records
i f (gH deSecret Records)
*hi dden = true;
el se
FrmAl ert (privat eRecordlnfoAlert);
} else
attributes & ~dnRecAttr Secret;
DnSet Recor dl nf o(gCust orer DB, recor dNunber, &attributes, NULL);

DRel easeRecor d(gCust oner DB, recordNunber, dirty);
if (hitButton == CustonerDel eteButton) {
*del eted = true;
if (isNew && !gSaveBackup)
DmRenpveRecor d(gCust orrer DB, recor dNunber) ;
el se {
if (gSaveBackup) // Need to archive it on PC
DmAr chi veRecor d(gCust omer DB, recor dNunber) ;
el se
DnDel et eRecor d(gCust orrer DB, recor dNunber) ;
/| Deleted records are stored at the end of the database
DmVoveRecor d(gCust omer DB, recor dNunber ,
DmNunRecor ds(gCust oner DB)) ;

}

else if (hitButton == Custoner OKButton && i sNew &&
I(StrLen(theCustoner.nane) || StrLen(theCustoner. address) ||
StrLen(theCustoner.city) || StrLen(theCustoner.phone))) {
*del eted = true;
// delete Customer if it is new & enpty
DnRenpveRecor d(gCust onmer DB, recor dNunber) ;

}

else if (hitButton == CustonerCancel Button && i sNew) {
*del eted = true;
DnRenpveRecor d(gCust onmer DB, recor dNunber) ;

}

if (previousForm
Fr nSet Act i veFor m(pr evi ousForm ;
FrnDel eteForm(frm;
}

We have a utility routine we use that doesn't require agot oDat a parameter:

static void EditCustoner(U nt recordNunber, Bool ean i sNew, Bool ean *del et ed, Bool ean *hi dden)
{

Edi t Cust omer Wt hSel ecti on(recordNunber, isNew, deleted, hidden, NULL);
}

The Order Form

Most of the functionality in thisform is provided in atable (see "Tables" on page 204). We won't ook at the
table parts specifically, but it's worth knowing that each visible row of the table has an item index number
associated with it (thisisretrieved with Thl Get Rowl D). Here's the code that draws a product name for a
particular row:

static void OrderDrawProduct Name(Voi dPtr table, Wrd row, Wrd col um,
Rect angl ePtr bounds)
{
Voi dHand h = NULL;
Product p;
U nt itenmNunber;
ULong productl D;
CharPtr toDraw,

#ifdef __ GNUC__
CALLBACK_PROLOGUE
#endi f
toDraw = "-Product-";
i temNunber = Tbl Get Row D(tabl e, row);
product! D = gCurrent Order->i tens[itenmNunber]. product| D,
if (productlD) {
h = Get Product FronProduct | D(product I D, &p, NULL);
if (h)
toDraw = (CharPtr) p.naneg;
}
Dr awChar sToFi t W dt h(t oDraw, bounds);
if (h)
MenHandl eUnl ock(h);
#ifdef __ GNUC__
CALLBACK_EPI LOGUE
#endi f
}

Looking up a product

Get Pr oduct Fr onPr oduct | d looks up a product given aproduct ID. Here's the code for that:

/1 if successful, returns the product, and the | ocked Voi dHand
static VoidHand Get Product FronProduct | D(ULong product| D, Product *theProduct, U nt *indexPtr)
{

Ul nt i ndex;

PackedProduct findRecord,;

Voi dHand f oundHandl e = 0O;

findRecord. product| D = product|D;

i ndex = DnFi ndSort Position(gProduct DB, &findRecord, O,
(DnConpar F *) Conpar el DFunc, 0);

if (index > 0) {
PackedPr oduct *p;
Voi dHand h;

i ndex--;
h = DnQuer yRecor d(gProduct DB, i ndex);
p = MenHandl eLock(h);
if (p->product!D == product|D) {
if (theProduct)
UnpackProduct (t heProduct, p);
el se
MerHandl eUnl ock(h) ;
if (indexPtr)
*indexPtr = index;
return h;
}
MenHandl eUnl ock(h) ;

}
return NULL;
}

Editing an item

The code to display the product 1D and quantity doesn't use the Database Manager (so we don't show that
code).

Here's a snippet of code from Or der SaveAnount that modifies the quantity, if it has been edited:

CharPtr textP = FIdGet TextPtr(fld);
Item oldltem = gCurrentOder->itens[gCurrent Sel ect edl t en ndex] ;

if (table->currentColum == kQuantityCol um) {
if (textP)
oldltem quantity = StrATol (textP);
el se
ol dltem quantity

0;
}
DmW it e(gCurrent Order,

of fset of (Order, itens[gCurrent Sel ectedlten ndex]),
&l dltem sizeof(oldliten));

Note that DmW i t e isused to modify gCur r ent Or der, sincegCur r ent Or der isarecord in the order
database and can't be written to directly.

Deleting an item

We need to delete an item in certain circumstances (if the user explicitly chooses to delete an item, or sets
the quantity to 0, and then stops editing that item). Here's the code that does that (note that it usesDMAN i t e
to move succeeding items forward and uses MenPt r Resi ze to make the record smaller):

/1 gCurrentOrder changes after this routine.
/1 gCurrentltemis no longer valid
static void DeleteNthltem(U nt itenmNunber)
{
Ul nt newNum t ens;
ErrNonFat al Di spl ayl f (i t emNunber >= gCurrent Order->nunitens,
"bad itemN\unber");

/1 move items fromitemNunber+1..numtens down 1 to
/] itemNunmber .. numtens - 1
if (itemNunber < gCurrentOrder->numtens - 1)
DmW it e(gCurrent O der,
of fsetof (Order, items[item\unber]),
&gCurrent Order->i tenms[item\unber +1],
(gCurrentOrder->numtens - itemNunber - 1) * sizeof(ltem));

/1 decrement numltemns;
newNum tens = gCurrent Order->numtens - 1;
DmW it e(gCurrent O der,
of fsetof (Order, numtens), &iewNumltens, sizeof(newNumtens));

/'l resize the pointer smaller. W could use MenPtrRecover Handl e,
/1 MenmHandl eUnl ock, MenHandl eResi ze, MenHandl eLock.
/1 However, MenPtrResize will always work
/1 as long as your are meking a chunk smaller. Thanks, Bob!
MenPt r Resi ze(gCurrent O der,

of fsetof (Order, itenms[gCurrentOrder->numtens]));

Adding a new item

Similarly, we must have aroutine to add a new item:

/1 returns true if successfull. itemNunber is location at which it was
/] added

static Bool ean AddNewi tem(Ul nt *itenNurber)

{

Voi dHand t heOr der Handl e;
Err err;

U nt nunltens;

Item newtem= {0, O};

Err NonFat al Di spl ayl f (! gCurrentOrder, "no current order");

t heOr der Handl e = MenPt r Recover Handl e(gCur r ent Or der) ;

MenHandl eUnl ock(t heOr der Handl e) ;

err = MenHandl eResi ze(t heOr der Handl e,
MenHandl eSi ze(t heOrder Handl e) + sizeof (Iten));

gCurrent O der = MenHandl eLock(theOr der Handl e) ;

if (err 1=0) {
FrmAl ert (DeviceFull Alert);
return fal se;

}

num tens = gCurrentOrder->numtens + 1;

DmWite(gCurrent Order, offsetof (Order, numtens), &umtens,
si zeof (num tens));

*itemNunber = gCurrentOrder->numtens - 1;

DmWVite(gCurrent Order, offsetof(Order, itens[*itenNunber]), &new tem
si zeof (newitem);

gCurrent Or der Changed = true;

return true;

Note that if we can't resize the handle, we display the system alert telling the user that the device isfull.
Finishing an order record

When the Order form is closed, the records in the order database must be updated. If there are no items, the
entire order is deleted:

static void OrderFornCl ose(void)
{

Voi dHand t heOr der Handl e;

U nt nunltens;

Or der Desel ect RowAndDel et el f Enpty();

numl tens = gCurrent Or der->num t ens;

/1 unlock the order

t heOr der Handl e = MenPt r Recover Handl e(gCur r ent Or der) ;
MenHandl eUnl ock(t heOr der Handl e) ;

/] delete Oder if it is enpty; release it back to the database otherw se
if (numtens == 0)

DmRenpveRecor d(gOr der DB, gCurrent Orderl ndex) ;
el se

DRel easeRecor d(gOrder DB, gCurrent Orderl ndex, gCurrentOrder Changed);

The ltem Form

Oncetheformisinitialized, the user interacts with it until a button is tapped. The event handler for the form
handles the button tap:

static Bool ean |tenHandl eEvent (EventPtr event)
{

Bool ean handl ed = fal se;

Fiel dPtr fld;

#i fdef _ GNUC__
CALLBACK_PROLOGUE
#endi f
switch (event->eType) {
case ctl Sel ect Event:
switch (event->data.ctl Select.controllD) {
case |tenmOKButt on:
{
char *textPtr;
ULong quantity;

fld = Get Ovj ect FromActi veForm(ItenQuantityField);
textPtr = FldGet TextPtr(fld);
ErrNonFat al Di spl ayl f(!textPtr, "No quantity text");
quantity = StrATol (textPtr);
DmW it e(gCurrent Order,
of fsetof (Order, itens[gCurrentltenmNunber].quantity),
&quantity, sizeof (quantity));

i f (gHaveProduct | ndex) {
Voi dHand h;
PackedPr oduct *p;

h = DnfQuer yRecor d(gProduct DB, gCurrent Product | ndex) ;

ErrNonFat al Di spl aylf(!h, "Can't find the record");

p = MenHandl eLock(h);

DmW it e(gCurrent Order,
of fsetof (Order, itenms[gCurrentltenmNunber]. productlD),
&p->product | D, sizeof (p->productiD));

MenHandl eUnl ock(h);

}
}

br eak;

case |tentCancel Button:
br eak;

case |tenDel et eButton:
if (FrmAlert(DeleteltemAl ert) == Del eteltenlK)
Del et eNt hl t en{ gCurrent|temunber);

el se
handl ed = true;
br eak;
}
br eak;

/1 code for other events del eted

}
#ifdef __GNUC __
CALLBACK_EPI LOGUE
#endi f
return handl ed;

}

If the user taps OK, the code updates the quantity and product ID of the current item (if the user has edited
it). If the user taps Delete, the code calls Del et eNt hl t em(which we've already seen). On a Cancel, the
code doesn't modify the current order.

Palm Programming: The Developer's Guide

Palm Programming: The Developer’s Guide ~

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

PRt

In this chapter:

e Menu User Interface

o Menu Resources

e Application Code for Menus

e Adding Menus to the Sample Application

/. Menus

In this chapter, we explain how to create menus. Along with a discussion of the menu source code, we
highlight potential problems and show workarounds for them. First, however, we need to clarify some
terminology and describe the user interface for menus.

Menu User I nterface .&

Every Palm application that contains menus uses the same framework for them. If you look at Figure 7-1,
you see a sample menubar containing two menus. Customer and Options. The open Customer menu contains
three menu items: New Customer, Delete Customer, Edit Customer.

Figure 7- 1. Application menubar, menus, and menu items

Options |
M Customer N
Delete Customer X
Edit Cuistainer E

a
b
€
d

Note that menu items commonly have shortcuts associated with them. These are Graffiti |etters that are
unique to each menu item. By doing the stroke-and-letter shortcut, the user can perform the operation
without first selecting the menu item. For example, the "/ N" brings up a New Customer form. Asarule, you
should add these shortcuts to menu items wherever necessary and always with standard menu items. Make
sure that the most frequent operations have shortcuts, and don't put a shortcut on an infrequent action (such
as the About Box).

Common Menu Shortcuts

Table 7-1 contains common menus and the standard shortcut |etters used with them. Keep the same letters
so that users can expect the same behavior from different applications. Items with an asterisk are less
common.

-Table 7- 1. Standard Shortcut Letters

Record Edit Options
New< Item> N Undo U *Font F
Delete <Item> D Cut X Preferences R
* Attach <ltem> A Copy C *Display Options Y
Beam <ltem> B Paste P *HotSync Options H
*Purge E Select All S

Keyboard K

Graffiti Help G

Arranging Menus

Menus can aso be arranged with separator bars in them to group similar items together (see Figure 7-2).
Note that menus and menu items are never dimmed (grayed out). We discuss how to handle menu items that
aren't applicable in certain situations in "Handling Unusable Menu Items"' on page 190.

Sandard Menu Items
Edit menu
Most forms with atext field should have an Edit menu containing, at a minimum, Undo, Cut, Copy, Paste.

Most Edit menus also include Select All, Keyboard, and Graffiti Help. See Figure 7-2 for a standard Edit
menul.

NOTE:

Password dialogs shouldn't support Cut, Copy, or Paste.

About application
Y ou should have an About ny Appl i cat i on menu item; it isusually found in an Options menu. This
menu should bring up an aert/dialog containing information about your application (who wrote it, version

number, name, email address, web site, and technical support information). Thisdialog is often called an
About Box.

Applications Can Have Multiple Sets of Menus

A set of menusis always associated with a particular form or window in the application. Thus, if you look at
the Order form of our Sales application in Figure 7-2, you see that it has its own new set of menus.

Figure7- 2. The Order form of the Sales application

[Record Ty Options |

Undo <U
Cut a1
Copy #«C
Paste « P

Eeyboard K
Graffiti G

(Mew_) (Detods) [Done)

Y ou should also note that different formsin an application may share asimilar set of menus and menu items.
For example, the Order form and the Customer Details form both have an Edit menu with the same items

(see Figure 7-3).

Figure 7- 3. The Edit menu in two different forms

| Recard Options | Options |
Lndo < U Undo U
wt X cut o x [
Copy L Copy #C
Paste « P Paste
Selecthll /S SelectAll /S
Eeyboard »~FE Keyboard
Graffiti /G Grafitti
Phene:
{Mew_) (Detads) { Done) [oK][<ancel] [Celete]
Menu Resources 2

Menus are created and stored as resources in your application. Depending on the development environment
you use, you make the menus in different ways. First, we show you how to create menus with PIIRC (the
GNU PalmPilot SDK resource creator) and then using CodeWarrior's Constructor. In either case, the menus
end up in a.PRC resourcefile.

The .PRC file

The .PRC file contains an MBAR resource for each menubar in your application. These MBAR resources
are in turn composed of a number of menus, each of which contains menu items. Each menu item has
associated with it amenu ID and, optionally, a shortcut key. When you design your menubars, you need to
make sure that no two menu items in menus displayed at the same time have the same key shortcut-each
shortcut must be unique.

Using PIIRC
To create your .PRC file using GCC, use the PiIRC Resource Compiler. PIIRC alows you to directly create
menubar resources; later you will learn that thisis atremendous advantage. PiIIRC is atextual, rather than a

graphical, resource editor.

Here'sasimple MBAR (1D 1000) Resource with two menus, each with two items (the item IDs are 1001,
1002, 1011, and 1012):

MENU 1000

BEG N

PULLDOWN " Menul"

BEG N
MENUI TEM "1 t entl" 1001 "
MENUI TEM "1 t enR" 1002

END

PULLDOWN " Menu2"

BEG N
MENUI TEM "1 t enB" 1011
MENUI TEM "1 t emd" 1012

END
END

To define the shortcut keys of menu itemsin PiIIRC, simply supply the character surrounded by double
quotes. In our ssimple example, the first menu item has a shortcut key of "1".

NOTE:

Of course, you'll commonly use named constants instead of raw numbersin your .RCP file. Hereis agood
technique for numbering your resources: make your MBAR resource |Ds multiples of 1000 and your menu resource IDs
multiples of 10 starting 1 unit higher (this assumes that no menu will have more than 10 itemsin it). For example:

MBAR MENU

1000 1001

1011

2000 2001

2011

2021

Using Constructor

While smple to use, Constructor does give you some problems with menu construction. First, look at how
Constructor creates menus, and then we will describe the problems.

How Constructor creates menus

Y ou create menus in a Constructor project by graphically laying out menu elements. Figure 7-4 shows you
how simple thisisto do. The left side of Figure 7-4 contains a simple Constructor project with a couple of
menubars and menus. The record menu on the right side contains some menu items (two of which have
shortcuts) that were selected from the Constructor Edit menu.

Figure 7- 4. A small project showing the graphical interface for menu creation in Constructor

File (Window Help
Undo Set Menu lem Text #7 E Menu 1100, “Menu 2° BB
Menu Tzt Shorteul
Copy Menu Item ®|C [eme
l‘ﬂi MBen 1T ann 1 &1
- tamE Ao It enm 2 ~ B
noo
select Al =4 oo Monu [tem 3
Duplicate Menu Hem =D o
1
Mew hdenu ltem K _:m
New Separator ltem EL
T =mrTE T emg
@ lzons 0 items
Bitmaps 1t
8 el lim C

How Constructor creates MENU resources

Constructor doesn't directly create MBAR resources in the format needed by a.PRC file. Instead, it creates
MENU resources (one for each menu). First, you graphically lay out the menus, then Constructor takes over
and generates unique resource | Dsfor all these menus (see Figure 7-5). It does so by keeping track of the
MENU resourcesin an MBAR resource viaalist of MENU resource IDs.

-Figure 7- 5. Editing a MENU resour ce in Constructor

Comstructor Resource file PRC file
1001 “Customer”
1011 “Hew Costomer™ "N 1001
rE——— 5 Cat 1003
Editing 0 menubar in Construcior resource # fomer"“E" 1]
§ b Tt s ——Ty Boam Cestomer” 8 1004
Options 'ﬁuﬂu&mr" 'Dﬁulium"
T —— SN “Hew Custamear™ "N "Aboul Sokes” 1011
belete fustomer oK g‘f?ﬁ “Delate f.us1n|r:ar"".’i' I'Gl'l\"ﬂ'fﬂ‘ﬂ'hj’ -
BT CusTonber #E “Edit Custamer™"E MEHL resource #1000
P Sp———— A8 “Beom Cusbomer” "8
MENL rescurce #1001
berse 10 1071
“Options”
“About Sales” ™

MENU resource #1011

When you edit a MENU resource, you can edit the resource 1D, the text of each menu item, and the shortcut
key. You can do al of thisin Constructor. What you can't do is edit amenu ID. Here iswhy: CodeWarrior
uses PalmRez, a post-linking tool, to create the MBAR resource in the .PRC file. It usesthe MBAR and
MENU resourcesin your .RSC file. PaAlmRez assigns the menu IDs of each item sequentially, starting with a
base ID stored in the MENU resource itself.

Thisbase ID is not the MENU resource ID, and you can't seeit in Constructor. The base ID is used by
Constructor to automatically generate the menu IDs. When you create a new menu, duplicate one, or modify
the resource 1D of amenu, Constructor automatically changes the base ID aswell.

Figure 7-6 shows the relationship between the MBAR and the MENU resources you edit in Constructor and
the final MBAR resource in the .PRC file.

Figure 7- 6. Conceptual relationship between MENU and MBAR resourcesin Constructor and the MBAR resourcein
a.PRCfile

Wenu resouree 10 1101 +————={ Menu hese 1D {1101] {not seen in Construcior]
Mhanu resaurce 1011114 “Menu 1 it
“Menw liem 1 shartost char
MBAR resowee (D “Menu lsem 27, sharlasl char
1100 i Construckar
MENY resource I 1100 i Construcior
Mena bese 1D (11111 {nof seen in Construcior]
“Menu 2 ide”
“Menu liem 3 shartost char
“Menu lsam &7 sharlasl char
MENY resource [0 1700 i (onstrartor
Menu | §le”
“Menu lem 1” shorbeut chor, 1101 1
“Menu |I2f|1|1",~sl1|:|rlltulrt|1tl;r 102w Genarated illy starting fram
“Menu 2 Tille"
“Wesu ffem 3" shortcut chos, 1111 MENY mens 10, nofthe resavrce 10
"M Hem 4 shorbout chor, 11124
MEN resouree (D
1100 in Constrachor

Two problems with menus

Generating menus with Constructor can lead to two problems. The first one has to do with duplicate menus.
Because of the way PalmRez processes the MENU resources (deleting each MENU resource as it processes
it), you can't share one MENU in more than one MBAR. Thisisabigger problem than you might at first
imagine. For example, in our Sales application we have identical Edit menus in our Customer Details and
Order forms (Figure 7-3). Even though they are the same, we still have to create two separate menusin
Constructor. That means more code to maintain and the possibility of more mistakes.

The second problem has to do with the way base IDs are created. Constructor sets the base ID of amenu to
the menu's resource ID. This makesit impossible in Constructor for different menus to share the same menu
IDs.

If you have simple menus and menubars, with no need to have the same menu or menu items multiple times,
Constructor works fine. Otherwise, switch to creating your menus textually.

Creating your menus textually with PalmRez

PamRez is aresource compiler like PIIRC, but uses a different format for resources. PaAlmRez is based on
the Macintosh Programmer's Workshop (MPW) Rez tool, which is designed to create Macintosh resources.

PalmRez compiles files with the .r extension. Instead of creating your menus and menubars in Constructor,
you create a.r file that contains your menu and menubar definitions.

PamRez has to be told the format of MENU and MBAR resources. Here's afile, MenuDefs.r, that contains
the definitions of those types:

type ' MENU
{
i nteger SYS_EDI T_MENU = 10000; /1 base nenu ID
fill byte[12];
pstring; /1 menu title
array
{
pstring SEPARATOR = "-"; /1 itemtext
fill byte;
char NONE = "\ $00"; /I Gaffiti shortcut
fill byte[2];
b
byte = 0; /] term nator
b
type ' MBAR

{
i nteger = $$Count Of (menus) ;
array menus

{

i nteger; /1 menu ID
b
b

Include MenuDefs.r in your resource file. Here's an example MyMenus. r file defining a menubar with two
menusin it:

#i ncl ude "MenuDefs.r"

resource ' MENU (1001) {
1001, /|l base ID
"Menul",
{
"Itemtd", "I";
"ltenR", NONE;

resource ' MENU (1011) {

1011, /|l base ID
"Menu2",
{
"ltenB", NONE;
"Itemd", NONE;

}
}s

resource ' MBAR (1000) {
{1001, 1011}
}s

Associating Menubars with Forms

When you create aform, you specify the ID of a menubar to go along with it. A form with the value of 0 has
no associated menubar. The Palm OS automatically uses the menubar of aform while the formis active.
More than one form can use the same menubar.

Fecifying the menubar of a formin Constructor

If you look at Figure 7-7, you will see that you ssmply supply the resource value of a menubar ID that you

want that form to use.

Figure 7- 7. Forms have a menubar |D; thisone hasa menubar 1D of 1000

= Form
Left Origin
Top Origin
‘Width
Height
Usable
Modul
Save Bahind
Form ID

Merws Bar I

160
160

1000

Soecifying the menubar of a formin PiIRC

Specifying amenubar 1D for a particular form isjust as simplein PiIIRC:

FORM | D 1000 at (0, O, 160, 160)

MENUID 1000
BEGI N

END

Application Code for Menus

There'snot alot of code that needs to be added to support menus. Further, what you do add is
straightforward and in some cases standard from application to application. The three routines that have
some responsibility for handling menus are:

e MenuHandl eEvent

e MyFor nHandl eEvent
e MyFor nHandl eMenuEvent

There is some cookbook code to add that handles the Edit menu, and we need to handle the About menu, as
well.

MenuHandl eEvent

Thisroutine is responsible for handling menu-specific events. Chapter 4, Sructure of an Application,
contains a description of MenuHandl eEvent and itsrole within your main event loop. Here is an example
found in amain event loop:

do {
Evt Get Event (&event, evt Wit Forever);
if (! SysHandl eEvent (&event))
if (! MenuHandl eEvent (0, &event, &error))
if (! ApplicationHandl eEvent (&event))

Fr nDi spat chEvent (&event);
} while (event.eType != appStopEvent);

MyFormHandleEvent

Y our form's event handler receives an event of type menuEvent if amenu item is chosen. If you have
more than one or two menu items handled by aform, it is customary to put the menu item dispatching in a
separate routine, My For nHandl eMenuEvent . Hereis our event handler:

static Bool ean MyFornHandl eEvent (Event Ptr event)
{

Bool ean handl ed = fal se;

#ifdef _ GNUC__
CALLBACK_PROLOGUE
#endi f
switch (event->eType)
{
/* code renmoved */
case menuEvent:
handl ed = MyFor nHandl eMenuEvent (event - >dat a. mnenu. i tem D) ;
br eak;
/* code renmoved */
}
#ifdef _ GNUC__
CALLBACK_EPI LOGUE
#endi f
return handl ed;

}
MyFormHandleMenuEvent

Thisisthe routine that actually handles the menu items:

static Bool ean MyFor mHandl eMenuEvent (Word menul D)
{
Bool ean handl ed = fal se;
/* declarations renoved */
switch (menul D) {
case Menultemtl:
/1 code renoved that handles Menultenl
handl ed = true;
br eak;

case Menulten®:
/1 code renoved that handl es Menulten®
handl ed = true;
br eak;

}

return handl ed;

Handling Items in the Edit Menu

The good news about the Edit menu is that there is a cookbook approach to handling each of the menu
items. The bad newsisthat it takes a dlight amount of work to avoid duplicating this cookbook code
throughout your application. We show you how to avoid duplicated codein"A Procedure for Handling
Common Menu Items" later in this chapter.

First, let'slook at the cookbook code for handling each of the edit menu items:

/1l returns field that has the focus, if any, including in enbedded tables
static FieldPtr GetFocusObjectPtr (void)
{

FornPtr frm

Word focus;

For nDbj ect Ki nd obj Type;

frm= FrmGet ActiveForm ();

focus = FrmGet Focus (frm;

if (focus == noFocus)
return (NULL);

obj Type = FrnGet Obj ect Type (frm focus);

if (obj Type == frnFiel ddbj)
return (FrnGet ObjectPtr (frm focus));

else if (obj Type == frnifabl eObj)
return (Thl GetCurrentField (FrnGetObjectPtr (frm focus)));

return NULL;
}

Bool ean voi d MyFor mHandl eMenuEvent (Wrd nenul D)

{
Fiel dPtr fld;

switch (nenul D) {
/* code for other menu items renmoved */

case Edit Undo:
case EditCut:
case Edit Copy:
case EditPaste:
case EditSelectAll:
fld = Get FocusQoj ectPtr();
if (1fld)
return fal se;
if (menul D == Edit Undo)
FI dUndo(f ! d);
else if (nmenul D == EditCut)
Fl dCut (f1d);
else if (nmenul D == Edi t Copy)
FI dCopy(fld);
else if (menul D == Edi t Past e)
FI dPast e(fld);
else if (nmenulD == EditSelectAll)
FI dSet Sel ection (fld, 0, FldGetTextLength (fld));
return true;

case EditKeyboard:
SysKeyboar dDi al og(kbdDef aul t);
return true;

case EditGafitti:
SysGraffiti ReferenceDi al og(referenceDefault);
return true;

}

return fal se;

The emphasized calls are standard Palm OS calls that you use to handle the Edit menu. The cookbook can be
used with each of your menubars that contain an Edit menu.

The About Menu

The Palm OS provides aroutine, Abt ShowAbout , that allows the display of an application name and icon
(see Figure 7-8). Asyou can see, it isn't appropriate for anything but the built-in applications.

Figure 7- 8. AbtShowAbout shows a 3Com-specific About Box

About Address

PalmillI

w. 3.0

Copyright & 1995-1998 3Com
Corpeoration or its subsidiories.
Pl rightts reserved.

*

It is more useful to handle the About menu item by creating a simple alert and displaying it with Fr mAl er t
(see Figure 7-9):

case OptionsAbout:

FrmAl ert (About BoxAl ert);
br eak;

Thisisfineif all you want is some text. If you have pictures, however, create amodal form and display it
with Fr nDoDi al og. "Modal Dialogs' on page 101 describes how to do that.

Figure 7- 9. An About Box displayed using FrmAlert

[Salesw.io]
This applicationis fraim
the book “Falm
Programming: the
Developer's Guide™ by
Meil REhodes and Julie
Mckeehan.

(o)

Menu Erase Satus

There is a problem with menus and refreshing the display of the Palm screen that you should take into
account in your applications. Before describing the fix to the problem, let us explain what the user does and
when the problem occurs.

When the user chooses a menu item using a shortcut key, the Menu Manager displays the status of this task
in the lower left of the display. First, the Menu Manager displays the word "Command" (see Figure 7-10) to
indicate that a stroke has been noticed. If the user then writes a valid shortcut key, the Menu Manager

displays the menu item name (see Figure 7-11) and dispatches the menu event for the application to handle.

Figure 7- 10. Menu status after entering a shortcut character

Cormmand: Ly

Figure7- 11. Menu status after entering a shortcut character and then a menu shortcut key

o] v

Delete ltem l

This shortcut key status is shown on the screen for a couple of seconds: just enough time for the user to read
it and get feedback that the Palm device has noticed the stroke. After this, the status update automatically
goes away.

Thereis one case in which you need to clear the status yourself because a problem occurs. The PaAm OS
notes when the user chooses a menu item using a shortcut key and saves the screen bits underneath the area
where the word "Command" is displayed. Once the timer goes off, the bits are restored. If you have changed
the screen contents in the meantime, the bits that are restored are stale. Figure 7-12 shows the problem.

Figure 7- 12. Menu code changing contents of lower left of screen without calling M enuEraseStatus

Driginally on the sreen b s soved, memw is Hiddan lobal is shawn Timar expires, orea undar manu
in The lower-lefl cormar drown os shalus on lop of menu slnfus shalus is restared

A common case where your menu code would change the screen contents isin an alert or another form.
Nicely enough, the Palm OS catches this case automatically and erases the status for you. Y ou will have
trouble, however, when you change the contents of the current form. Here's some sample code that shows
the problem in Figure 7-12 (the code shows a previously hidden form object):

case ShowLabel Menul tem
{
Wor d i ndex;
FormPt r frm

frm= FrmGet ActiveForm();
i ndex = Frnet Obj ect | ndex(frm CustonersTestLabel);
Fr nShowObj ect (frm i ndex) ;

}

br eak;

Deal with this problem by doing your own erasing. The call to clear the statusis MenuEr aseSt at us.

The fix to the code that exhibits the problem issimply acall to MenuEr aseSt at us before modifying the
Sscreen:

case ShowLabel Menul tem

{
Wor d i ndex;
FormPt r frm

MenuEr aseSt at us() ;
frm= FrmGetActiveForm();
i ndex = FrnGet Obj ect | ndex(frm CustonersTestLabel);
Fr nShowObj ect (frm i ndex) ;
}

br eak;

Y ou have to be careful with thisfix, however, asit is a double-edged sword. Y ou don't want to call
MenuEr aseSt at us unnecessarily, asthereisaprice to pay. When you cal it, the user gets only avery
brief glimpse of the confirmed menu item. Y ou wiped out the confirmed menu item when you restored the
screen bits. This cureis still better than the problem, however, as a mess on the screen is worse than wiping
out the status quickly.

NOTE:

A good way to ensure that you have implemented MenuEr aseSt at us when necessary is to use shortcut characters
in your testing. This lets you determine when you need to make acall to MenuEr ase St at us to clean up screen trash.

NOTE:

The folks at Palm Computing are getting wiser. Unfortunately, not until OS 2.0 did they fix this problem
some of thetime. The earlier 1.0 OS does not even erase the status before putting up another form. If

you're supporting the 1.0 OS, you need to call MenuEr aseSt at us in any menu-handling code that puts up aform or
alert.

Forms that have buttons at the bottom that don't ever change are obviously not affected by this problem. For
these forms, the menu status automatic timed erasing works just fine. It's only the few forms with changing
data at the bottom left that are affected.

Handling Unusable Menu Items

The Menu Manager APIs don't provide a mechanism for adding or deleting menu items dynamically. In
addition, there's no way to visually disable them (by graying them). This, of course, immediately raises the
question of what you should do if there are menus or menu items that can't be used in certain situations.
One possibility isto present an aert to the user explaining why it's not possible to do what was requested.
That's the strategy used by the built-in Expense application when the user triesto delete an item and nothing
is selected (see Figure 7-13).

Figure 7- 13. Deleting an item in Expense when nothing is selected

Select tem

Thisis certainly better than having the menu item appear and disappear as an item is selected and
desel ected-a tactic guaranteed to make users foam at the mouth. Disappearing and reappearing things make

many people doubt their sanity, as they often have absolutely no idea how to make a menu item reappear.
A good time to remove a menu item

There are cases, however, where you do want to remove menu items. For example, you may have amenu
item that will never be present on a user's device. An obvious case of thisis beaming, which is available
only if OS 3.0is present. A well-designed application ought to figure out what OS it is running under and
behave accordingly. It should have the Beam item show on 3.0 devices and disappear on pre-3.0 devices.

In order to implement this nice design, you actually use arather simplistic solution-two menu bars, each
with its own copy of the menus. One of the menus has a Beam item, the other doesn't.

NOTE:

Since applications built with CodeWarrior (Release 4, as of thiswriting) have their menu IDs
automatically assigned, you should create these menus carefully. To make sure that menu items that are in
both menubars remain in the same position, put the Beam menu item at the bottom of the 3.0 version.

Specify one menubar as the form's menubar as part of the resource (let's make it the one with the Beam
item). Y ou may need to change the menubar at runtimeusing Fr nSet Menu, which changes the menubar
ID of aform. Make the change when you open the form with code like this:

i f (sysGet ROWer Maj or (gRonmVer si on) < 3)
Fr nSet Menu(Fr nGet Acti veFornm(), Custoner snobeamvenuBar);

Tools for implementing duplicate menus

If you want to have multiple menus that share the same menu IDs, you need to create your menus textually.
If you use PIIRC, you're doing that already (just make sure duplicate menu items share the same menu ID). If
you use CodeWarrior, you need to create an .r file with the textual menus (duplicate menus should share the
same base ID).

A Procedure for Handling Common Menu Items

We have already noted that you often have more than one form with an Edit menu-especially in forms with
text fields. It might also make sense to have your About menu item present often. In such cases, you should
use some common method to handle these and other standard menu items.

Y ou typically put the About menu in the Options menu. Because the Options menu can and does occur in
more than one form, it makes alot of sense to leave the About menu in every instance. It is less confusing to
the user if it isalways there.

Your first step is to use the same menu | Ds for the shared menu items. Next, you need a function to handle
the common menu items such as Handl eCommonMenul t ens. It should work for the standard Edit
menu items, as well as the About menu item. Example 7-1 shows the code to use.

-Example 7- 1. A Routineto Handle Menu Items Common to More than One Form

static Bool ean Handl eCommonMenul t ens(Word menul D)

{
Fiel dPtr fld;

switch (menul D) {

case EditUndo:

case EditCut:

case Edit Copy:

case EditPaste:

case EditSelectAll:
fld = Get FocusObj ectPtr();
if (1fld)

return fal se;
if (menul D == Edit Undo)
FI dUndo(f1d);
else if (nmenul D == EditCut)
Fl dCut (f1d);
else if (nmenul D == Edi t Copy)
FI dCopy(fld);
else if (menul D == Edi t Paste)
FI dCopy(fld);
else if (nenulD == EditSelectAll)
FI dSet Sel ection (fld, 0, FldGetTextLength (fld));
return true;

case EditKeyboard:
SysKeyboar dDi al og(kbdDef aul t);
return true;

case EditGafitti:
SysGraffiti ReferenceDi al og(referenceDefault);
return true;

case OptionsAbout:
FrmAl ert (About BoxAl ert);
return true;

defaul t:
return fal se;

}
}

Call Handl eCommonMenul t ens from each of your menu-handling routines:

Bool ean voi d MyFor nHandl eMenuEvent (Word menul D)
{
i f (Handl eConmonMenul t ens(menul D)
return true;
el se switch (menul D) {
/] other itenms here

}
}

Adding Menus to the Sample Application B

Now it istime to add the menus to our Sales application. The menubars are added first. Next, we set up our
definitions for our menu items and menubars. Once that isin place, we can create our code to handle
common menu items and the functions we need to handle our forms. Our last step isto make sure the main
event loop in our application correctly calls our menu-handling function.

The Menubars

The application has five menubars, the first of which is shown in Figure 7-14. This menubar is for the Order
form, which contains the menus Record, Edit, and Options.

Figure 7- 14. The Order menubar on a pre-3.0 device

XN Fdit_Oprions |

Delete Item., <D Undo <L
Delete Customer,, Cut .
Customer Information. .E Copy €

Paste P

Select Al 7§

Keyboard K

Grafitti A6

The second menubar is like the first, but has a Beam Customer item at the end of the Record menu (see
Figure 7-15).

-Figure 7- 15. The Order menubar on a 3.0 or later device

RIS M Edit Options |
Delete ltem.. i
Delete Customer..

Customer Information. . 'E
Bearn Customer + B

The third menubar, Di al ogW t hl nput Fi el d, isused for diaogs that have textual input fields (see
Figure 7-16).

Figure 7- 16. Themenusfor dialogs with input fields

Options Options
Undo « U | |About Sales
Cut X
Copy A
Paste P

Select Al /%

Keyboard K
Grafittl 6

The fourth and fifth bars are used separately, depending on whether the application is running on a 3.0 or
earlier device. Asyou can see in Figure 7-17, the difference is whether beaming shows up as a menu item.
We have different menus for different devices so that a pre-3.0 user doesn't get confused about either the
application's or device's capability.

Figure 7- 17. The Customer menusfor 3.0 and pre-3.0 devices

QOptions
MNew Custorner oM |Ne-(‘s-tmr ./NIll‘--t‘S*s-l

Bearn all Customers B

Menu Definitions

Thefirst thing to do is get our menu definitions set up all neat and tidy. Example 7-2 shows the menu item
definitions we've created in a separate text file. Example 7-3 shows the definition of the menubars for the
order itemsin PiIRC format (used with GCC). Example 7-4 shows the definition in PAlmRez format (used
with CodeWarrior).

Example 7- 2. SalesM enus.h, Defining Constants for Menus and M enubars

#def i ne Cust oner sMenuBar 1000
#def i ne Cust onmer sNoBeanmenuBar 1100
#define O der MenuBar 1200
#define O der NoBeam\venuBar 1300
#define Di al ogW t hl nput Fi el dMenuBar 1400
#def i ne Cust oner sCust omer Menu 1001
#define CustonersOptionsMenu 1011
#def i ne Cust oner sNoBeantCust omer Menu 1101
#def i ne Cust oner sNoBeanOpti onsMenu 1111
#define O der Recor dMenu 1201
#define O derEdit Menu 1211

#define O der Opti onsMenu 1221

#def i
#def i
#def i

#def i
#def i

#def i
#def i
#def i

#def i
#def i

#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne

ne
ne

ne
ne
ne

ne
ne

ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne

O der NoBeanRecor dMenu
O der NoBeanEdi t Menu
Or der NoBeantOpt i onsMenu

Di al ogW t hl nput Fi el dEdi t Menu
Di al ogW t hl nput Fi el dOpti onsMenu

Cust oner Base
Cust omrer NewCust oner
Cust onmer BeamAl | Cust oner s

Opti onsBase
Opt i onsAbout Sal es

Recor dBase

Recor dDel etel tem
Recor dDel et eCust oner
Recor dCust oner Det ai | s
Recor dBeantust oner

Edi t Base

Edi t Undo

Edi t Cut

Edi t Copy

Edi t Past e

Edi t Sel ect Al |

/| separator
#defi ne Edit Keyboard
#define EditGafitti

1301
1311
1321

1401
1411

2001
2001
2002

2101
2101

2201
2201
2202
2203
2204

2301
2301
2302
2303
2304
2305

2307
2308

Example 7- 3. Part of Sales.rcp File, Used for Menuswith GCC

#i ncl ude "Sal esMenus. h"

MENU | D O der MenuBar

BEG N
PULLDOWN " Recor d"
BEG N
MENUI TEM "Del ete Item.." | D RecordDel eteltem"D"
MENUI TEM "Del ete Custoner..." | D RecordDel et eCust oner

EN

MENUI TEM " Cust orrer | nformation..."
MENUI TEM " Beam Cust oner" | D Recor dBeantCust oner " B"

D

PULLDOWN " Edi t "

BEG N

MENUI TEM " Undo" | D Edi t Undo " U'
MENUI TEM "Cut" I D EditcCut "X"
MENUI TEM " Copy" | D Edi t Copy "C"
MENUI TEM "Paste" | D EditPaste "P"

EN

| D RecordCust oner Details

MENUI TEM "Sel ect All" 1D EditSelectAl "S"
MENUI TEM "-" AUTO D
MENUI TEM " Keyboar d" | D Edi t Keyboard "K"
MENUI TEM "Grafitti " ID EditGafitti "G

D

PULLDOWN " Opti ons"
BEG N

EN
END

MENUI TEM " About Sal es"

D

MENU | D O der NoBeanivenuBar

BEG N

PULLDOWN " Recor d"
BEG N

EN

MENUI TEM "Del ete Item.."
MENUI TEM " Del ete Customer..."

MENUI TEM " Cust orrer | nformation..."

D

PULLDOWN " Edi t "
BEG N
MENUI TEM " Undo" | D Edi t Undo "U'

I D Opti onsAbout Sal es

I D RecordDel eteltem " D'
| D Recor dDel et eCust oner

| D RecordCustonerDetails

=2

=2

MENUI TEM "Cut " | D EditCut "X

MENUI TEM " Copy" | D Edi t Copy "C'

MENUI TEM " Paste" | D EditPaste "P"

MENUI TEM "Sel ect All" 1D EditSelectAl "S"

MENUI TEM "-" AUTO D

MENUI TEM " Keyboar d" | D Edi t Keyboard "K"

MENUI TEM "Grafitti " ID EditGafitti "G
END

PULLDOWN " Opti ons"
BEG N
MENUI TEM " About Sal es”
END
END

I D Opti onsAbout Sal es

MENU | D Di al ogW t hl nput Fi el dMenuBar

BEG N
PULLDOWN " Edi t "
BEG N
MENUI TEM " Undo" | D Edit Undo "U'
MENUI TEM "Cut " | D EditCut "X
MENUI TEM " Copy" | D Edi t Copy "C'
MENUI TEM " Paste" | D EditPaste "P"
MENUI TEM "Sel ect All" 1D EditSelectAl "S"
MENUI TEM "-" AUTO D
MENUI TEM " Keyboar d" | D Edi t Keyboard "K"
MENUI TEM "Grafitti " ID EditGafitti "G
END

PULLDOWN " Opti ons"
BEG N
MENUI TEM " About Sal es”
END
END

MENU | D Cust orrer sMenuBar

BEG N
PULLDOWN " Cust orer "
BEG N
MENUI TEM " New Cust orer "
MENUI TEM " Beam al | Cust

END

PULLDOWN " Opti ons"
BEG N
MENUI TEM " About Sal es”
END
END

I D Opti onsAbout Sal es

| D Cust oner NewCust orrer " N'
omers" | D Custoner BeanAl | Cust oner s

I D Opti onsAbout Sal es

MENU | D Cust onmer sNoBeamvenuBar

BEG N
PULLDOWN " Cust orer "
BEG N
MENUI TEM " New Cust orer "
END

PULLDOWN " Opti ons"
BEG N
MENUI TEM " About Sal es"

END
END

| D Cust oner NewCust orrer " N'

I D Opti onsAbout Sal es

Example 7- 4. . Sales.r, Used for Menus with CodeWarrior

#i ncl ude "MenuDefs.r"

#i ncl ude "Sal esMenus. h"

resource ' MENU (Order RecordMenu) {

Recor dBase,

"Record",

{
"Delete Item..",
"Del ete Customer...",

"D
NONE;

" g

"Custoner Information...", "E";

"Beam Cust omer ", "B";
}
}s
resource ' MENU (OrderEditMenu) {
Edi t Base,
"Edit",
{
"Undo", "U';
"Cut", "X
"Copy", "C';
"Paste", "P";
"Select A", "S";

SEPARATOR, NONE;
"Keyboard", "K';

"Gaffiti", "G';
}
b
resource ' MENU (Order OptionsMenu) {
Opt i onsBase,
"Options",
{

"About Sal es", NONE;
}
}s

resource ' MENU (Order NoBeanRecor dMenu) {
Recor dBase,

"Record",
{
"Delete Item..", "D';
"Del ete Customer...", NONE;
"Customer Information...", "E';
}
}s
resource ' MENU (O der NoBeantdit Menu) {
Edi t Base,
"Edit",
{
"Undo", "U';
"Cut", "X
"Copy", "C';
"Paste", "P";
"Select AIl", "S';

SEPARATOR, NONE;
"Keyboard", "K';

"Graffiti", "G';
}
}s
resource ' MENU (O der NoBeanDpti onsMenu) {
Opt i onsBase,
"Options",
{

"About Sal es", NONE;
}
}s

resource ' MBAR (OrderMenuBar) {
{Order Recor dMenu, Order Edi t Menu, Order Opti onsMenu}
}s

resource ' MBAR (O der NoBeamvenuBar) {
{Or der NoBeanmRecor dMenu, Or der NoBeanEdi t Menu, Or der NoBeanmOpt i onsMenu}

}s
resource ' MENU (Di al ogW t hl nput Fi el dEdi t Menu) {
Edi t Base,
"Edit",
{
"Undo", "U';

"Cut", "X

"Copy", "C';
"Paste", "P";
"Select AIl", "S';
SEPARATOR, NONE;
"Keyboard", "K';
"Graffiti", "G';

}s

resource ' MENU (Di al ogW t hl nput Fi el dOpti onsMenu) {
Opt i onsBase,
"Options",
{
"About Sal es", NONE;
}
}s

resource ' MBAR (Di al ogWt hl nput Fi el dMenuBar) {
{Di al ogW t hl nput Fi el dEdi t Menu, Di al ogW t hl nput Fi el dOpti onsMenu}
}s

resource ' MENU (CustomersCust oner Menu) {
Cust oner Base,

"Cust orer ",
{
"New Custoner...", "N';
"Beam al | Custoners", "B";
}

}s

resource ' MENU (CustonersOptionsMenu) {
Opt i onsBase,
"Options",
{
"About Sal es", NONE;
}
}s

resource ' MENU (Custoner sNoBeanCust onmer Menu) {
Cust oner Base,
"Cust orer ",

{
"New Custoner...", "N';

}
}s

resource ' MENU (Custoner sNoBeanOpti onsMenu) {
Opt i onsBase,
"Options",
{
"About Sal es", NONE;
}
}s

resource ' MBAR (CustonersMenuBar) {
{ Cust omer sCust omrer Menu, Cust omer sOpt i onsMenu}
}s

resource ' MBAR (CustonersNoBeamvenuBar) {

{ Cust orer sNoBeantCust omer Menu, Cust omer sNoBeanOpt i onsMenu}
b

Handling Common Menus

The Sales application hasa Handl eConmonMenul t ens, as shown earlier in Example 7-1. The
| t emHandl eEvent routine calls Handl eCommonMenul t ens in case of amenu event:

static Bool ean |ItenHandl eEvent (Event Ptr event)

{

Bool ean handl ed = fal se;

#ifdef _ GNUC__

CALLBACK_PROLOGUE
#endi f
switch (event->eType) {
/'l code del eted that handl es other kinds of events

case nmenuEvent:
handl ed = Handl eCommonMenul t ens(event - >dat a. nenu. i tenml D) ;
}
#ifdef __ GNUC__
CALLBACK_EPI LOGUE
#endi f
return handl ed;

}
O der Handl eMenuEvent isresponsible for the menu items for the Order form:

static Bool ean O derHandl eMenuEvent (Word nenul D)
{

Bool ean handl ed = fal se;

i f (Handl eConmonMenul t ens(menul D))
handl ed = true;
el se
switch (menul D) {
case RecordDel eteltem
if (!gCell Sel ected)
FrmAl ert (Nol t enBSel ect edAl ert);
el se
/1 code deleted that deletes an item
handl ed = true;
br eak;

case RecordCustonerDetails:
/1 code del eted that opens custoner details dialog
handl ed = true;
br eak;

case Recor dBeanCust oner:
BeanCust oner (
Get Recor dNunber For Cust omer (gCur rent Or der - >custoner| D)) ;
handl ed = true;
br eak;

case RecordDel et eCust oner:
/1 code del eted that del etes a customer
br eak;

}

return handl ed;

Itiscadledby O der Handl eEvent if amenu event occurs:

static Bool ean OrderHandl eEvent (Event Ptr event)

{

Bool ean handl ed = fal se;

#ifdef _ GNUC__
CALLBACK_PROLOGUE
#endi f
switch (event->eType)
{

/'l code del eted that handl es other kinds of events

case menuEvent:
handl ed = O der Handl eMenuEvent (event - >dat a. mnenu. i tem D) ;
}
#ifdef _ GNUC__
CALLBACK_EPI LOGUE
#endi f
return handl ed;

}

The New Customer/Edit Customer dialog has an event handler that has to handle the common menu items:

static Bool ean CustonerHandl eEvent (EventPtr event)
{
#ifdef __GNUC __

CALLBACK _PROLOGUE

#endi f
/1 code renoved that handles other types of events
} else if (event->eType == nenuEvent) {

i f (Handl eConmonMenul t ens(event - >dat a. menu. i tem D))
return true;

}
#ifdef __GNUC __
CALLBACK_EPI LOGUE
#endi f
return fal se;

}
Checking the OS Version Number

The Customers form has two different menubars, one with a Beam item. Here's where oneis changed if
we're running on a pre-3.0 system:

static void CustonersFornOpen(void)

{
/1 code renmoved that initializes the customer |ist
i f (sysGet ROWer Maj or (gRonmVer si on) < 3)
Fr nSet Menu(Fr nGet Acti veForn(), Custoner sNoBeamvenuBar) ;
}
The Customers Form

Here's the menu-handling code for the Customers form:

static Bool ean CustonersHandl eMenuEvent (Word nenul D)

{
Bool ean handl ed = fal se;
i f (Handl eConmonMenul t ens(menul D))
return true;
el se switch (menul D) {
case Cust oner NewCust omer :
/1 code del eted that creates a new customner
handl ed = true;
br eak;
case Custoner BeanAl | Cust oner s:
/] code del eted that beams all custoners
handl ed = true;
br eak;
}
return handl ed;
}

static Bool ean CustonersHandl eEvent (EventPtr event)

{

Bool ean handl ed = fal se;

#i fdef _ GNUC__
CALLBACK_PROLOGUE
#endi f
switch (event->eType)
{
case menuEvent:
handl ed = Cust onmer sHandl eMenuEvent (event - >data. menu. item D);
br eak;

/1 code del eted that handl es other events
}
#ifdef __GNUC __
CALLBACK_EPI LOGUE

#endi f
return handl ed;

}

Thisis all the code and definitions necessary to make our menus work. Y ou saw that our strategy for menus
included a design preference for making menu items completely disappear if the application is present on a
device that doesn't use the feature (asin beaming). There were also afew problems you encountered when
you create duplicate types of menus and when handling the display of the Graffiti shortcut statusin the
bottom left corner of the unit.

At this point, the Sales application is amost complete-you have all the essential Ul elements and code in
place. What is|eft are just afew bits, though they are important bits. Y ou will add support for these features
the next chapter for tables, find, and beaming.

* Thisisalmost certain to change in future releases of the SDK. Check your version to see if Palm Computing has changed
Abt ShowAbout to support third-party About Boxes.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

T T L LR

Palm Programming: The Developer’s Guide

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

PRt

In this chapter:

Tables
Tablesin the Sample Application
Find

Beaming
Barcodes

8. Extras

This chapter isagrab bag of items that have no particular programmatic relationship to each other. We put
them together here because they need to be discussed, and they had to go somewhere.

Tables .&

In this section, we do three things. First, wetalk in general about tables, the kinds of data they contain, what
they look like, what features are automatically supported, and what you need to add yourself. Second, we
create a small sample application that shows you how to implement al the available table data types. Third,
we show you the implementation of atablein our Sales order application. We also discuss the problems that
we encountered in implementing tables and offer you avariety of tips.

An Overview of Tables

Tables are useful forms if you need to display and edit multiple columns of data. (Usealist to display a
single column; see "List Objects" in Chapter 5, Forms and Form Objects, on page 91). Figure 8-1 contains
three examples of tables from the built-in applications. As you can see, tables can contain a number of
different types of data-everything from text to dates to numbers.

Figure 8- 1. Sample tablesfrom the built-in applications; thefirst item in the To Do list has a noteicon associated with it

B 1 Sendinyour registrationeard @ B00 67 Fox $_..550
B 1 Hove fun B 6718 Bus .50
O 2 PFick up mpose . . . L LU " " " . " " 6718 Braokfost k] L LED
O2 Gotothestore ! 100 Dewelopment 618 Hotel $ FEon
O 3 Gat tidats B s B 18 Car Rental 42000
O4Washear _ o 100 Lunch 618 Incidentals : 50
O Gat Jessm | Timarkatiea . &S18 Tips § e
OS5 gotgthebomk .. ZHY st 618 Gas $.00

L 10/% Entertainment % 2230

REMIBM, e
E:i

Srolling in tables

While the List Manager automatically supports scrolling, the Table Manager does not. Y ou have to add that
support if you need it.

Adjusting width and height

The height and width of table columns and rows are independently adjustable (in fact, editing atext field
automatically makes arow change size).

Data typesin tables
The Palm OS Table Manager offers greater built-in support for displaying data than for editing it. The
following sections list the data types and whether the Table Manager supports them for display purposes
only or for editing as well.
Display-only data types
The following are display-only data types:
o Numbers
o Dates
o Labels (non-editable text)
Edit and display data types
The following are edit and display datatypes:
e Text (including an optional note icon; see Figure 8-1)
o Pop-up triggers
o Checkboxes
Unlike other controls, tables require some programming in order to work. The table stores data for each cell
in two parts-an integer and a pointer. The datais used differently, depending on the type of the column.

Because of this, you must specify a datatype for each column. Here are the possible specifications you can
make.

NOTE:

The source code for the 1.0 OS Table Manager can be found at http:// www.pal mpilot.convdevzone. Be aware that
the Table Manager has changed since the 1.0 OS. It is till useful, however, asit gives you agood idea of how the manager
works.

Display-only data types

These are the actual names of data types supported by the Table Manager. These display-only types cannot
be edited.

dateTableltem

This displays a date (as month/day). The data for a cell should be an integer that can be cast to a

Dat eType. If thevalueis-1, ahyphen (-) is displayed; otherwise, the actual date is shown. If the displayed
dateis earlier than the handheld's current date, an exclamation point (!) is appended to it. Tapping on a date
highlights the cell.

label Tableltem

This displays the text stored in the pointer portion of the cell with an appended colon (). Tapping on a label

highlights the cell.
numericTableltem

This displays the number stored in the integer portion of the cell. Tapping on a numeric cell highlights the
cell.

Editable data types

These are the types of data that the user can change or edit as necessary:

checkboxTableltem

This displays a checkbox with no associated label. The data for a particular cell should be an integer with a
value of either 0 or 1. Clicking on the checkbox toggles the value. Tapping on a checkbox doesn't highlight
the row.

popupTrigger Tableltem

This displays an item from a pop-up list (with an arrow before it). Thelist pointer is stored in the pointer
data of the cell; theitem from thelist is stored in the integer data of the cell. Tapping on a pop-up trigger
displays the pop-up, alowing the user to change the value in the integer.

textTableltem

This displays atext cell that can be edited. The column that contains these cells needs a load routine that
provides ahandle. This handle has an offset and length that are used when editing the text cell. An optional
saveroutineis called after editing.

textWithNoteTableltem

Thisissimilartot ext Tabl el t em but it also displays a note icon at the righthand side of the cell.
Tapping on the note icon highlights the cell.

narrowTextTableltem

Thisisliket ext Tabl el t em but it reserves space at the righthand side of the cell. The number of pixel
spaces reserved is stored in the integer data of the cell. Thisis often used for text fields that have O or more
icons and need to reserve space for them.

customTableltem

Thisisused for acustom cell. A callback routine needs to be installed for the column; it will be called to
draw the contents of each cell at display time. The callback routine can use the integer and pointer datain
the cell for whatever it likes. Tapping on a custom table cell highlights the cell.

Initializing tables

There are some difficulties with initializing tables. When you initialize atable, you should first set the types

of each column. Y ou can further mark each row and column as usable or unusable. By dynamically
switching a column (or row) from unusable to usable (or usable to unusable), you can make it appear (or

disappear).
NOTE:

Although Table.h definesat i meTabl el t emtype, thistype doesn't actually work.

If you make changes to the datain a cell, you need to mark that row invalid so that it will be redisplayed
when the table is redrawn. For some mysterious reason, by default rows are usable, but by default columns
are not. If you don't explicitly mark your columns as usable, they won't display.

Y ou can set atwo-byte ID and atwo-byte data value, which are associated with each row. It's common to set
the row ID to the record number of arecord in a database.

Smple Table Sample

The following sections describe a table sample in a simple application that shows you how to use all the
table data types available in the Table Manager. Figure 8-2 shows the running application. Y ou can see that
it contains one table with nine columns and eight rows. Figure 8-3 contains the resource descriptions as they
are created in Constructor. Note that the columns go from the easiest data types to code to the hardest.

-Figure 8- 2. Thetable sample

Tnhlr\nrnplr
[Imli] - w1 ™
D20z 8/29___w3___ -
D3 B 8729 - 4 -
A0 8529 w i -
DSBS 629wl I
D‘DG T - 2 I
DT ET 8729 - —

Figure 8- 3. Thetableresourcein Constructor

E Layaul Properties E Layoul Appesrance
= Table
Object Mentifier Table
Table= IR 1091 I'l."lnmn Fad
Left Origin o = T T T T -
Tap Origin 21 O
widih 160
Height 1210

Edrtable
Rows
- Column Widihs

0w

Column “w'idth 8
Cohumn wWadth 9

Colmn Width 1 2%
Column Width2 & -
Colimn Width 3 12z Tablesvarus:
Column Width 4 & @ @
Colmn Width S 25
Calumn Width & 5
Column Width T 19 @ e F 9
25
15

| @0=2e®

Initialization of the simple table sample

Initializing this table requiresinitializing the style and datafor each cell in the table. Example 8-1 shows you
the entire initialization method. First, ook at the entire block of code; then we discussit, bit by bit.

-Example 8- 1. Initialization of Table

void MainView nit(void)
{

FornPtr frm

Tabl ePtr t abl eP;

Ul nt nunRows;

Ul nt i

static char * |abels[] = {"0O", "1", "2", "3", "4", "5", "6", "7"},

Dat eType dat es[10] ;

ListPtr list;

/1 we"ll have a mssing date, and then some dates before and

// after the current date

* ((IntPtr) &dates[0]) = noTine;

for (i = 1; i < sizeof(dates)/sizeof(*dates); i++) {
dates[i].year = 1994 + i - 1904; // offset from 1904
dates[i].month = 8;
dates[i].day = 29;

}

/l Get a pointer to the main form

frm= FrmGet ActiveForm();

tabl eP = FrmGet Ooj ectPtr(frm

FrnGet Obj ect | ndex(frm MenoPadMai nTabl eTabl e));
list = FrnGet ObjectPtr(frm

FrnGet Obj ect I ndex (frm MenoPadMai nLi stList));

nunRows = Thl Get Nunber Of Rows (t abl eP);
for (i =0; i < nunRows; i++) {

Tbl SetItenStyl e(tableP, i, 0, textWthNoteTableltem;
Tbl SetItenStyl e(tableP, i, 1, numericTableltem;

Tbl Setltem nt(tableP, i, 1, i);

Tbl Set I tenStyl e(tableP, i, 2, checkboxTableltem;

Tbl Setltem nt(tableP, i, 2, i %2);

Tbl SetItenStyl e(tableP, i, 3, |abel Tableltem;

Tbl SetltenPtr(tableP, i, 3, labels[i]);

Tbl SetItenStyl e(tableP, i, 4, dateTableltem;

Tbl Setltem nt(tableP, i, 4, DateTolnt(dates[i]));

Tbl SetItenStyl e(tableP, i, 5, textTableltem;

Tbl Setltem nt(tableP, i, 5, i * 2);

Tbl SetItenStyl e(tableP, i, 6, popupTriggerTableltem;
Tbl Setltem nt(tableP, i, 6, i %5);

Tbl SetltenPtr(tableP, i, 6, list);

Tbl SetItenStyl e(tableP, i, 7, narrowlextTableltem;
Tbl Setltem nt(tableP, i, 7, i * 2);

Tbl SetItenStyl e(tableP, i, 8, custoniableltem;

Tbl Setltem nt(tableP, i, 8, i %4);

}
Tbl Set RowUsabl e(tabl eP, 1, false); // just to see what happens

for (i = 0; i < kNumCol umms; i ++)
Tbl Set Col umUsabl e(tabl eP, i, true);

Tbl Set LoadDat aPr ocedur e(t abl eP,
Tbl Set LoadDat aPr ocedur e(t abl eP,
Tbl Set SaveDat aPr ocedur e(t abl eP,
Tbl Set LoadDat aPr ocedur e(t abl eP,

Cust onlLoadl ten);
Cust onlLoadl ten);
Cust onSavel ten) ;
Cust onlLoadl ten);

Nooo

Tbl Set Cust onDr awPr ocedur e(t abl eP, 8, CustonDrawltem);

// Draw the form
Fr nDr awFor m(frm ;

Let'slook at the columns not in column order, but in terms of complexity.
Column 1-handling numbers

The code starts with a numeric column that is quite an easy data type to handle. We use the row number as
the number to display. Here's the code that executes for each row. Asyou can see, thereisnot alot to it:

Tbl SetltenStyl e(tableP, i, 1, numericTableltem;
Tbl Setltem nt(tableP, i, 1, i);

Column 2-a checkbox

This second column displays a simple checkbox. We set the initial value of the checkbox to be on for even
row numbers and off for odd row numbers:

Thl SetltenStyl e(tableP, i, 2, checkboxTableltemn);
Thl Setltem nt(tableP, i, 2, i %2);
Column 3-a label

This column displays alabel that contains a piece of noneditable text. We set the text to successive values
from atext array. The table manager appends a colon to the label:

static char * | abel s[] = {"O", "1, "2", "3", "4",6 "5", "6", "7"};
/1 for each row

Tbl SetItenStyl e(tableP, i, 3, |abel Tableltem;

Tbl SetltenPtr(tableP, i, 3, labels[i]);

Column 4-a date

In the date column, we create an array of dates that are used to initialize each cell. Note that the first dateis
missing, which iswhy the"-" is displayed instead of adate. The remaining dates range over successive
years, some dates are before the current time, and others are after it:

Dat eType dat es[10] ;
ListPtr list;
/1 we"ll have a missing date, and then sone before and after

/] the current date
* ((IntPtr) &dates[0]) = noTi ne;

for (i =1, i < sizeof(dates)/sizeof(*dates); i++) {
dates[i].year = 1994 + i - 1904; // offset from 1904
dates[i].nonth = 8;

dates[i].day = 29;

/1 for each row

Tbhl SetltenStyl e(tableP, i, 4, dateTableltem;
Thl Setltem nt(tableP, i, 4, DateTolnt(dates[i]));

Column 6-a pop-up trigger

Aswith any pop-up trigger, we've got to create alist in our resource. We've created one that has the values
"1, 2", "3, "4", and "5". For each cell in the column, we set the pointer value to the list itself, then set the
data value as the item number in the list:

ListPtr list;
list = FrnGet ObjectPtr(frm

FrnGet Obj ect | ndex(frm MenoPadMai nLi stList));
/1 for each row

Tbl SetItenStyl e(tableP, i, 6, popupTriggerTableltem;
Tbl Setltem nt(tableP, i, 6, i %5);
Tbl SetltenPtr(tableP, i, 6, list);

Columns 0, 5, and 7-handling text

Now let'slook at the text columns. Notice that we use all three of the available text column types:

Thl SetltenStyl e(tableP, i, 0, textWthNoteTablelten);
Thl SetltenStyle(tableP, i, 5, textTableltem;
Thl SetltenStyl e(tableP, i, 7, narrowlextTableltem;

With the narrow text table item, we set the integer data as a pixel reserve on the righthand side. We give
each row a different pixel reserve so that we can see the effect:

Thl Setltem nt(tableP, i, 7, i * 2);

Each of the text items requires a custom load procedure to provide the needed handle for the cell. Actually,
we have the option of providing only a portion of the handle as well:

Tbl Set LoadDat aPr ocedur e(t abl eP, 0, Customnloadltem;

Tbl Set LoadDat aPr ocedur e(t abl eP, 5, Custonloadltem;
Tbl Set LoadDat aPr ocedur e(t abl eP, 7, Custonloadltem;

We customize the saving of the second text column:

Tbl Set SaveDat aPr ocedur e(t abl eP, 5, CustonSaveltem;

WEe'l look at the custom load and save routines that we just called after we discuss the eighth column.
Column 8-handling custom content

Thefina column is acustom column that displays aline at one of four angles. The angle is determined by
the integer datain the cell. We initialize the integer datato a value between 0 and 3, depending on the row:

Tbl SetltenStyl e(tableP, i, 8, custoniablelten;
Thl Setltem nt(tableP, i, 8, i %4);

We set a custom draw procedure for that column:

Tbl Set Cust onDr awPr ocedur e(t abl eP, 8, CustonDraw ten);
Displaying the columns

In order to make the columns display, we've got to mark them usable:

for (i = 0; i < kNumCol umms; i ++)
Tbl Set Col umUsabl e(tabl eP, i, true);

Just as an exercise, we mark row 1 as unusable (now it won't appear in the table):

Tbl Set RowUsabl e(t abl eP, 1, false); /'l just to see what happens
Custom load routines
The custom load routines that we used with the text columns need to return three things:

e A handle
e An offset withinit
e A length within it

The Table Manager calls on the Field Manager to display and edit the range within the handle. It's our job to
alocate one (null-terminated) handle for every text cell:

#define KkNuniText Col utms 3
Handl e gHandl es[kNunirext Col ums] [kNunmRows] ;
static Bool ean StartApplication(void)
{
int i;
int I

#ifdef __GNUC __
CALLBACK _PROLOGUE
#endi f
for (i = 0; i < kNunText Col ums; i ++)
for (j =0; j < kNunRows; j++) {
CharPtr s;
gHandl es[i][j] = MenHandl eNew(1);

s = MenHandl eLock(gHandl es[i][j]);
*s = '\0';
MenHandl eUnl ock(gHandl es[i][j]);
}
#ifdef _ GNUC__
CALLBACK_EPI LOGUE
#endi f
return fal se;

}
A utility routine converts a table column number to an appropriate index in our handles array:

static int Wi chText Col um(int col um)
{
if (colum == 0)
return O;
else if (colum == 5)
return 1;
else //colum == 7
return 2;

Once we have the handles for each text cell, we can set the offset and length within each one. We set our
offset to 0 and the size to the appropriate length of data:

static Err Custonloadltem(VoidPtr table, Wrd row, Wrd col um,
Bool ean editabl e, VoidHand * dataH, WordPtr datadf fset,
WordPtr dataSize, FieldPtr fld)

{

#ifdef _ GNUC__
CALLBACK_PROLOGUE

#endi f
*dat aH = gHandl es[Whi chText Col um(col um)][row ;
*dataCf f set = 0;
*dat aSi ze = MenHandl eSi ze(*dat aH) ;

#ifdef __GNUC__
CALLBACK_EPI LOGUE

#endi f

return O;

}

Custom save routine

This save routine customizes the saving of the first cell in the second text column. If the text has been
edited, the text converts from uppercase to lowercase. Note that the save routine returnstrue in this case to
show that the table needs to be redrawn:

static Bool ean CustonfBavelten(VoidPtr table, Wrd row, Wrd col um)
{

int textColum;

Bool ean result = fal se;

#ifdef __ GNUC__
CALLBACK_PROLOGUE
#endi f
t ext Col um = Wi chText Col um(col umm) ;
/1 the handle that we provided in Custonlioadltem has been nodified
/1 We could edit that (if we wanted).
/1 1If it's been edited, let's nmake the first row
/1 convert to | ower-case and redraw
if (row==0 & textColum == 1) {
FieldPtr field = Thl GetCurrentFiel d(table);
if (field & FldDirty(field)) {
Voi dHand h = gHandl es[t ext Col um][row];
Char Ptr S;
i nt i

s = MenHandl eLock(h);
for (i =0; s[i] !'="\0"; i++)
if (s[i] >="A && s[i] <='2Z")

s[i] +='"a" - "A';
MenHandl eUnl ock(h) ;
Tbl Mar kRowl nval i d(t abl e, row);
result = true;
}
}
#ifdef _ GNUC__
CALLBACK_EPI LOGUE
#endi f
return result; // should the table be redrawn

}

Custom draw routine

We need a drawing routine that creates our rotating line:

/] draws either \, |, /, or -
static void CustonDrawitem(VoidPtr table, Wrd row, Word col um,
Rect angl ePtr bounds)

{
Unt fronmx, fronmy, tox, toy;

#i fdef _ GNUC__
CALLBACK_PROLOGUE
#endi f
switch (Thl Getltem nt(table, row, colum)) {
case O:
fromx = bounds->topLeft.x;
fromy = bounds->topLeft.y;
tox = fronx + bounds->extent. Xx;
toy = fronmy + bounds->extent.y;
br eak;
case 1:
fromx = bounds->topLeft.x + bounds->extent.x / 2;
fromy = bounds->topLeft.y;
tox = fronx;
toy = fronmy + bounds->extent.y;
br eak;
case 2:
fromx = bounds->topLeft.x + bounds->extent. x;
fromy = bounds->topLeft.y;
tox = bounds->topLeft. x;
toy = fronmy + bounds->extent.y;
br eak;
case 3:
fromx = bounds->topLeft.x;
fromy = bounds->topLeft.y + bounds->extent.y / 2;
tox = fronx + bounds->extent. Xx;
toy = frony;
br eak;
defaul t:
fromk = tox = bounds->topLeft.x;
fromy = toy bounds- >t opLeft.y;
br eak;

}

W nDrawLi ne(fromx, fromy, tox, toy);
#ifdef __GNUC __

CALLBACK_EPI LOGUE
#endi f
}

Handling a table event

If wetap on acell in the custom column, we want the angle of the line to change. We do that by changing
the integer value. Thet bl Sel ect Event is posted to the event queue when a custom cell is successfully
tapped (that is, the user taps on and releases the same cell).

NOTE:

While you might assume that thet bl Sel ect Event iswhere to change the value and redraw, thisisn't
the case. The Table Manager highlights the selected cell, and we overwrite the highlighting when we
redraw. If we switch to anew cell, the Table Manager triesto unhighlight by inverting. Asthese are
certainly not the results we want, we need to handle the call in another place.

WEe're going to handle theredraw int bl Ent er Event , looking to see whether the tapped cell isin our
column:

static Bool ean Mai nVi ewHandl eEvent (Event Ptr event)
{

Bool ean handl ed = fal se;

#ifdef _ GNUC__
CALLBACK_PROLOGUE
#endi f
switch (event->eType)
{
/1 code del eted

case tbl Sel ect Event:
/1 handl e successful tap on a cell
/1 for a checkbox or popup, tblExitEvent will be
/1 called instead of tbl Sel ect Event
/1 if the user cancels the control
br eak;

case tbl EnterEvent:
{
Unt row = event->data.tbl Enter.row,
U nt colum = event->data.tbl Enter.col um;

if (colum == 8) {
Tabl ePtr table = event->data.tbl Enter.pTable;
int ol dValue = Tbl Getltem nt(table, row, colum);

Tbl Setltem nt(table, row, colum, (oldValue + 1) %4);
Tbl Mar kRowl nval i d(tabl e, row);
Tbl Redr awTabl e(t abl e) ;
handl ed = true;
}
}
br eak;
}
#ifdef __ GNUC__
CALLBACK_EPI LOGUE
#endi f
return handl ed;

}

Thisis al that is worth mentioning in the ssmple example of atable. It should be enough to guide you in the
implementation of these data typesin your own tables.

Tables in the Sample Application 2

In our sample application, we use atable in the Order form. There are three columns: the product ID, the
product, and the quantity. Note that we don't use the numeric cell type for either the product ID or quantity,
because we need editing as well as display.

We don't use the text cell type for the product ID or quantity, either. These are numbers that we want
displayed as right-justified-the text cell type doesn't provide for right-justified text. Therefore, we don't use

table's built-in types. We use the custom cell type to create our own data type, an editable numeric value,
instead.

Tables with Editable Numeric Values

If we ignore the Table Manager APIs and create our own data type, we have the advantage of having a
preexisting model on which we can rely-the built-in applications for which source code is available use this
approach. The mgjor disadvantage to this approach is that we won't be able to rely on the Table Manager for
help with all the standard little details (such as key events). For our application, all the Table Manager
providesis some iterating through cells for drawing and indicating which cell has been tapped. Thus, we will
need to write additional code for the following:

Key events

Selecting and deselecting an item in an Order form (arow in the table)
Tapping on aproduct 1D

Tapping on an item quantity

Initialization

Here's the code for the one-time initialization done when we load the Order form:

static void InitializeltensList(void)

{
Tabl ePtr table = Get Obj ect FromActi veForm(Order|tensTabl e);
Wor d rowsl nTabl e;
Wor d row,

Err NonFat al Di spl ayl f (! gCurrent Order, "nil gCurrentOrder");

Tbl Set Cust onDr awPr ocedur e(t abl e, kProduct NameCol um,

O der Dr awPr oduct Nane) ;
Tbl Set Cust onDr awPr ocedur e(t abl e, kQuantityCol utm, O der DrawNunber);
Tbl Set Cust onDr awPr ocedur e(t abl e, kProduct | DCol utm, O der Dr awNunber) ;

rowsl nTabl e = Thl Get Nunber Of Rows(t abl e) ;

for (row = 0; row < rowslnTabl e; rowt+) {
Tbl Set I tenStyl e(tabl e, row, kProductl| DCol um, custonifableltem;
Tbl Set I tenStyl e(tabl e, row, kProductNameCol utm, custonilrabl eltem);
Tbl SetItenStyl e(table, row, kQuantityColum, custoniableltem;

}
Tbl Set Col umUsabl e(t abl e, kProduct | DCol urm, true);

Tbl Set Col umUsabl e(t abl e, kProduct NameCol urm, true);
Tbl Set Col umUsabl e(t abl e, kQuantityColum, true);

LoadTabl e();

1b| Sel ect Event
Refreshing the form

Since the contents of the rows change (as scrolling takes place or as items are added or deleted), we need a
routine to update the contents of each row. LoadTabl e updates the scrollbars, sets whether each row is
visible or not visible, and setsthe global gTopVi si bl el t em

static void LoadTabl e(voi d)
{
Tabl ePtr table = Get Obj ect FromActi veForn{OrderltensTabl e);
Word rowslnTabl e = Tbl Get Nunber Of Rows(t abl e) ;
Wrd row;
SWord | ast Possi bl eTopltem = ((Word) gCurrent Order->numtens) -
rowsl nTabl e;

if (lastPossibleTopltem < 0)
| ast Possi bl eTopl tem = 0;

/1 1f we have a currently selected item mmke sure that it is visible

if (gCell Sel ected)
if (gCurrentSel ectedltem ndex < gTopVisibleltem]|
gCurrent Sel ectedl t em ndex >= gTopVisi bl eltem + rowsl nTabl e)
gTopVi si bl el tem = gCurrent Sel ect edl t em ndex;

/1 scroll up as necessary to display an entire page of info
gTopVisibleltem = m n(gTopVi si bl eltem |astPossi bl eToplten);

for (row = 0; row < rowslnTabl e; rowt+) {
if (row + gTopVisibleltem< gCurrentOrder->num tens)
OrderlnitTabl eRom(table, row, row + gTopVisiblelten);
el se
Tbl Set RowUsabl e(tabl e, row, false);

}
Scl Set Scr ol | Bar (Get Obj ect FromAct i veFor m(Or der Scr ol | bar Scrol | Bar),

gTopVisibleltem 0, |astPossibleTopltem rowslnTable - 1);

Displaying the quantity and product data

Or der | ni t Tabl eRow actually makes the Table Manager callsto (1) mark thisrow usable, (2) set the
row ID to the item number (so we can go from table row to an item), and (3) mark the row asinvalid so that
it will be redrawn:

static void OderlnitTabl eRowm Tabl ePtr table, Wrd row, Word iten\um
{

/1 Make the row usabl e.
Tbl Set RowUsabl e(tabl e, row, true);

/] Store the itemnunber as the rowid.
Tbl Set Rowl D(t abl e, row, itenNum);

/1 meke sure the row will be redrawn
Tbl Mar kRowl nval i d(t abl e, row);
}

Instead of creating one field for each numeric cell, we create afield when it's time to draw the cell or when
it'stime to edit a numeric cell.

Using this programming strategy is abig win for memory use, which, you will remember, is quite tight on
the handheld. Because we are creating afield for only one cell at atime, we need to allocate memory for
only that onefield. If we created all the fields all at once, we would have to reserve a great deal of precious
memory, as well.

The custom draw routine for the quantity and product ID is Or der Dr awNunber :

static void OrderDrawNunber(Voi dPtr table, Wrd row, Wrd col um,
Rect angl ePtr bounds)
{
FieldPtr field;
#ifdef __GNUC __
CALLBACK _PROLOGUE
#endi f
field = OrderlnitNunberField(table, row, colum, bounds, true);

FI dDr awFi el d(fi el d);
Fl dFreeMenory(fiel d);

Or der Dei ni t Nunber Fi el d(table, field);
#ifdef __GNUC __

CALLBACK_EPI LOGUE
#endi f
}

Dynamically adjusting number fields

We want to dynamically adjust the number fields as an optimization of memory usage, as well.
Unfortunately, there is no documented way prior to 3.0 to dynamically set aspects of afield (bounds, etc.).

Therefore, like the built-in applications, we need aroutine that fills in the fields of the structure by hand. On
a 3.0 (or later) OS, thereisadocumented FI dNewFi el d routine to create anew field in the form
(although there is still no way to modify an existing field).

NOTE:

The code that callsFl dNewFi el d and Fr nRenoveObj ect (in Or der Del ni t Nunber Fi el d) can
cause aruntime error (at least we found one in our Gremlins testing). Deadlines happen to everyone, and
we had to go to press before finding the cause of this error. Check the code on the CD, asit might reflect a
solution (the CD has alater deadline!).

NOTE:
Rather than not show you the code at all, we've defined a constant, qUseDynam cUl . If it'sfalse, the

codeisn't actually used. In the event that we don't yet have a solution, we would be glad to hear from you
if you find the answer (nell @pobox.com, julie@pobox.com).

We've provided code that uses FI dNewFi el d:

#define qUseDynam cUl 0
#define kDynamicFieldlID 9999 // a field ID not present in the form

/1 WARNI NG, the form and any controls, table, etc. on the form may change
/1 locations in menory after this call; don't keep pointers to themwhile
/1 calling this routine.
static FieldPtr OrderlnitNunberField(TablePtr table, Word row,

Word col um, Rectangl ePtr bounds, Bool ean tenporary)
{

Voi dHand textH;

CharPtr textP;

char buffer[10];

ULong nunber ;

Ul nt i temNunber = Tbl Get Row D(tabl e, row);

FieldPtr fld;

if (!qUseDynam cU || sysGet ROWer Maj or (gRonVersion) < 3) {

if (tenporary)
fld = &TenpFi el dType;
el se
gCurrentFieldlnTable = fld = Tbl Get Current Fi el d(t abl e);

MenSet (f1d, sizeof (FieldType), 0);

Rct CopyRect angl e(bounds, &fld->rect);

fld->attr.usable = true;
fld->attr.visible = !tenporary;
fld->attr.editable = true;
fld->attr.singleLine = true;
fld->attr.dynam cSize = fal se;
fld->attr.underlined = true;
fld->attr.insPtVisible = true;
fld->attr.nuneric = true;
fld->attr.justification = rightAlign;

fld->maxChars = kMaxNuneri cStringlLengt h;
} else {
FormPtr frm = FrnGetActiveForn();

fld = FIl dNewFi el d((VoidPtr) & rm kDynam cFi el dl D,
bounds- >t opLeft.x, bounds->topLeft.y, bounds->extent.x,
bounds->extent.y, stdFont, kMaxNumericStringlLength,
true, true, true, false, rightAlign, false, false, true);
if (!tenmporary)
gCurrentFieldlnTable = fld;
}

if (colum == kQuantityCol um)
nunber = gCurrentOrder->itens[itenmNunber]. quantity;

el se
nunber = gCurrent Order->itens[itemNunber]. productl D,

buffer[0] = '\0";
/1 0 wll display as enpty string
i f (nunber)

Strl ToA(buffer, nunber);

textH = MenHandl eNew(StrLen(buffer) + 1);
text P = MenmHandl eLock(textH);
StrCopy(textP, buffer);

MenPt r Unl ock(t extP);
FI dSet Text Handl e(fld, (Handle) textH);

if (tenporary)
return fld;
el se
return NULL;

Deallocating number fields

If theqUseDynam cUl macro is set to true, the deinitialization routine deallocates the field on a 3.0 or
later OS:

/1 WARNING, the form and any controls, table, etc. on the form may change
/1 locations in nenory after this call; don't keep pointers to themwhile
/1 calling this routine.

static void OrderDeinitNunberField(TablePtr table, FieldPtr fld)

{
if (qUseDynam cU && sysGet ROWer Maj or (gRonVersi on) >= 3) {
FormPtr frm = FrnGet ActiveForn();
FrmRenobveoj ect (& rm FrnGet Obj ect I ndex(frm kDynami cFiel dl D));
}
if (fld == gCurrentFiel dlnTabl e)
gCurrent Fi el dl nTabl e = NULL;
}
NOTE:

FI dNewFi el d and Fr nRenpbveObj ect both change the form pointer and can change the pointers to
any objectsin the form. Make sure not to reuse any pointer (like the table or the field) after calling either
of these routines.

Adding product names

Here's the routine that draws a product name (since it's called by the Table Manager, it must have the
CALLBACK macros for GCC):

static void O derDrawPr oduct Name(Voi dPtr table, Wrd row, Word col um,
Rect angl ePtr bounds)
{
Voi dHand h = NULL;
Product p;
U nt itenmNunber;
ULong productl D;
CharPtr toDraw,

#ifdef __ GNUC__
CALLBACK_PROLOGUE
#endi f
i temNunber = Tbl Get Row D(tabl e, row);
product! D = gCurrent Order->i tens[itenmNunber]. product! D,
if (productlD) {
h = Get Product FronProduct | D(product I D, &p, NULL);
toDraw = (CharPtr) p.naneg;
} else

toDraw = "-Product-";
Dr awChar sToFi t W dt h(t oDraw, bounds);
if (h)
MerHandl eUnl ock(h) ;
#ifdef __ GNUC__
CALLBACK_EPI LOGUE
#endi f
}

Adding scrolling support

WEe've got to handle scrolling if we want items to display properly. In the routine Or der Handl eEvent ,
welook for ascl Repeat Event :

case scl Repeat Event:
Or der Desel ect RowAndDel et el f Enpty();
Order Scrol | Rows(event - >dat a. scl Repeat . newval ue -
event - >dat a. scl Repeat . val ue);

handl ed = false; // scrollbar needs to handle the event, too
br eak;

Or der Scr ol | Rows isstraightforward. It updatesgTopVi si bl el t em then reloads the table and
redrawsiit:

static void O derScroll Rows(SWrd nunRows)

{
Tabl ePtr table = Get Obj ect FromActi veForm(OrderltensTabl e);

gTopVi si bl el t em += nunRows;
if (gTopVisibleltem< 0)
gTopVi si bleltem = 0;

LoadTabl e();
Tbl Unhi ghl i ght Sel ection(table);
Tbl Redr awTabl e(t abl e) ;

The table event handler

We handle a great number of thingsin our code and rely on the Table Manager for very little. Asaresult,
we've got quite acomplex event handler. Here's how we handlethet bl Ent er Event :

case tbl EnterEvent:

{
Wor d row = event->data.tbl Enter.row,
Wor d colum = event->data.tbl Enter.col um;
Tabl ePtr table = event->data.tbl Enter.pTabl e;

/1 if the user taps on a new row, deselect the old row
if (gCellSelected & row != tabl e->currentRow) {
handl ed = Order Desel ect RowAndDel et el f Enpty();
/1 if we delete a row, |eave everything unsel ected
i f (handl ed)
br eak;

if (gCell Selected) {
/1 if the user taps a prod in the currently selected row, edit it
if (colum == kProduct NaneCol um) {
ListPtr list = GetObjectFromActi veFor n{ Or der Product sLi st);

int sel ection;
U nt index;
unt attr;

Lst Set Dr awFunction(list, DrawOneProductlnList);

if (gCurrentOrder->itens[gCurrentSel ectedltem ndex]. productlD) {
// initialize the popup for this product
Get Pr oduct Fr onPr oduct | D(
gCurrent O der->i t ems[gCurrent Sel ect edl t em ndex] . product | D,
NULL, & ndex);
DnRecor dl nf o(gProduct DB, index, &attr, NULL, NULL);

Sel ect ACategory(list, attr & dnRecAttr Cat egor yMask);

Lst Set Sel ection(list,
DnPosi ti onl nCat egor y(gProduct DB, index, gCurrentCategory) +
(gNunCategories + 1));
} else
Sel ect ACat egory(list, gCurrentCategory);

do {
sel ection = LstPopupList(list);
if (selection >= 0 && sel ection < gNuntCat egori es)
Sel ect ACat egory(list, selection);
} while (selection >= 0 && selection < (gNunCategories + 1));
if (selection >= 0) {
unt index = 0;

Voi dHand h;

PackedPr oduct *packedProduct ;

Pr oduct S;

I nt ol dSel ect edCol uim = t abl e- >current Col um;

gCurrent Product | ndex = 0;
DnfSeekRecor dl nCat egor y(gProduct DB, &gCurrent Product | ndex,
sel ection - (gNunCategories + 1), dnSeekForward,
gCurrent Cat egory);
Err NonFat al Di spl ayl f (DnGet LastErr(), "Can't seek to product");
h = DnfQuer yRecor d(gProduct DB, gCurrent Product | ndex) ;
gHavePr oduct | ndex = true;

Err NonFat al Di splayl f(!'h, "Can't get record");
packedProduct = MenHandl eLock(h);
UnpackPr oduct (&s, packedProduct);

DmW it e(gCurrent Order,
of f set of (Or der,
i tens[gCurrent Sel ect edl t em ndex] . product | D),
&packedPr oduct - >pr oduct | D,
si zeof (packedPr oduct - >product 1 D)) ;
MenHandl eUnl ock(h) ;
/!l Redraw current row. Can't have anything selected or the
/1 table will highlight it.
O der SaveAnount (t abl e) ;
LoadTabl e();
Tbl Redr awTabl e(t abl e) ;
Order Sel ect Numeri cCel | (NULL, OrderltensTable, row,
ol dSel ect edCol um) ;
}
} else {
if (colum == tabl e->current Col um) {
/'l the user tapped in the current field
Or der Tapl nActi veFi el d(event, table);
} else {
/'l the user tapped in another field in the row
O der SaveAnount (t abl e) ;
Order Sel ect Nuneri cCel | (event, OrderltensTable, row, colum);
}
}
} else {
/] user tapped in a new row
if (colum == kQuantityColum || colum == kProduct| DCol um) {
Order Sel ect Nuneri cCel | (event, OrderltensTable, row, colum);
} else {
O der Sel ect Rowm(Order | t enmsTabl e, row);

}
}
handl ed = true;
}
br eak;
Handling taps

We need to convert at bl Ent er Event (tapinanumeric cell) into af | dEnt er Event so that the Field
Manager will handle the event and set the insertion point, or start drag-selecting. Here is how we do that:

static void O derTaplnActiveFi el d(EventPtr event, TablePtr table)
{

Event Type newEvent ;

Fiel dPtr fld;

fld = gCurrentFi el dl nTabl e;
/1 Convert the table enter event to a field enter event.

Evt CopyEvent (event, &newEvent);

newEvent . eType = fl dEnter Event;
newEvent . data.fldEnter.fieldl D = fld->id;
newEvent . data.fl dEnter.pField = fld;

Fl dHandl eEvent (f1d, &newEvent);

Handling key events

We've got to handle scrolling when our table receives key-down events. If the user iswriting in acell, we
filter to allow only arrows, backspace, and digits. If the user has no cell selected and writes a digit, we add a
new item and insert the new digit in the quantity cell.

Note that the character we retrieve from the event is a two-byte wor d, not aone-byte char :

static Bool ean OrderHandl eKey(Event Ptr event)

{

Wrd c = event->data. keyDown. chr;

/1l bottomto-top screen gesture can cause this, depending on
/1 configuration in Prefs/Buttons/Pen
if (c == sendDat aChr)
return Order Handl eMenuEvent (Recor dBeantust oner) ;
else if (c == pageUpChr || c¢ == pageDownChr) {
SWord nunRowsToScrol | =
Tbl Get Nurmber Of Rows (Get Obj ect FromActi veForm(OrderltenmsTable)) - 1;

O der Desel ect RowAndDel et el f Enpt y() ;
if (c == pageUpChr)
nunRowsToScrol I = -nunmRowsToScrol | ;
Or der Scrol | Rows(nunmRowsToScrol |) ;
} else if (c == linefeedChr) {
/1 The return character takes us out of edit node.
O der Desel ect RowAndDel et el f Enpt y() ;
} else if (gCell Selected) {
if ((c == backspaceChr) || (c == leftArrowcChr) ||
(c == rightArrowChr) || IsDigit(GetCharAttr(), c))
FI dHandl eEvent (gCurrent Fi el dl nTabl e, event);
} else {
/1 writing a digit with nothing selected creates a new item
if (IsDigit(GetCharAttr(), c)) {
unt itemNunber;

O der Desel ect RowAndDel et el f Enpt y() ;

if (AddNewl ten(& temNunber)) {
O der Sel ect | t emNunber (i t emNunber, kQuantityCol um);
FI dHandl eEvent (gCurrent Fi el dl nTabl e, event);

}
}

return true;

Handling numeric cell selection

Here's how we handle the user's tapping on a numeric cell:

static void OrderSel ect NunericCel | (EventPtr event, Word tablelD,
Word row, Word col um)

{
Tabl ePtr t abl e;

tabl e = Get Obj ect FromActi veForm(tabl el D);

/1 meke this cell selected, if it isn't already

if (row!= table->currentRow || colum != table->currentColum ||
Itable->attr.editing) {
Rect angl eType r;
FornPtr frm

table->attr.editing = true;
tabl e->current Row = row,
tabl e->current Col uim = col um;

Tbl Get | t emBounds(tabl e, row, colum, &r);
OrderlnitNunberField(table, row, colum, &, false);

/'l reacquire the table, since OrderlnitNunberField may have
// made it invalid
tabl e = Get Obj ect FromActi veForm(tabl el D);

gCurrent Sel ectedl t em ndex = Tbl Get Row D(tabl e, row);
gCel | Sel ected = true;
O derHiliteSel ectedRowtable, true);

frm= FrmGet ActiveForm();
FrmBet Focus(frm FrnCet Obj ect I ndex(frm tablelD));
FI dG abFocus(gCurrent Fi el dl nTabl e) ;

/1 if there's an event, pass it on
if (event)
Or der Tapl nActi veFi el d(event, table);
}

We (like the built-in applications) modify the tablefieldsat t r . edi t i ng, cur r ent Row, and
cur r ent Col um directly, since thereis no APl to change these values.

Find .&

In this section, we discuss the Find feature of the Palm OS. First, we give you an overview of Find, the user
interface, and itsintended goals. Second, we walk through the entire Find process from the beginning to the
end. Third, we implement Find in our sample application and discuss important aspects of the code.

Overview of Find

The Palm OS user interface supports aglobal Find-a user can find all the instances of astring in al
applications. The operating system doesn't do the work, however. Instead, it orders each application, in turn,
to search through its own databases and return the results.

There is much to be said for this approach. The most obvious rationale is that the operating system has no
ideawhat's inside the records of a database: strings, numbers, or other data. Therefore, it'sin no position to
know what's a reasonable return result and what's nonsense. Indeed, the application is uniquely positioned to
interpret the Find request and determine the display of the found information to the user.

Find requests are sent from the OS by calling the application's Pi | ot Mai n (see "Other Times Y our
Application Is Called" on page 88) with a specific launch code, sysAppLaunchCndFi nd, along with
parameters having to do with interpreting the Find.

The objectives of Find

Remembering that speed on the handheld is essential, Find is intended to be avery quick process. Here are
some of the things that the OS does to ensure this:

No global variables

An application's global variables are not created when it receivesthe sys AppLaunchCndFi nd launch
code, as creating, initializing, and releasing every application’s globals would be a time-consuming process.

Only one screenful of items at atime

The Find goes on only long enough to fill one screen with items. If the user wants to see more results, the
Find resumes where it left off until it has another screenful of found items, then stops again. This process
continues until it runs out of return results.

Long Finds are easy to stop

Applications check the event queue every so often to see whether an event has occurred. If so, the
application prematurely quits the Find. Thus, a simple tap outside the Find prevents along search of alarge
database that would otherwise lock up the handheld.

Another goal isto minimize the amount of memory used. Remember that the Find request could well occur
while an application other than yoursis running. In such cases, it would be very rude, indeed, to suck away
the application's dynamic heap. To prevent such bad manners, memory use is minimized in the following
ways:

No global variables

No unopen application global variables are created.

Minimal information about each found itemis stored

An application doesn't save much about the itemsiit finds. Rather, the application draws a summary of the
found items and passes the Find Manager six bits of information: the database, the record number, the field
number, the card number, the position within the field, and an additional integer.

Only one screenful of items at atime

Only one screenful of found items is maintained in memory. If the user requests more, the current
information is thrown out and the search continues where it |eft off.

A Walkthrough of Finding Items

The following is a walkthrough of what happens when the user writesin a string to be found and taps Find.
First, the current application is sent the launch code sysAppLaunchCndSaveDat a, which requests that
the application save any datathat is currently being edited but not yet saved in a database. Then, starting
with the open application, each application is sent the launch code sys AppLaunchCndFi nd.

The application's response to a Find request
Each application responds with these steps:

1. The application opens its database(s) using the mode specified in its Find parameters. This can be
specified as read-only mode and may also (depending on the user's Security settings) specify that secret
records should be shown.

2. The application draws an application header in the Find Results dialog. Figure 8-4 contains some
examples of application headers as they appear in the dialog. The application uses Fi ndDr awHeader to
retrieve the application header from the application's resource database. If Fi ndDr awHeader returnstrue,
there is no more space in the Find Results dialog, and step 3 is skipped. If thereisroom in the dialog, it ison

to step 3.

Figure 8- 4. Find results dialog showing application headers

Mlatches for =i~

Rddresses
Polm B Accessories 801-431-1536W
Memos

Enterig text nto your Polm B
Polm B Basics

To Do lems
Send in your registration cord

Mol Messoges ———
Fom Corporati. Wedoome

3. The application iterates through each of its records in the database. If it is sent a Find request and thereis
room to fit all of the found items on the screen, the application iterates through the records starting at record
0. If some records from the application have already been displayed, the application has the Find Manager
store the record number of the last displayed record and continues the iteration with the next record when the
user taps the More button.

a. Most applications retrieve the next record by using DmQuer yNext | nCat egor y, which skips
private records, if necessary. If an error occurs, the application exits the loop.

b. It looks for a string that matches. An application should normally ignore case while determining a
match. The application canuse Fi ndStr | nSt r to determine whether there is a match and where
the match occurs.

c. If the application finds a match, it saves information about the match using Fi ndSaveMat ch. If
Fi ndSaveMat ch returns true, no more items can be drawn in the Find Results dialog. In this case,
the application has finished iterating and goes to step 4. Otherwise, it draws to the Find Results dialog
aone-line summary of the matching item (Fi ndGet Li neBounds returns the rectangle in which to
draw). The summary should, if possible, include the searched-for string, along with other contextual
information.

In addition, the application incrementsthel i neNunber field of the Find parameters.
d. The application should check the event queue every so often (using Evt SysEvent Avai |). If an
event has occurred, the application should set the more field of the Find parameters to true and go to
step 4.

4. The application closes any databases it has opened and returns.

When the Find Results dialog is displayed, the user can choose Find More. In this case, the Find Manager
starts the process again, skipping any applications that have been completely searched.

NOTE:
In the documentation for Find that was current at the time of this book's writing, some Find functions and
afield in the Find parameters are incorrectly documented as being for system use only. The following

functions are necessary to correctly support Find: Fi ndDr awHeader , Fi ndGet Li neBounds,
FindStrlnStr, Fi ndSaveMat ch. ThisFind parameter field isalso necessary: | i neNunber .

Handling a Find request with multiple databases

If your application supports searching in multiple databases, you've got to carefully handle continuing a

search (Find More). The Find parameters provide the last matched record number (as saved by
Fi ndSaveMat ch), but not the last matched database. Because of this, your Find routine doesn't know
which database was |ast searched.

Our recommendation is to use system preferences as a place to store the name of the last database. When
you cal Fi ndSaveMat ch, you can retrieve the information. When you receive the Find launch code, if the
cont i nuat i on field of the Find parametersis false, mark the last database as invalid and start the search
with your first database. If the cont i nuat i on field of the Find parametersis true, start your search with
the saved database (if it isvalid).

NOTE:

Remember that you can't store information in global variables, because when the
sysAppLaunchCrdFi nd launch code is sent, your application's global variables don't get allocated.

Alternatively, you could use the record number field as a combination record number and database. Y ou
could store the indicated database (0, 1, 2, etc.) in the upper few bits, and the actual record number in the
remaining bits.

Navigating to a found item

When the user taps on an item in the Find Results dialog, that item's application is sent the
sysAppLaunchCndGoTo launch code. That application may or may not be the current application. If it is,
the application just switches to displaying the found item. If it isn't, the application must call

St art Appl i cati on and enter a standard event loop.

The Find parameters are sent, along with the sys AppLaunchCndGoTo launch code. These parameters are
all theitemsthat were passed to Fi ndSaveMat ch, along with an additional one: the length of the
searched-for string. Y our application should then display the found item, highlighting the searched-for string
within the found item.

Displaying a found item from a running application

Here's the step-by-step process your open application will go through when it receives the
sysAppLaunchCnrdGoTo launch code:

1. Close any existing forms (using Fr nCl oseAl | For nrs).
2. Open the form appropriate to display the found item (using Fr mGot oFor m).

3. Createaf r mGot oEvent event record with fields initialized from the go to parameters, and post it to the
event queue (using Evt AddEvent ToQueue).

4. Respond to the f r mGot oEvent event in your form's event handler by navigating to the correct record
and highlighting the found contents (using FI dSet Scr ol | Posi ti on and Fl dSet Sel ect i on).

NOTE:

Note that we must find the unique ID of the specified r ecor dNunber before we close al the forms.
There are many cases that call for this, but, as an example, the user might be viewing a blank form
immediately prior to the Find request. Before displaying the found item, the application needs to delete the
blank Customer dialog and close the form. If this occurs, however, the records in the database may no
longer be numbered the same. Therefore, we find the unique ID of the found record. After closing the
forms, we then find the record based on its unchanging unigue 1D instead of the possibly compromised
record number.

Displaying a found item from a closed application

If your application is closed when it receives the sys AppLaunchCndGoTo launch code, you need to do a
few more things:

1. As specified by thesysAppLaunchFl agNewd obal s launch flag, call St art Appl i cati on.

2. Create af r nGot oEvent event record with fields initialized from the goto parameters and post it to the
event queue (using Evt AddEvent ToQueue).

3. Enter your Event Loop.

4. Respond to the f r mGot oEvent event in your form's event handler by navigating to the correct record
and highlighting the found contents (using FI dSet Scr ol | Posi ti on and Fl dSet Sel ect i on).

5. Cal St opAppl i cat i on after the Event Loop isfinished.
Find in the Sales Application

From the earlier description of Find, you can see that supporting it in your application, while
straightforward, does require handling a number of steps and possible situations.

Let'slook now at how we handle these steps in the Sales application.
Handling the Find request

The Pi | ot Mai n handles the save data and the Find launch codes. Here's the bit of code from
Pi | ot Mai n that showsthe call to sysAppLaunchCndFi nd:

/1 Launch code sent to running app before sysAppLaunchCndFi nd
/1 or other action codes that will cause data searches or manipul ation.
else if (cmd == sysAppLaunchCmdSaveData) {

Fr nSaveAl | Forms();

}
else if (cmd == sysAppLaunchCmdFi nd) {
Sear ch((Fi ndPar ansPt r) cndPBP) ;

Searching for matching strings

Here'sthe Sear ch routine that actually handles the searching through our customer database. The part of
the code that's specific to our application is emphasized; the remaining code is likely to be the standard for
most applications:

static void Search(FindParansPtr findParans)

{

Err err;

Wor d pos;

Ul nt fieldNum
Ul nt cardNo = 0;
Ul nt recor dNum
Char Ptr header ;

Bool ean done;

Voi dHand recor dH,
Voi dHand header H;
Local I D dbl D;
DmOpenRef dbP;
Rect angl eType r;

DnSear chSt at eType searchSt at e;

// unless told otherwise, there are no nore itens to be found
fi ndPar ans->npre = fal se;

/1 Find the application's data file.
err = DmGet Next Dat abaseByTypeCreator (true, &searchState,
kCust oner DBType, kSal esCreator, true, &cardNo, &dblD);
if (err)
return;

/1 Open the expense dat abase.
dbP = DnmOpenDat abase(cardNo, dbl D, findParans->dbAccesMde);
if (! dbP)

return;

/1 Display the heading line.
header H = DnGet Resource(strRsc, FindHeaderString);
header = MenHandl eLock(headerH);
done = Fi ndDr awHeader (fi ndPar ams, header);
MenHandl eUnl ock(header H) ;
if (done) {
findParams->nmore = true;
}
el se {
/1 Search all the fields; start fromthe |last record searched.
recordNum = fi ndPar ans- >r ecor dNum

for(;;) {
Bool ean match = fal se;
Cust omer cust omner;

/| Because applications can take a long time to finish a find
/1 users like to be able to stop the find. Stop the find

/1 if an event is pending. This stops if the user does

/1 something with the device. Because this call slows down
/1 the search we performit every so many records instead of
/'l every record. The response time should still be short

/1 without introducing much extra work to the search.

/1 Note that in the inplenmentation below, if the next 16th
Il record is secret the check doesn't happen. Generally
/'l this shouldn't be a problemsince if nost of the records
/'l are secret then the search won't take |ong anyway!
if ((recordNum & 0x000f) == 0 && /'l every 16th record
Evt SysEvent Avai | (true)) {
/'l Stop the search process.
findParans->nmore = true;
br eak;

}

recordH = DnQuer yNext | nCat egor y(dbP, & ecordNum
dmAl | Cat egori es);

/! Have we run out of records?

if (! recordH
br eak;

/| Search each of the fields of the customer
UnpackCust oner (&ust onmer, MenHandl eLock(recordH));

if ((mtch = FindStrinStr((CharPtr) custoner. nang,
findParams->strToFind, &pos)) != false)
fi el dNum = Cust ormrer NaneFi el d;

else if ((match = FindStrinStr((CharPtr) customer. address,
findParans->strToFind, &pos)) != false)
fiel dNum = Cust ormrer Addr essFi el d;

else if ((match = FindStrinStr((CharPtr) customer.city,
findParans->strToFi nd, &pos)) != false)
fiel dNum = Customer G tyFiel d;

else if ((match = FindStrinStr((CharPtr) customer. phone,
findParans->strToFind, &pos)) != false)
fi el dNum = Cust omrer PhoneFi el d;

if (match) {
done = Fi ndSaveMat ch(findParans, recordNum pos, fieldNum O,
cardNo, dblD);
if (done)
br eak;

/1 Get the bounds of the region where we will draw the results.
Fi ndGet Li neBounds(fi ndParans, &r);

// Display the title of the description.
Dr awChar sToFi t W dt h(cust oner. name, &r);

findParams- >l i neNunber ++;
}
MenHandl eUnl ock(recordH);
if (done)
br eak;
recor dNumt+;
}

}
DnCl oseDat abase(dbP) ;

Displaying the found item

First, here'sthe code from Pi | ot Mai n that calls St ar t Appl i cati on, Event Loop, and
St opAppl i cati on, if necessary (if using GCC and the application was already running, the code must
have the CALLBACK macros, since Pi | ot Mai n was called as a subroutine from a system function):

/1 This launch code m ght be sent to the app when it's already running
else if (cmd == sysAppLaunchCmdGoTo) {
Bool ean | aunched;
| aunched = | aunchFl ags & sysAppLaunchFl agNewd obal s;

if (launched) {
error = StartApplication();
if (terror) {
GoTol t em((GoToParanmsPtr) cmdPBP, | aunched);
Event Loop() ;
St opAppl i cation();
}
} else {
#ifdef __ GNUC__
CALLBACK_PROLOGUE
#endi f
GoTol t em((GoToParansPtr) cmdPBP, | aunched);
#ifdef __ GNUC__
CALLBACK_EPI LOGUE
#endi f

}
}

Heresthe GoTol t emfunction that opens the correct form and postsaf r ncot oEvent :

static void GoToltem (GoToParansPtr goToParans, Bool ean | aunchi ngApp)

{
Event Type event;
Ul nt recordNum = goToPar ans- >r ecor dNum
// If the current record is blank, then it will be deleted, so we'll use

/1 the record's unique id to find the record index again, after all
/1 the forms are closed.

if (! l'aunchingApp) {
ULong uni quel D;

DrmRecor dl nf o(gCust omer DB, recordNum NULL, &uniquel D, NULL);
FrnCl oseAl | Forms();
Dni ndRecor dByl D(gCust oner DB, uni quel D, & ecor dNumn ;

}

Fr mGot oFor nm(Cust oner sFor n) ;

/1 Send an event to select the nmatching text.
MenSet (&event, 0, sizeof (EventType));

event. eType = frnGot oEvent;
event.data.frmGoto. form D = CustonersForm
event. dat a. f rmGot 0. recor dNum = goToPar ans- >r ecor dNum

event. dat a. f r mGot 0. mat chPos = goToPar ans- >mat chPos;
event. dat a. f rmGot 0. mat chLen = goToPar ans- >sear chStr Len;
event. dat a. f rmGot 0. mat chFi el dNum = goToPar anms- >mat chFi el dNum
event. dat a. f r mGot 0. mat chCust om = goToPar ans- >mat chCust om
Evt AddEvent ToQueue(&vent) ;

}

Remember that this code needs to take into account the possibility of records that change numbersin
between closing open forms and displaying the found record. We do this using DmRecor dI nf o and
DnFi ndRecor dByI D. Thefirst takes the record and finds the unique idea associated with it; the second
returns arecord based on the unique idea.

Note also that we're opening the Cust onrer sFor m even though we really want the Cust oner For m The
reason we do thisisthat we can't get to the Cust onmer For mdirectly. It isamodal dialog that is displayed
above the Cust oner sFor m Thus, the Cust onrer sFor mneeds to be opened first, becauseit is that bit of
code that knows how to open the Cust onmer For m Here's the code from Cust onmer sHandl eEvent that
opensthe Cust oner For m

case frnGotoEvent:
Edi t Cust oner Wt hSel ecti on(event - >dat a. f r nGot 0. recor dNum f al se,
&del et ed, &hi dden, &event->data. frnGoto);

handl ed = true;
br eak;

Heresthe portionof Edi t Cust onmer Wt hSel ect i on that scrolls and highlights the correct text:

static void EditCustonerWthSel ection(U nt recordNunber, Bool ean isNew,
Bool ean *del et ed, Bool ean *hi dden, struct frnGoto *gotoDat a)

{
/1 code deleted that gets the customer record and initializes
/1 the fields

/'l select one of the fields
if (gotoData && gotoData->matchFi el dNum) {
Fi el dPtr selectedField =
Get Obj ect FromAct i veFor n{ got oDat a- >mat chFi el dNun) ;
Fl dSet Scrol | Posi ti on(sel ect edFi el d, got oDat a- >mat chPos) ;
Fr nSet Focus(frm FrnGet Obj ect I ndex(frm gotoDat a- >mat chFi el dNunj) ;
Fl dSet Sel ecti on(sel ect edFi el d, got oDat a- >mat chPos,
got oDat a- >mat chPos + got oDat a- >mat chLen) ;

/1 code del eted that displays the dialog and handl es updates

/1 when the dialog is dismssed
}

That isall there isto adding support for Find to our application. Indeed, the trickiest part of the codeis
figuring out the type of situations you might encounter that will cause Find to work incorrectly. The two
most important of these are searching applications with multiple databases correctly and making sure that
you don't lose the record in between closing forms and displaying results.

Beaming 2

In this section, we discuss beaming. First, we give you a general overview of beaming, describe the user
interface, and offer you afew useful tips. Next, we provide a checklist that you can use to implement
beaming in an application. Last, we implement beaming in the Sales application.

Beaming and the Exchange Manager

The Exchange Manager isin charge of exchanging of information between Palm OS devices and other
devices. This manager is new to Palm OS 3.0 and is built on industry standards.

Currently, the Exchange Manager works only over an infrared link, although it may be enhanced in the
future to work over other links (such as TCP/IP or email). The exchange manager uses the ObEXx Infrared
Data Association (IrDA) standard to exchange information. As aresult, it should be possible to exchange
information between Palm OS devices and other devices that implement this ObEx standard.

NOTE:

For information on IrDA standards, see hitp://www.irda.org. For information on Multipurpose Internet Mail Extensions
(MIME), see http: //mamw.mindspring.com/~mgrand/mime.html or http://www.cis.ohio-state.edu/hyper text/fag/usenet/mail /mime-
fag/top.html.

How Beaming Works

Applications that support this feature usually allow beaming either asingle item or an entire category. When
the user chooses the Beam menu item, a dialog appears showing that the beam is being prepared. Then it
searches for another device using infrared. Once it finds the other device, it beeps and starts sending the
data. After the remote device receives al the data, it beeps and presents a dialog to the user, asking whether
the user wants to accept the data. If the user decides to accept the data, it is put away; if not, it isthrown
away. The creator type of the item is matched to an appropriate application on the receiving device, which
then displays the newly received data.

Newly received items are always placed in the Unfiled category. Thisis true even when both sending and
receiving units have the same categories. While problematic for afew users, thisit the right solution for
most situations. Users will have one consistent interface for receiving items. After all, who isto say that a
user wants beamed items filed in the same name category that the sending handheld uses?

The user can also send an entire category. When a category is sent, private records are skipped (to avoid
accidentally sending unintended records). Newly received items are placed in the Unfiled category.

Programming Tips

The following sections present a set of miscellaneous tips to help you implement beaming. Thefirst ones are
optimization suggestions, the next will help you when debugging your code, and the last are a grab bag of
helpful ideas.

Optimization tips

e Whencaling ExgSend, don't make alot of calls, each with only afew bytesin them. It is much
better to allocate a buffer and send the entire buffer, if necessary. Throughput will be faster with
larger, fewer calls.

¢ When areceive beam launch code is sent to your Pi | ot Mai n, your application is not necessarily
running. As aresult, you can't alocate similarly large buffers for receiving datawith ExgRecei ve.
In fact, you should make as few and as small a set of allocations as possible to avoid stressing the
currently running application. It is quite proper, however, to allocate alarge buffer if you are the
currently running application when a receive beam takes place.

Debugging tips

o If you have textual datato send, you can send to the Memo Pad (set the nameto end in .TXT) even
before you've written your receive code. If the text doesn't appear, you know you've got problemsin
the sending portion of the code.

e Setl ocal Mbde (inthe ExgSocket Type) to true to begin with. This gives you aloop of the data
back to the same device. Or use the Graffiti shortcut in combination with two other characters to tell
Exchange Manager to make all beamslocal. That combination is:

| - — | See "Device Reset" on

page 284 for more
information.
Use the Graffiti shortcut in

‘ .2 .e }
combination with two other

charactersto tell Exchange Manager to use the serial port rather than IR. That combination is:

Thisisatricky way to use

POSE (which doesn't
support IR hardware) to test
L your code. See "Device

Reset" in Chapter 10 for
more information.

General tips

e If yousetthet ar get creator ID when sending, you prohibit any other application from receiving the
data on the other end.

e Youmust call ExgSend in aloop, because it may not send all the bytes you instruct it to send.
ExgSend stopswhen it can send afull packet; it doesn't continue sending the remaining data
without further prompting.

e Cal ExgRegi sterDatainyourPi | ot Mai n when you receivethesysAppLaunch-
CmdSyncNot i fy. If youwait until you call your St art Appl i cat i on routineto register with the
system, a user won't be able to beam to your application after it has been installed until it has actually
been run once.

o Don't call any Exchange Manager routines if your application is running on OS 2.0 or earlier. In fact,
your code should specifically check for the version of the OS and take the proper precautions.

e Try running on a 3.0 device that lacks IR capability (like, for instance, POSE) to make sure that you
fail gracefully. You should get the alert shown in Figure 8-5.

Figure 8- 5. Alert shown when user attemptsto beam on a devicethat hasthe beaming APIs (3.0 OSor greater), but no IR
hardware

& This device does not
hiawe the infrored
hardware required for
the Bearn cornmand.

Sep-by-Sep Implementation Checklist

Beaming lends itself well to a checklist approach of implementation. If you follow these stepsin a
cookbook-like fashion, you should get beaming up in ajiffy.

Determine data interchange format

1. You first need to decide whether you'll use afile extension or MIME type (or both). Y ou aso have to
determine the format of the transmitted data (for both a single entry and an category).

Add beam user interface
2. Add a Beam menu item to beam the current entry.
3. Add a Beam Category item to the overview Record menu to beam the current category.

Send an entry

4. Add <ExgMgr . h> to your include files.
5. Declare an ExgSocket Type and initiaizeit to O.
6. Initializethedescr i pti on field of the ExgSocket Type.
7. Initidizet ype, t ar get , and/or nane.
8. Initialize | ocal Mode to 1 (thisisfor testing with one device; it's optional).
9. Call ExgPut to begin the beam.
10. Call ExgSend in aloop to send the actual data.
11. Call ExgDi sconnect to terminate the beam.
Receive an entry
12. Register for receiving based on the MIME type and/or file extension (optional) you set up in step 1.
InPi | ot Mai n, whenasysAppLaunchCndSyncNot i fy launch code occurs, cal
ExgRegi st er Dat a withexgRegExt ensi onl Dand/or call ExgRegi st er Dat a with
exgRegTypel D. Thissetup is optional, however. If a sender beams data specifying your target application
creator, your application will get sent alaunch code even if it hasn't registered for a specific extension and/or
MIME type. Y ou should do thisregistration if you have a specific kind of data that you want to handle;
senders of that data may not have a specific application in mind when they do the send.

13. Handle the receive beam launch code.

InPi | ot Mai n, check for thesysAppLaunchCndExgRecei veDat a launch code. Y ou won't have
global variables unless you happen to be the open application.

14. Call ExgAccept .

15. Call ExgRecei ve repeatedly and until ExgRecei ve returns 0. A zero is returned when no more data
is being received or an error has occurred.

16. Call ExgDhi sconnect to hang up properly.
17. Set got oLaunchCode and got oPar ans.

Set got oLaunchCode to your creator's application. Set the following fieldsin got oPar ans with the
appropriate values: uni quel D, dbl D, dbCar dNo, r ecor dNum

Display received item

Thisfeature is afree gift thanks to the work you did in supporting Find. If your application already correctly
handles Find, displaying received itemsis no work.

Send an entire category
The code for sending an entire category is very similar to the code for sending one item (the actual datayou

send will be different, of course). Y ou must make sure that your dataformat alows you to distinguish
between one item and multiple items.

18. Declare an ExgSocket Type andinitializeit to 0.

19. Initializethedescr i pti on field of the ExgSocket Type.
20. Initializet ype, t ar get , and/or nane.

21. Initialize| ocal Mbde to 1 (thisisfor testing with one device; it's optional).
22. Call ExgPut to begin the beam.

23. Call ExgSend in aloop to send the actual data

24. Call ExgDi sconnect to terminate the beam.

Receive an entire category

Recelving an entire category is similar to receiving one item.

25. Call ExgAccept .

26. Call ExgRecei ve repeatedly.

27. Cdl ExgDi sconnect .

28. Set got oLaunchCode and got oPar ans.

Test all possibilities

Y ou need to run agamut of tests to make sure you haven't forgotten any of the details. Test every one of the
following combinations of sending and receiving and any other tests that come to mind.

29. Send arecord while your application is open on the remote device.

30. Send arecord while your application isn't open on the remote device.

31. Send a category with lots of records (so that the ExgRecei ve can't read all its data at one time).
32. Tap No when the Accept dialog is presented on the remote device.

33. Send a category with a private record. Verify that the private record isn't received.

34. Verify that beaming an empty category does nothing (doesn't try to send anything).

35. If you've registered a MIME type or extension, send using the ExgSend test application to make sure
your application correctly receives (rather than relying strictly on the target).

36. Try thetest on a 3.0 device that lacks IR capability (for example, POSE).
Sales Application
The Sales application doesn't have categories, so we don't have a Beam Category menu item; instead, we

support Beam all Customers for times when the user wants to beam all the customer information. We also
support beaming a single customer.

NOTE:

We don't support beaming an entire order, although that would be a reasonable thing to add to the
application, particularly if it were acommercia product. Our interests are pedagogical rather than
commercial, so we are skipping that bit; adding this support would not teach you anything new.

When beaming a single customer, we send the customer record itself, with aname ending in .CST. When
beaming all customers, we send:

¢ A two-byte record count indicating the number of total records we are beaming
o For each record:

- A two-byte record length for the record

- The customer record itself
Let'slook at handling a single customer first and then turn to dealing with them all.
Sending a single customer

We add support for beaming to Or der Handl eMenuEvent , where we add the Beam menu item:

case Recor dBeantCust oner:
BeanCust orer (Get Recor dNunber For Cust oner (gCur r ent Or der - >cust oner 1 D)) ;

handl ed = true;
br eak;

When the user selects the menu item, the BeanmCust onrer routine we have created gets called into play.
BeanmCust oner beams a single customer:

static void BeanCustoner (U nt recordNunber)

{
ExgSocket Type s;

Handl e theRecord = DnfQuer yRecor d(gCust oner DB, recordNunber);
PackedCust oner *t hePackedCustoner = MenHandl eLock(theRecord);
Err err;

MenBet (&s, sizeof(s), 0);

s. description = thePackedCust oner - >narne;
s.name = "custoner.cst";

s.target = sal esCreator;

err = ExgPut (&s);
if (lerr)
err = BeanBytes(&s, thePackedCustoner, MenHandl eSi ze(theRecord));
MenHandl eUnl ock(t heRecord);
err = ExgDi sconnect(&s, err);

}
BeantCust oner relieson BeanByt es to actualy send the data. Here is that code:

static Err BeanBytes(ExgSocketPtr s, void *buffer, ULong bytesToSend)
{

Err err = 0;

while (!err && bytesToSend > 0) {
ULong bytesSent = ExgSend(s, buffer, bytesToSend, &err);
byt esToSend -= bytesSent;
buffer = ((char *) buffer) + bytesSent;

}

return err;

}

That is all the code for beaming one customer. Let's ook at what we need to do to receive that information

on the other end.
Receiving a record

First, we need to register with the Exchange Manager in Pi | ot Mai n. Note that we check to make sure we
are running OS 3.0 or greater before setting to work:

} else if (cmd == sysAppLaunchCmdSyncNotify) {
Dwor d ronVer si on;

FtrGet (sysFtrCreator, sysFtrNumROWersion, &ronVersion);
i f (sysGet ROWer Maj or (ronVersion) >= 3)
ExgRegi st er Dat a(kSal esCreat or, exgRegExtensionl D, "cst");

/1 code del eted that resorts our databases

}
Next, we've got to handle the receive data launch code, which we aso put into our Pi | ot Mai n:

} else if (cnmd == sysAppLaunchCndExgRecei veDat a) {
DmOpenRef dbP;

/1 if our app is not active, we need to open the database
/1 The subcall flag is used to determ ne whether we are active
i f (launchFl ags & sysAppLaunchFl agSubCall) {
#ifdef __ GNUC__
CALLBACK_PROLOGUE
#endi f
dbP = gCust oner DB;

/] save any data we may be editing.
Fr nSaveAl | Forms();

error = Recei veBean(dbP, (ExgSocketPtr) cndPBP);
#ifdef __ GNUC__
CALLBACK_EPI LOGUE
#endi f
} else {
dbP = DmOpenDat abaseByTypeCr eat or (kCust oner DBType, kSal esCreat or,
dmvbdeReadWite);
if (dbP) {
error = Recei veBean(dbP, (ExgSocketPtr) cndPBP);

DnCl oseDat abase(dbP) ;

We open the customer database if our application isn't already running. If our application isrunning, and if
we're using GCC, we must use CALLBACK PROLOGUE and CALLBACK EPI LOGUE, since Pi | ot Mai n
is being called as a subroutine call from the Palm OS (if we don't put in the callback macros, we'll crash if
we try to access global variableslike gCust oner DB). Then, we call Fr nSaveAl | For ns to save any
data currently being edited. Recei veBeamhandles much of thiswork. Note that since new customers need
to have unique customer IDs, we assign a new customer 1D to the newly received customer, just as we would
if the user used the New Customer... menu item.

Thisversionof Recei veBeamdoesn't receive all customers yet. See "Receiving al customers' on
page 246 for the final version, which does.

/1 NB: First version that doesn't support receiving all customers yet
static Err Recei veBean(DnOpenRef db, ExgSocketPtr socketPtr)
{

Err err;

U nt index;

SDWor d newCust orer | D = Get Lowest Customer | D() - 1;

err = ExgAccept (socketPtr);
if (lterr) {

err = Readl nt oNewRecord(db, socketPtr, Oxffffffff, & ndex);
/1 must assign a new uni que customner |D
if (terr) {
Voi dHand h = DmGet Record(db, index);
DmW i t e(MenHandl eLock(h), of fsetof (Custoner, custonerlD),
&newCust oner | D, si zeof (newCust oner| D)) ;
MenHandl eUnl ock(h) ;
DnRel easeRecor d(db, index, true);

}
}
err = ExgDi sconnect (socketPtr, err);
if (terr) {
DnRecor dl nfo(db, index, NULL, &socketPtr->goToParans. uni quel D,
NULL) ;

DnOpenDat abasel nf o(db, &socket Ptr->goToPar ans. dbl D,
NULL, NULL, &socket Ptr->goToParans. dbCardNo, NULL);

socket Pt r->goToPar ans. recor dNum = i ndex;

socket Ptr->goToCreator = sal esCreator;

}

return err;

Readl nt oNewRecor d reads until there is no more to read (or the number of bytes specified, afeature
we use when reading all customers). It returns the new record number inthei ndexPt r parameter:

/1 read at nmost nunmBytes into a new record.
/1 Don't use very nuch dynam c RAM or stack space--another app is running
static Err Readl nt oNewRecor d(DmOpenRef db, ExgSocketPtr socketPtr,
ULong nunBytes, U nt *indexPtr)
{
char buffer[100];
Err err;
unt index = 0;
ULong byt esRecei ved;
Voi dHand recHandl e = NULL;
CharPtr recPtr;
ULong recSize = 0;
Bool ean al | ocat edRecord = fal se;

do {
ULong nunByt esToRead;

nunByt esToRead = mi n(nunBytes, sizeof(buffer));
byt esRecei ved = ExgRecei ve(socket Ptr, buffer, numBytesToRead,
&err);
nunBytes -= byt esRecei ved;
if (terr) {
if (!recHandl e)
recHandl e = DnNewRecor d(db, & ndex, bytesReceived);
el se
recHandl e = DnResi zeRecor d(db, i ndex,
recSi ze + bytesReceived);
if (!recHandl e) {
err = DmGetLastErr();
br eak;
}
al | ocat edRecord = true;
rechPtr = MenHandl eLock(recHandl e);
err = DMiNite(recPtr, recSize, buffer, bytesReceived);
MenHandl eUnl ock(recHandl e) ;
recSi ze += byt esRecei ved;
}
} while (lerr &% bytesReceived > 0 & nunBytes > 0);

if (recHandl e) {
DnRel easeRecor d(db, index, true);
}
if (err && allocatedRecord)
DnRenpveRecor d(db, index);

*indexPtr = index;
return err;

That isall there isto sending and receiving a single customer. Next, let's look at what additional changes you
need to make to beam or receive them all at once.

Sending all customers

Once again, we add something to our Cust oner sHandl eMenuEvent that handles sending all
customers:

case CustonerBeanAl | Cust oner s:
BeamAl | Cust oners();

handl ed = true;
br eak;

It cals BeanmAl | Cust oner s which beams the number of records, then the size of each record and the
record itsdlf:

#defi ne kMaxNumber Lengt h 5

static void BeamAl | Cust onmer s(voi d)

{
DmOpenRef dbP = gCust oner DB;
Ul nt node;
Local I D dbl D,
Ul nt car dNo;
Bool ean dat abaseReopened;
Ul nt numCust oner s;

/1 If the database was opened to show secret records, reopen it to not
/| see secret records. The idea is that secret records are not sent
/1 when a category is sent. They nmust be explicitly sent one by one.
DnOpenDat abasel nf o(dbP, &dbl D, NULL, &nmode, &cardNo, NULL);
if (node & dmvbdeShowSecret) {

dbP = DmOpenDat abase(cardNo, dbl D, dmvbdeReadOnly);

dat abaseReopened = true;
} else

dat abaseReopened = fal se;

/1 W should send because there's at |east one record to send.
if ((nuntCustoners = DmNunRecor dsl nCat egory(dbP, dmAl | Categories)) > 0)

ExgSocket Type s;

Voi dHand recHandl e;

Err err;

U nt index = dmvaxRecordl ndex;

Mentet (&s, sizeof(s), 0);
s.description = "All customers”;
s.target = kSal esCreator;

s. | ocal Mode = 1;

err = ExgPut (&s);
if (lterr)
err = BeanBytes(&s, &nuntCustoners, sizeof (nunCustoners));

while (lerr & nunCustoners-- > 0) {
U nt nunber ToSeekBackward = 1;

if (index == dnMaxRecor dl ndex)
nunber ToSeekBackward = 0; // we want the |ast one

err = DnSeekRecordl nCat egory(dbP, & ndex, nunber ToSeekBackwar d,
dnSeekBackwar d, dmAl | Cat egori es);

if (terr) {
Ul nt recordSize;

recHandl e = DnmQuer yRecor d(dbP, i ndex);
Err NonFat al Di spl ayl f (! recHandl e, "Coul dn't query record");
recordSi ze = MenHandl eSi ze(recHandl e) ;
err = BeanBytes(&s, &recordSize, sizeof(recordSize));
if (terr) {
PackedCust oner *theRecord = MenHandl eLock(recHandl e);

err = BeanBytes(&s, theRecord, MenHandl eSi ze(recHandl e));
MenHandl eUnl ock(recHandl e) ;

}

err = ExgDi sconnect (&s, err);
} else

FrmAl ert (NoDat aToBeamAl ert) ;

i f (dat abaseReopened)
DnCl oseDat abase(dbP) ;

BeanmAl | Cust oner s uses BeanByt es, which we've already seen.

Receiving all customers

In order to receive al customers, Recei veBeammust change just a bit (changes are in bold):

static Err Recei veBean(DnOpenRef db, ExgSocketPtr socketPtr)
{

Err err;

Ul nt i ndex;

Bool ean nameEndsWthCst = fal se;

SDWrd newCustoner| D = Get Lowest Customer| D() - 1;

/1 we have a single custormer if it has a nane ending
// in ".cst". Otherwise, it's all customers. "All customers"
/1 will have a nane
/| because the exchange manager provi des one automatically.
if (socketPtr->nane) {
CharPtr dotLocation = StrChr(socketPtr->nanme, '.");
i f (dotLocation && StrCasel essConpare(dotLocation, ".cst") == 0)
naneEndsW t hCst = true;
}
err = ExgAccept (socketPtr);
if (terr) {
if (naneEndsWthCst || socketPtr->type) {
/'l one customer
err = Readl nt oNewRecord(db, socketPtr, Oxffffffff, & ndex);

/1 must assign a new uni que customer |D

if (terr) {
Voi dHand h = DmGet Record(db, index);
DmW i t e(MenHandl eLock(h), of fsetof (Custoner, custonerlD),

&newCust oner | D, si zeof (newCustoner| D)) ;

MenHandl eUnl ock(h) ;
DnRel easeRecor d(db, index, true);

}

} else {
/1 all customers
U nt nunRecords;

ExgRecei ve(socket Ptr, &nunRecords, sizeof (nunRecords), &err);
while (!err && numRecords-- > 0) {
Ul nt recordSize;

ExgRecei ve(socket Ptr, &recordSize, sizeof(recordSize), &err);
if (terr) {
err = Readl nt oNewRecord(db, socketPtr, recordSize, & ndex);
/1 must assign a new uni que customer |D
if (lterr) {
Voi dHand h = DnGet Record(db, index);
DWW i t e(MenHandl eLock(h),
of f set of (Cust oner, customerlD),
&newCust oner | D, si zeof (newCust oner| D)) ;
newCust oner | D--;
MenHandl eUnl ock(h) ;
DnRel easeRecord(db, index, true);

}
}

err = ExgDi sconnect (socketPtr, err);

if (lterr) {
DnRecor dl nfo(db, index, NULL, &socketPtr->goToParans. uni quel D,
NULL) ;
DnOpenDat abasel nf o(db, &socket Ptr->goToPar ans. dbl D,
NULL, NULL, &socket Ptr->goToParans. dbCardNo, NULL);
socket Pt r->goToPar ans. recor dNum = i ndex;
socket Ptr->goToCreator = kSal esCreat or;
}

return err;

}
That is all the code needed to support beaming. Use the checklist to make sure you take care of al the little

details, and review the sample application if you have any further questions. Otherwise, it's on to another
topic.

Barcodes .&

The Symbol SPT 1500 has a built-in barcode scanner (see Figure 8-6). The two buttons at the top of the
device start the scan, and the barcode scanner runs along the top of the device. As you might imagine, for
some vertical applications, this can be quite useful (for example, salespeople could have a catalog with
barcoded items; warehouse workers could read barcodes from boxes).

Figure 8- 6. Symbol SPT 1500 with bar code scanner

-

If you want to implement barcode scanning in an application, there are some special requirements and APIs
from Symbol to use. First, let'slook at some of the API calls that barcode reading brings to the Palm 3.0 OS.
Then we do a code walkthrough of a sample application that scans barcodes.

For more information on the Symbol APIs or the SDK, contact Symbol Technologies
(http://www.symbol.com/palm). Symbol also has a neat utility program that lets you turn the SPT 1500
device into a unit dedicated to your application. The utility allows you to reflash the device ROM to include
or dedicate it to your application. For more information on this, contact Symbol .*

Handling Scanning in an Application

There are some minor additions to the Palm 3.0 OS. The basic support for scanning barcodes requires these
simple steps.

1. Y our code needs to make sure you have a Symbol device by calling the function

Scanl sPal nSynbol Uni t . If itisn't a Symbol device, make no further Symbol calls. Thisroutineis
provided as part of alibrary; thus, you can call it whether or not you are on a Symbol device. Y ou should
normally call this once at the beginning of your program and storeits result in a global.

2. The next step isto load the Symbol library with ScanQpenDecoder . Once you've done this, the
scanner provides power to the scanning hardware. To save battery life, you usually don't do this at the start

of your application, where scanning is inappropriate (for instance, only some forms may alow scanning, so
you may enable scanning when such aform opens). After calling this routine, the scan hardware has power,
but the user still can't press the buttons to do a scan.

3. Once the Symbol library is open, you have afew optional alternatives to consider. These involve
initializing various scanning options, such as:

- The type of barcodes to be recognized.

- The feedback options you want to give when a barcode is scanned-you can have the unit beep or
flash the green LED or both.

- Options on the barcodes that include lengths, conversions, checksums, etc.

4. When you are actually ready for the user to scan, call ScanCndScanEnabl e. Don't just blindly call
this routine after opening the scanning library. Enable scanning only when it actually makes sense for the
user to scan (for example, when the user enters a particular field). Otherwise, the user might accidentally
press one of the two built-in scan buttons, which will:

- Cause the laser to activate while the unit isn't pointing at a barcode. Activating lasersthat are
pointing at random locations is a bad idea (think lawsuit).

- Unnecessarily drain the battery.
5. Y our application needs to respond to two new events while scanning is enabl ed:

- scanDecodeEvent . Thisis sent when a scan (successful or unsuccessful) has occurred. In
response to such an event, call ScanGet DecodedDat a. You get the scanned ASCII data from this
call aswell aswhat kind of barcode (there are many different symbologies) was scanned.

-scanBat t er yEr r or Event . Thisevent is sent when the battery istoo low to do a scan. Asascan
requires more power from the battery than ssmply running the handheld, there may be enough battery
life to run the handheld, but not enough to do the scan. This event is sent so that you can aert the user
to the problem.

NOTE:

It isvery important that you handlescanBat t er yEr r or Event correctly in your application. Without
aproper aert, the user will have no idea why the scan did not occur.

6. When scanning is no longer appropriate (for instance, the user leaves afield in which they are allowed to
scan), call ScanCndScanDi sabl e.

7. When you're ready to shut down the scanner, call ScanCl oseDecoder . Thismay be at the end of
your application for an application that allows scanning everywhere. It may be as aform closes, if you've got
some forms that allow scanning and others that don't.

A Scanning Sample

Some applications might be written so that any field could be written into with Graffiti or, alternatively,
scanned into with the barcode scanner. The code we've written is designed to retrofit an existing application
to alow input to any field from the scanner. A successful scan takes the scanned data and insertsit in the
field that contains the insertion point.

Sarting up the application

In AppSt ar t , we check to make sure we're running on a Symbol unit. If so, we initialize the library, set
parameters so that we can scan every type of barcode and enable scanning (remember that this application
allows scanning anywhere):

static Bool ean gScanManagerlnitialized = fal se;

static Err AppStart(void)

{
/1 other initialization code deleted
i f (ScanlsPal nSynmbol Unit()) {
Err err = ScanOpenDecoder(); // load the scanner library
if (err == 0) {
int i;
/1l we want to be able to scan everything we can get our hands on
/1 1f we just wanted the default types, we could junp directly
/1 to calling ScanCndScanEnabl e
Bar Type al | Types[] = {
bar CODE39, bar UPCA, bar UPCE, bar EAN13, bar EAN8, bar D25,
bar | 20F5, bar CODABAR, bar CODE128, bar CODE93, bar TRI OPTI C39,
bar UCC_EAN128, bar MsSI _PLESSEY, bar UPCE1l, bar BOOKLAND_ EAN,
bar | SBT128, bar COUPON} ;
for (i = 0; i < sizeof(allTypes) / sizeof(*allTypes); i++)
err = ScanSet Bar codeEnabl ed(al | Types[i], true);
err = ScanCndSendPar ams(No_Beep); // send all the accunul ated
/] settings to scanner
/1 allow scanning as of now (uses sone battery life)
err = ScanCmdScanEnabl e();
gScanManagerlnitialized = true;
}
}
return O;
}

The application shutdown

In AppSt op, we disable scanning and close the library:

static void AppStop(void)

{
/] other term nation code del eted
if (gScanManagerlinitialized) {
ScanCmdScanDi sabl e() ; /1 turn scanner off
ScanC oseDecoder () ;
}
}

Event handling
In AppHandl eEvent , we put up an aert (see Figure 8-7) if the battery istoo low to scan.

Figure 8- 7. Theapplication'salert that is posted when a scanBatteryError Event occurs

@ The battery is too low

o Somn.

Here is the code that accomplishes this task:

if (eventP->eType == scanBatteryErrorEvent) {
FrmAl ert (LowScanBatteryAl ert);
return true;

Alsoin AppHandl eEvent , we need to handle a scan event:

if (eventP->eType == scanDecodeEvent) {
MESSAGE decodeDat aMsg;

int status = ScanGet DecodedDat a(&decodeDat aMsg) ;
/1 if we successfully got the decode data fromthe API...
if(status == STATUS OK) {
FormPtr form = FrnGet ActiveForn();

/1 a response of NR neans no scan happened. If so, ignore it

i f (decodeDat aMsg. |l ength == 2 && decodeDat aMsg. data[0] == 'N &&
decodeDat aMsg. data[1] == 'R)
return true;

/1 find the focused field and insert there
if (form {
Wor d focusedl ndex = FrnGet Focus(form;

//focusedl ndex is documented to return -1 but is also docunented
/1 to return a (unsigned) Wird. Instead of returning -1, then,
/1 it returns 65536
if (focusedl ndex >= 0 && focusedl ndex < 65535) {
i f (FrnGet Cbject Type(form focusedlndex) == frnFieldoj) {
Fi el dPtr focusedField =
(FieldPtr) FrmGetObjectPtr(form focusedlndex);

if (focusedField->attr.editable)
Fl dl nsert (focusedFi el d, (CharPtr) decodeDat aMsg. dat a,
decodeDat aMsg. | engt h) ;

}
}

return true;

Thisisall thereisto supporting barcode reading in an application. With adandy device like the Symbol SPT
1500 and such an easy set of changes required to support barcode scanning, you should expect to seea
variety of applications.

* 1f you are new to barcode technologies, there is an excellent reference work available: The Bar Code Book, by Roger C. Palmer,
1995, Third Ed. (Helmers, ISBN: 0-91126-109-5).

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PaaPaaac

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! &

PRt

In this chapter:

o Serid
e TCP/IP

9. Communications

In this chapter, we discuss the types of communication available on the Palm OS. Next we go into detall
about two of these types and show you how to write code to use them.

Palm OS supports three kinds of communication: IrDA, serial, and TCF/IP:
IrDA

Thisisan industry-standard hardware and software protocol. We won't discuss the details of communicating
using IrDA. We will, however, show you how to use the Exchange Manager to implement beaming (see the
section entitled "Beaming" on page 235). Beaming is a data exchange method built on top of IrDA.

Serial
Serial communication occurs between the handheld and other devices using the cradle port. Thisis the most

common form of communication on the Palm OS, and as an example we develop a special serial application
that communicates (indirectly) with satellites.

TCP/IP
Currently, this communication standard is available only viaa serial or modem connection. The future has
no boundaries, however, so you might expect to see built-in Ethernet or devices using wireless TCP/IP

appear some day. To show you how to use TCP/IP, we create a small application that sends email to a
server.

Serial 2

The Serial Manager isfairly straightforward. There are routines to do all of the following:

e Open and close the seria port

¢ Read and write data

¢ Query how many bytes are ready to be read
e Set options

Serial 1/0 is synchronous, so there's no notification when data gets received. Instead, your code must poll to

see whether data has arrived.
Tips for Using the Serial Manager

Here are a bunch of miscellaneous tips that will help you when it's time to add serial functionality to an
application:

Open port error

If your code calls Ser Open and it returnsthe error ser Er r Al r eady Open, your open has succeeded, but
some other code already opened the port. Although it's possible to share the port, a sane person wouldn't
normally want to do so. Sharing reads and writes with some other code is a recipe for mangled data. If you
get this error, you should notify the user that the port isin use and gracefully call Ser Cl ose.

Open the serial port only for short periods of time

Don't leave the seria port open any longer than absolutely necessary. If your application reads data from the
seria port every five minutes, don't leave it open for that entire time. Instead, close the port, and reopen it
after five minutes. As a rule of thumb, leave the serial port open for no longer than 30 secondsif it isnot in
use.

Similar advice is often given to drivers about stopped cars. If you will move again within afew minutes,
leave the car idling; otherwise, shut the car off and restart it when you are ready to go. Just as an idling car
wastes gas, an idle serial port wastes batteries by providing power to the serial chip. Such behavior will
really annoy your users, who don't want an application that sucks all the life out of their batteries. Don't have
sloppy seria code.

Preventing automatic sleep

If you don't want the Palm OS device to sleep while you are communicating, call

Evt Reset Aut oOF f Ti ner at least once aminute. This prevents the automatic sleep that happens when
no user input occurs. If you have communication that shouldn't be interrupted, you certainly should do this,
asyou will lose the serial data when the device goes to sleep.

Adjusting the receiving buffer size

The default receive buffer is 512 bytes. Think of this receiving buffer as similar to areservoir. The incoming
data flows into the buffer, and reads from the buffer drain the data out the other side. Just as with areservair,
if you get too much incoming data, the buffer overflows, and data spills out and islost. The error you get is
ser Li neError SWOver run.

If you expect alot of data, it's best to adjust your buffer to accommodate greater inflows. Y ou can set the
sizeusing Ser Set Recei veBuf f er . When you're done, make sure to release the buffer before you close
the port; do so by calling Ser Set Recei veBuf f er withasizeof 0. Ser C ose won't release the buffer,
so if you don't do it yourself, you'll leak memory.

Knowing when there is data in the receive buffer

When reading data, it isbest to do it in two steps. Thefirst stepistocal Ser Recei veWai t , which
blocks until the specified number of bytes are available in the buffer. To provide a timeout mechanism,

Ser Recei veWai t takes as a parameter an interbyte tick timeout. Thistimeout is used for awatchdog
timer that is reset on every received byte. If the timer expires, the function returnswith ser Er r Ti meCQut .
Once Ser Recei veWai t returns, the second step isto call Ser Recei ve to actually read the data from
the receive buffer.

The timeout measures the time between successive bytes, not the time for all bytes. For example, if you call
Ser Recei veWai t waiting for 200 bytes with a 50-tick timeout, Ser Recei veWi t returns either when

200 bytes are available, or when 50 ticks have passed since the last received byte. In the slowest case, if
bytes comein one every 49 ticks, Ser Recei veWai t won't time out.

Ser Recei veWai t isthe preferred call, because it can put the processor into alow-power state while
waiting for incoming data-another battery-saving technique that will make your users happy.

Handling user input during a serial event

Don't ignore user input while communicating. Wherever possible, you need to structure your application so
that it deals with serial communication when the user isn't doing other stuff. Practically, this means you can
do one of two things. Y our application could communicate every so often by calling Evt Get Event witha
timeout value. Or, if your communication code isin atight loop that doesn't call Evt Get Event , you can
cal SysEvent Avai | every so often (certainly no less than once a second). This allows you to see
whether there's a user event to process. If there are user events, return to your event loop to process the event
before attempting any more serial communication.

NOTE:

A user who can't cancel is an unhappy user.

Receiving error messages

If Ser Recei ve, Ser Recei veWai t , or Ser Recei veCheck return ser Err Li neEr r, you need to
clear the error using Ser C ear Er r . Alternatively, you should use Ser Recei veFl ush if you also need
to flush the buffer, since it will call Ser Cl ear Err.

Palm OSversion differences

Ser Send and Ser Recei ve have been enhanced in PAlm OS 2.0. In this OS, they return the number of
bytes sent or received. If you are running on Palm OS 1.0, you need to use Ser Send10 and

Ser Recei vel0, which have different parameters. Make sure your code does the right thing for each OS
version.

Serial to a state machine

Often, seria protocols are best written as though they are going to a state machine. Y ou can do this by
defining various states and the transitions that cause changes from one state to another. Y ou use aglobal to
contain information on the current state. While it might sound complicated, writing your seria code this way
often makes it smpler and easier to maintain.

For example, if you use your Palm device to log into a Unix machine, you might send <CR><CR> and then
enter the "Waiting for login:" state. In this state, you'd read until you got the characters "l ogi n: ". You
would then send your account name and enter the "Waiting for password:" state. In that state, you'd read
until you got the characters "passwor d: ". Then you would send the password and enter yet another state.

Sample Serial Application

Our Sales application doesn't have seria codein it. Instead, we've written a small application that
communicates with a Global Positioning System (GPS) device. A GPS device reads information sent by
orbiting satellites; from that data it determines the location of the device. In addition to the location (latitude,
longitude, and altitude), the device obtains the Universal Time Coordinate (UTC) time.

Features of the sample application

Our sample application communicates with this GPS device using the industry-standard National Marine

Electronics Association (NMEA) 0183 serial protocol.

The application's startup screen is shown in Figure 9-1. Asyou can see, it is blank except for telling the user
that it has no GPS information. The state changes as soon as the handheld has established communication
with the GPS device and has acquired a satellite. Now it displays the time, latitude, and longitude, as shown
in Figure 9-2. The application updates these values every five seconds to make sure the location and time are
up-to-date. If the GPS device loses contact with the satellite (as might happen when the user enters a
building), the sample application promptly warns the user (as shown in Figure 9-3).

-Figure 9- 1. The GPS application when it is has not recently heard from the GPS device

UTC Ho GPS!
Lat
Lo

Figure 9- 2. The GPS application displaying the current time, latitude, and longitude

UTC 162100
Lot N30T
Lore WIIT09E05

Figure 9- 3. The GPS application war ning that the satellite has been lost

GPS reader

UTC 161445
Lot
Lonc

Yorning: Lost sotelite

NOTE:

A GPS device hooked to a Palm OS handheld is a compact and useful combination. Imagine the versatile
and convenient applications you could create that would use information augmented with exact location
and precision time-stamping. For example, a nature specialist could create a custom trail guide that other
people could use to retrace the guide's path.

The GPSdevice

We're using a Garmin 12 GPS device purchased for under $200 from the sporting goods section of a
discount store. The serial connector on this device is custom, so we bought a Garmin-to-DB-9 serial cable.
(A DB-9 connector is a nine-pin connector commonly used for serial connections.) Connected to the Palm
deviceisaHotSync cable. Between the two devices is a null-modem converter. The Garmin is configured to
send NMEA 0183 2.0 at 9600 baud. Figure 9-4 shows the setup.

Figure 9- 4. The GPS device and handheld setup

*

The NMEA protocol

In our application, we want to update the time, latitude, and longitude every 5 seconds. Updating more often
seems unnecessary and would reduce the battery life of the Palm OS device. The GPS device sends 10 lines
of information every second; of the 50 that are sent over a 5-second period, we simply parse out the
information we need. The rest we ignore. As aresult, we don't have to understand the entire NMEA 0183
protocol, but just the bit that pertains to our one line of interest.Y

If we have valid satellite data, the relevant part will ook similar to this string:

$GPRMC, 204700, A, 3403. 868, N, 11709. 432, W 001. 9, 336. 9, 170698, 013. 6, E*6E

Let'slook more closely at this example to see what each part means. Note that we care about only the first
seven pieces of data. In Table 9-1 the important parts of the string are laid out with the definitions beside
each item.

-Table9- 1. NMEA String from GPS Device

Sample String NMEA 0183

Value Protocol Description

$GPRMC GPS Recommended Minimum data.

o UTCTIME [T el of a2t ok wher e
A AorV A meansthe datais OK; Visawarning.
3403.868 LAT This comesin the form of anumber like ####.##H#

N LAT DIR ThisisV (N)orth or (S)outh.

11709.432 LON R AR

W LON DIR Thisis (W)est or (E)ast.

If we aren't receiving valid satellite data, the string is of the form:
$GPR\C, UTC_TIME, V, ...

And here's atypical example:

$GPRMC, 204149, V, ,,,,,, 170698, , *3A

Now that you have an idea of what we want to accomplish and the tools we are going to use, it istime to
look at the code for the sample application.

The sample application serial code

We are going to open the serial port inour St art Appl i cat i on routine:

U nt gSerial Ref Num
char gSerialBuffer[900]; // should be nore than enough for one second of
/] data--10 lines @80 chars per line

static Bool ean StartApplication(void)

{

Err err;

err = SysLibFind("Serial Library", &gSerial Ref Num;
ErrNonFat al Di spl aylf(err !'= 0, "Can't find serial library");

err = SerOpen(gSerial Ref Num 0, 9600);
if (err 1=0) {
if (err == serErr Al readyOpen) {
FrmAl ert (Serial I nUseAl ert);
Ser Cl ose(gSeri al Ref Num) ;
} else
FrmAl ert (Cant openserial Alert);
return true;
}
err = Ser Set Recei veBuf fer(gSerial Ref Num gSeri al Buf fer,
si zeof (gSeri al Buffer));
return fal se;

We set our own receive buffer so that we can hold an entire second's worth of data. We don't want to risk
losing any data, so we give ourselves ample room.

In St opAppl i cati on, we close the port (after resetting the buffer to the default):

static void StopApplication(void)

{
/] restore the default buffer before closing the serial port
Ser Set Recei veBuf fer (gSeri al Ref Num NULL, 0);
Ser Cl ose(gSeri al Ref Num) ;

}

We need to create some globals to store information about timing:

/1 tickCount of last time we read data from GPS
ULong gLast Successf ul Reception = 0;

/1 tickCount of last tinme we displayed GPS data on the Pal m device
ULong gLast Ti meDi splay = 0;

/1 tickCount of the next schedul ed read
ULong gNext ReadTi me = 0;

Bool ean gFor nOpened = fal se;

/1 if we go this long w thout updating the tinme

/1 then update as soon as we get a valid tine

/1 (w thout waiting for an even 5-second tine)
#define kMaxTicksWthoutTime (6 * sysTi cksPer Second)

/1 if we go this long w thout communicating with GPS,

/1 we've lost it and need to notify the user
#define kTicksToLoseGPS (15 * sysTi cksPer Second)

Weinitidlize gFor mOpened in Mai nVi ewl ni t . We keep track of this because we don't want to start
receiving nil events until the form has been opened and displayed:

static void MinView nit(void)

{
FornPtr frm= FrnGet Acti veForn();
// Draw the form
Fr nDr awFor m(frm ;
gFor nOpened = true;
}

In our event loop, instead of calling Evt Get Event with no timeout, we call the function
Ti meUnt i | Next Read to obtain atimeout when we need it. Here's our Event Loop:

static void Event Loop(void)

{
Event Type event;
Wor d error;
do
{
/1 Cet the next available event.
Evt Get Event (&event, TinmeUntil Next Read());
if (! SysHandl eEvent (&event))
if (! MenuHandl eEvent (0, &event, &error))
if (! ApplicationHandl eEvent (&event))
Fr nDi spat chEvent (&event);
}
while (event.eType != appStopEvent);
}
NOTE:

Evt Get Event , like Ser Recei veCheck, enters alow-power processor mode if possible.

Notethat Ti neUnt i | Next Read returns the number of ticks until the next scheduled read:

static long TinmeUntil Next Read(voi d)
{
i f (!gFornmOpened)
return evt Wit Forever;
el se {
Long tinmeRenmai ning;

ti meRenmi ni ng = gNext ReadTi me - Ti mGet Ti cks();

if (tinmeRenmaining < 0)
ti meRenmmi ning = 0;
return timeRemai ning;

The guts of the application are in the event handler, Mai nVi ewHand| eEvent :

case nil Event:
handl ed = true;
Ser Recei veFl ush(gSeri al Ref Num 1); // throw away anything in the,
/'l buffer-- we want fresh data
/! we loop until an event occurs, or until
/1 we update the display
do {
ULong nunByt esPendi ng;
/1 is the lost satellite label currently displayed
stati c Bool ean show ngLostSatellite = fal se;
ULong now = Ti nGet Ti cks();
char theData[165]; // two lines (80 chars with <CR><LF>
/1 + one for null byte

/1 if we've gone too long without hearing fromthe GPS
/1 tell the user
if ((now - glLast Successful Reception) > kTi cksToLoseGPS) {

FormPtr frm = FrnGet ActiveFormn();

Fr nCopyLabel (frm GPSMai nTi neLabel, "No GPS!'");

Fr nCopyLabel (frm GPSMai nLatitudeLabel, "");
Fr nCopyLabel (frm GPSMai nLongt it udeLabel , "");
}
/1 we'll fill our read buffer, or 1/2 second between

/'l bytes, whichever comes first.
err = SerRecei veWait (gSeri al Ref Num sizeof (theData) - 1, 30);

if (err == serErrLineErr) {
Ser Recei veFl ush(gSerial Ref Num 1); // will clear the error
conti nue; /1 go back and try readi ng again

}

if (err !'= serErrTinmeQut)
Err Fatal Di spl ayl f(err !'= 0, "SerReceiveWit");

err = SerRecei veCheck(gSeri al Ref Num &nunByt esPendi ng) ;

if (err == serErrLineErr) {
Ser Recei veFl ush(gSerial Ref Num 1); // will clear the error
conti nue; /1 go back and try readi ng again

}

Err Fat al Di spl ayl f(err !'= 0, "SerReceiveCheckFail");

if (nunBytesPending > 0) {
ULong nunByt es;
char *start Of Message;

/1 read however many bytes are waiting
nunBytes = Ser Recei ve(gSeri al Ref Num t heDat a,
nunByt esPendi ng, 0, &err);

if (err == serErrLineErr) {
Ser Recei veFl ush(gSerial Ref Num 1); // wll clear the error
conti nue; /1 go back and try readi ng again

}

t heDat a[numBytes] = '\0'; // null-term nate theData

/1 look for our magic string
if ((startOfMessage = StrStr(theData, "$GPRMC')) !'= NULL) {
char s[10];
gLast Successful Reception = now, // we successfully read
if (GetField(startOf Message, 1, s)) {
/1 even multiple of five seconds ORit's been at
/1 1 east kMaxTi cksWthout Ti me seconds since a display
/1 That way, if we lose 11:11:35, we won't have the

// time go from11:11:30 to 11:11:40. Instead, it'll go
// 11:11:30, 11:11:36, 11:11:40
if (s[5] =='0" || s[5] =="5" ||

(now - gLastTi meDi splay) > kMaxTi cksW thout Ti me) {
FornmPtr frm = FrnGetActiveForm();

updat edTi me = true;
/1 change from HHWSS to HH: MM SS

s[8] ="\0";
s[7] = s[9]
s[6] = s[4]
s[5] =":";
s[4] = s[3];
s[3] = s[2];
s[2] =":";
/1 Most of the tine, we'll be on a nultiple of five.

/1 Thus, we want to read in four nore seconds.
/1 Otherw se, we want to read inmrediately
if (s[5] =="'0" || s[5] =="'5")
gNext ReadTi me = glLast Successful Reception +
ppp4*sysTi cksPer Second;
el se
gNext ReadTi me = 0;

/1 update the tinme display
Fr mCopyLabel (frm GPSMai nTi neLabel , s);
gLast Ti meDi spl ay = glLast Successf ul Recepti on;

if (GetField(startOf Message, 2, s)) {
/1 update "Lost satellite" |abel
if (s[0] =="'V && !showi ngLostSatellite) {

showi ngLost Satellite = true;
Fr mShowCbj ect (frm FrnGet Obj ect | ndex(frm
GPSMai nLost Satel |iteLabel));
} elseif (s[0] =="'A && showi nglLostSatellite) {
showi ngLost Satellite = fal se;
FrHi deCbj ect (frm FrnGet Obj ect | ndex(frm
GPSMai nLost Satel | i teLabel));
}

/] update Lat & Lon
if (s[0] !'="V) {
/Il 4is Nor S for Lat direction, 3 is lat
if (GetField(startOf Message, 4, s) &&
GetField(start Of Message, 3, s + StrlLen(s)))
Fr mCopyLabel (frm GPSMai nLatitudelLabel, s);

/Il 5is Eor Wfor Lat direction, 6 is lon

if (GetField(startOf Message, 6, s) &&
GetField(start Of Message, 5, s + StrlLen(s)))
Fr mCopyLabel (frm GPSMai nLongti tudelLabel , s);

}
}
}
}
}
} while (!updatedTime && ! Evt SysEvent Avail (fal se));
br eak;

Remember that the GPS device is spewing out data once a second. We are not going to update that often;
we've settled on updating every five seconds as a happy medium. Normally when we receive an idle event,
we have just been in the event loop, dozing for four seconds. Thus, our receive buffer could have old datain
it or could have overflowed. In the previous code, we first flush our buffer (we don't want any stale
information from the buffer) and then read in two lines of data.

Next, we look for our string by searching for $GPRMC. If we find it, we know we've communicated with the
GPS device. gLast Successf ul Recept i on then gets updated.

Next, we parse out the time from the string. If it isamultiple of five or we've gone too long without
updating the display, we do all of the following:

1. Set the next time to read.
2. Parse out the remaining information.

3. Update our display with the new information (the current position or an indication that the link to the
satelliteislost).

4. Return to the event loop.
Otherwise, we continue in aloop until we do successfully read or until a user event occurs.

Last, we need asmall utility routine, Get Fi el d, to parse out acomma-delimited field:

/1 returns n'th (0-based) comma-delinmeted field within buffer
/1l true if field found, false otherw se
static Bool ean GetField(const char *buffer, Unt n, char *result)

{

i nt

/1 skip n commas
for (i =0; i <n; i++) {
while (*buffer & *buffer I=",")
buf f er ++;
if (*buffer == "'\0")
return fal se;
buf f er ++;

}

while (*buffer && *buffer ="' ")
*resul t ++ = *buf f er ++;

if (*buffer '="',")
return fal se;

*result = '\0";

return true;

}

That isall thereisto our application. But as you can see from the discussion prior to the code, the difficulty
with serial isnot in the actual calls but in configuring your application to do the right thing. Much of the
complexity isin being responsive to the user while doing communications and in conserving battery life by
idling with Evt Get Event and Ser Recei veWai t .

TCP/IP 2

In this section, we show you how to use TCP/IP on a Palm device. To accomplish this, we discuss the API
for networking on a Palm device, we give you some programming tips for implementing TCP/IP, and last
we create a small sample application that sends email to a Simple Mail Transfer Protocol (SMTP) server.

Network API

The Palm SDK (Version 2.0 or later) contains a net library that provides network services, like TCP/IP, to
applications. With this library, an application on the Palm device can connect to any other machine on a
network using standard TCP/IP protocols. The API for thislibrary is a socket interface, modeled very closely
on the Berkeley Sockets API.

NOTE:

Sockets are a communication mechanism. Information is sent into a socket on one machine and comes out
of a socket on aremote machine (and vice versa). With a connection-oriented socket interface, you can
establish the connection between the two machines prior to sending data. The connection stay opens
whether or not datais sent. A good example of thisis TCP. Sockets also allow a connectionless mode for
sending datagrams. These can be sent to an address without any prior connection using a protocol like
User Datagram Protocol (UDP).

NOTE:

For abrief introduction to Berkeley Sockets and socket programming, see
http: //world.std.com/~jimf/paper s/sockets/sockets.html. For a more detailed discussion, see Unix Network Programming, by W.
Richard Stevens (Prentice Hall; ISBN: 0-13-949876-1).

The similarity between the Berkeley Sockets API and the net library is so close that you can compile
Berkeley Sockets code for the PAlm OS with minor-and sometimes no-changes. As aresult, porting
networking code to the Palm OSisvery simple.

The ported code works so nicely because the net library includes header files with macros that convert
Berkeley Sockets callsto Palm OS calls. The main difference between the two is that callsto the net library
accept three additional parameters. These are:

A networ king reference number

All callsto the net library need to use an integer reference to the net library. The Berkeley Sockets macros
pass the global AppNetRefnum as their first parameter.

An error code pointer

The Berkeley Sockets macros pass the address of the global variable er r no.
A timeout

The net library routines return if they haven't finished before the timeout. The Berkeley Sockets macros pass
the global AppNet Ti meout . Note that the default timeout (two seconds) may be too short for
communicating by modem to busy servers.

Tipsfor Using TCP/IP
Use Berkeley Sockets

Use the Berkeley Sockets interface in preference to the Palm OS API. This gives you two advantages. Y our
networking code is portable to other platforms, and programmers who are new to the Palm OS will find your
code easier to read.

Use the Palm OS API if necessary

If you need to call networking code when your application globals aren't available, you must use the Palm
OS API. You can't use the Berkeley Sockets API (which relies on the global variableser r no,

AppNet Ref num and AppNet Ti nmeout). Indeed, the only choice available to you isthe Pam OS AP,
which allows, but doesn't require, globals.

Write and test the code on another platform

Consider writing and testing your networking code on another platform, perhaps Unix or Linux. Debugging
tools for networking for the Palm OS are very primitive at the time of this book's writing (although POSE
can make a dial-up connection on some machines, it's not able to do so reliably on al configurations). Much
more sophisticated debugging tools are available in the Unix/Linux world.

Even if source-level debugging were available, the need to dial up aremote machine still makes this a choice
of last resort. As debugging would require adial-up connection, the test portion of the

edit/compile/downl oad/test cycle would be tediously long. On a Unix/Linux machine, you can probably test
without a dial-up connection, as your machine might be on Ethernet. Single-machine testing is al'so possible
viathe loopback interface (an interface enabling a machine to make a network connection to itself).

Don't immediately close the connection

When you close the net library with Net Li bCl ose, passf al se asthei mredi at e parameter; the net
library then remains open until the user-specified timer expires. As aresult of the clever design of

Net Li bCl ose, the user can switch to another application that makes networking calls without having to
redial. If you passt r ue asthei rmedi at e parameter, the dial-up connection closed immediately, and the
connection must be reestablished when the user switches to another application.

NOTE:

Imagine the situation of a user with three different network applications on the Palm device. The user
might first check email with one application, next read a newsgroup, and last look at a few web sites. This
IS SO common a situation that you should account for it in your code. If the emailer, newsreader, and web
browser each closed the network connection when they closed, the user would be fairly annoyed at the
unnecessary waits to reestablish a connection.

NOTE:

A better solution isto let the user determine when to close the network connection using the Preferences
application. While it istrue that the net library, when open, sucks up an enormous amount of memory and
should be closed when not needed, it is also true that users often handle network tasks during discrete
periods of time. Letting the network close after a user-specified time seems the best solution to both
conditions. In your network application documentation, you can direct the user to the Preferences dialog,
explain the situation concerning the network connection, and guide the choice of setting.

When to open a network connection

Consider carefully when to open the net library and establish a connection. Your St ar t Appl i cati on
routine is probably not a very good choice, as the Palm device would dial-up for a connection as soon as the
user tapped the application icon. A better way to handle thisisto wait for some explicit user request to make
the connection; such arequest could be put in a menu.

Sample Network Application

Our Sales application does not use network services, so we've created a custom sample application to show
you how to use the net library and communicate over a network. Our example sends email to an SMTP
server. The user fillsin:

SMTP host name (the host that's running the SMTP server)
A From email address

A To email address

Subject

Body of the message

When the user taps Send, we connect to the SMTP server and send the email message using the SMTP
protocol.

NOTE:

The SMTP protocol is documented in RFC 821. Various sites contain the RFC documents; see
http: //www.yahoo.com/Computers and_Internet/Standards/RFCs/ for alist.

The sample on Linux

Following our own advice, we first created this sample application on another platform and then ported it to
the Palm OS. The application was originaly written on a Linux machine and tested with a simple command-
line interface. Here's the header file that describes the interfaceto sendmai | :

typedef void (*StatusCal | backFunc) (char *status);
typedef void (*ErrorCall backFunc) (char *problem char *extralnfo);

int sendmuil (char *sntpHost, char *from char *to, char *subject,

char *data, StatusCallbackFunc statusFunc,
Error Cal | backFunc errorFunc);

The dat a parameter isthe body of the mail message, with individual lines separated by newline characters
(\n'). The StatusCall backFunc andError Cal | backFunc are used to provide status
(although sendmai | doesn't currently provide status) and error information to the caller. These are
abstracted from the sendmail routine itself to make porting the program easier. A Linux command-line
program has very different error reporting than a Palm OS application.

The Linux main program

Here's the Linux main program that operates as atest harnessfor sendmai | :

#i ncl ude "sendmail . h"
#i ncl ude <stdio. h>

voi d MyStatusFunc(char *status)

{
printf("status: %\n", status);
}
void MyErrorFunc(char *err, char *extra)
{
if (extra)
printf("error %: %\n", err, extra);
el se
printf("error %\n", err);
}

char gMai | Message[5000] ;

int main(int argc, char **argv)

{
if (argc !'=5) {
fprintf(stderr,
"Usage: TestSendMail sntpServer fromAddress toAddres subject\n");
exit(1);
}
fread(gMai | Message, sizeof (gMail Message), 1, stdin);
sendmai | (argv[1], argv[2], argv[3],
argv[4], gMail Message,
My St at usFunc, MError Func);
return O;
}

Linux include files and global definitions

Here are the include files and global definitions from sendmail.c:

#incl ude <sys/socket. h>

#i ncl ude <netdb. h>

#i ncl ude <netinet/in.h>

#i ncl ude <arpalinet.h>

/1 Application headers

#i ncl ude "sendmail . h"

static const int kLinefeedChr = '\012';

static const int kCrChr = '\015';

static StatusCal |l backFunc gStat usFunc;
static ErrorCall backFunc gErrorFunc;

Sending the mail
Here'sthesendmai | function, where we send data:

#define kK '2'
#define kWant More '3

int sendnmuil (char *sntpHost, char *from char *to, char *subject,
char *data, StatusCallbackFunc statusFunc,
Error Cal | backFunc error Func)

int success = 0;
int fd = -1 /'l socket file descriptor

gErrorFunc = errorFunc;
gSt at usFunc = st at usFunc;

/1 open connection to the server
if ((fd = make_connection("sntp", SOCK_STREAM sntpHost)) < 0)

(*errorFunc) ("Couldn't open connection", NULL);
goto _Exit;

/'l send & receive the data
if (!GotReply(fd, kOK))
goto _Exit;

if (!Send(fd, "HELO[", "127.0.0.1", "1"))
goto _Exit;

if (!CGotReply(fd, kOK))
goto _Exit;

if (!Send(fd, "MAIL from<", from ">"))
goto _Exit;

if (!CGotReply(fd, kOK))
goto _Exit;

if (!'Send(fd, "RCPT to:<", to, ">"))
goto _Exit;

if (!CGotReply(fd, kOK))
goto _Exit;

if (1Send(fd, "DATA", NULL, NULL))

goto _Exit;

if (!CotReply(fd, kWantMore))
goto _Exit;

if (!Send(fd, "Subject: ", subject, NULL))
goto _Exit;

/1 need enpty line between headers and data
if (!Send(fd, NULL, NULL, NULL))
goto _Exit;

if (!SendBody(fd, data))
goto _Exit;

if (!Send(fd, ".", NULL, NULL))
goto _Exit;

if (!CGotReply(fd, kOK))
goto _Exit;

if (!Send(fd, "QUI T, NULL, NULL))
goto _Exit;

success = 1;
/'l cleanup the mess...

Exit:

if (fd>=0) close(fd);

return success,;

}

We make a connection to the SMTP server and alternate receiving status information and sending data. The
entire conversation isin ASCII; every response from the SMTP server has a numeric code as the first three
digits. We look at the first digit to determine whether a problem has occurred. A digit of "2" signifies that
everything isfine. A digit of "3" signifies that more data is needed (the expected response when we send the
DATA command; it's asking us to send the body of the email). Any other digit (for our purposes) represents
an error.

The protocol specifiesthat each sent line ends with <CRLF> and that the body of the email ends with a
period (.) on aline by itself. Any lines beginning with a period must have the period duplicated (for instance,
" XyzZ" issent as"..xyz"); the SMTP server strips the extra period before processing the email.

Connecting to the server

Thefunction make_connect i on actually makes the connection to the SMTP server:

/* This is a generic function to make a connection to a given server/port.
service is the port name/ nunber,
type is either SOCK_STREAM or SOCK_DGRAM and
netaddress is the host nane to connect to.
The function returns the socket, ready for action.*/
static int make_connection(char *service, int type, char *netaddress)
{
/* First convert service froma string, to a nunber... */
int port = -1;
struct in_addr *addr;
i nt sock, connected;
struct sockaddr_in address;

if (type == SOCK_STREAM

port = atoport(service, "tcp");
if (type == SOCK_DGRAM

port = atoport(service, "udp");

if (port == -1) {

(*gErrorFunc) ("make_connection: Invalid socket type.\n", NULL);
return -1,

}

addr = at oaddr (net addr ess);

if (addr == NULL) {
(*gErrorFunc) ("make_connection: Invalid network address.\n", NULL);
return -1,

}

menset ((char *) &address, 0, sizeof(address));
address.sin_famly = AF_I NET;

address. sin_port = (port);

addr ess. si n_addr.s_addr = addr->s_addr;

sock = socket (AF_I NET, type, 0);

if (type == SOCK_STREAM {
connected = connect (sock, (struct sockaddr *) &address,
si zeof (address));
if (connected < 0) {
(*gErrorFunc) ("connect", NULL);
return -1;
}
return sock;
}
/* Otherwi se, must be for udp, so bind to address. */
if (bind(sock, (struct sockaddr *) &address, sizeof(address)) < 0) {
(*gErrorFunc) ("bi nd", NULL);
return -1;
}

return sock;

This function uses the Berkeley Sockets API callssocket and connect (bi nd isused only for datagram
sockets). Note that connect returnsafile descriptor that isused in later r ead, wi t e, and cl ose cdlls.

Getting a port

To connect, we have to specify an address consisting of an 1P address and a port number. We use at opor t
to convert awell-known service name to a port number:

/* Take a service nane, and a service type, and return a port nunber. The
nunber returned is byte ordered for the network. */

static int atoport(char *service, char *proto)

{
int port;
struct servent *serv;

/* First try toread it from/etc/services */
serv = getservbyname(service, proto);
if (serv !'= NULL)
port = serv->s_port;
el se {
return -1; /* Invalid port address */

}

return port;

at oport usesthe Berkeley Sockets API function get ser vbynane. Then at oaddr convertsa
hostname (or string of the form "aaa.bbb.ccc.ddd") to an | P address:

/* Converts ascii text to in_addr struct. NULL is returned if the address
can not be found. */

static struct in_addr *atoaddr(char *address)

{
struct hostent *host;
static struct in_addr saddr;

/* First try it as aaa.bbb.ccc.ddd. */

saddr.s_addr = inet_addr (address);
if (saddr.s_addr != -1) {

return &saddr;
}

host = get host bynane(address);
if (host !'= NULL) {
return (struct in_addr *) *host->h_addr_list;

}
return NULL;

Note also that at oaddr usesthe Berkley Socketsget host bynane call.
Reading data character by character

Once the connection has been made, we need to start sending and receiving data. We use a utility routine,
sock_get s, toread an entire <CRL F>-delimited line (note that it reads one character at atime):

/* This function reads froma socket, until it receives a |inefeed
character. It fills the buffer "str" up to the maxi mum size "count".
This function will return -1 if the socket is closed during the read
operation.

Note that if a single line exceeds the length of count, the extra data
will be read and discarded! You have been warned. */
static int sock_gets(int sockfd, char *str, size_t count)
{
int bytes_read;
int total _count = O;
char *current_position;
char last_read = 0;
const char kLi nefeed = 10;
const char kCR = 13;

current_position = str;
while (last_read != kLinefeed) {
bytes_read = read(sockfd, & ast_read, 1);
if (bytes_read <= 0) {
/* The other side may have cl osed unexpectedly */
return -1; /* |Is this effective on other platforns than Iinux? */
}
if ((total _count < count) && (last_read != kLinefeed) &&
(last_read != kCR))
{
current_position[0] = |ast_read;
current_position++;
total _count ++;
}
}
if (count > 0)
current_position[0] = O;

return total _count;

}

Thesendmnai | protocol specifiesthat the server may send us multiple lines for any reply. The last line will
start with athree-digit numeric code and a space (##)); any previous lines will have a - instead of the
space (###-). We need to keep reading until weread thelast line. ReadRepl y does that:

#define IsDigit(c) ((c) >="'0" && (c) <="'9")

/'l reads lines until we get a non-continuation line
static int ReadReply(int fd, char *s, unsigned int sLen)
{
int nunmByt es;
do {
nunBytes = sock_gets(fd, s, sLen);
} while (numBytes >= 0 && !(strlen(s) >= 4 && s[3] == "' ' &&
IsDigit(s[0]) & IsDigit(s[1l]) & IsDigit(s[2])));
if (nunBytes < 0)
return nunBytes;
el se
return O;

}

We use ReadRepl y in Got Repl y, which takes an expected status character and returns true if we
receive that character and false otherwise:

#define kMaxRepl ySi ze 512

static int GotReply(int fd, char expectedLeadi ngChar)
{

i nt err;
char reply[kMaxRepl ySi ze] ;

err = ReadReply(fd, reply, sizeof(reply));
if (err 1=0) {
(*gErrorFunc) ("Read error", NULL);
return O;

if (*reply != expectedLeadi ngChar) {
(*gErrorFunc) ("Protocol error", reply);
return O;

}
return 1;

}

The SMTP protocol specifies that no reply will exceed 512 characters (including the trailing <CRLF>
characters); that's why we can safely define kMaxRepl ySi ze aswe did. If the digit we read doesn't match
the expected character, we call the error function, passing the line itself. This works well because the server
usually provides a reasonable English error message with the numeric code. As aresult, the user gets more
than "Protocol error” for error information. Thisis all there is to reading data.

Sending data character by character

Having taken care of reading data, now we need to deal with sending it. Send sends one line of data (and
tacks on a<CRLF> pair at the end):

/1 sends sl followed by s2 followed by s3 foll owed by CRLF
static int Send(int fd, char *sl1, char *s2, char *s3)

{

if (sl & nwite(fd, s1, strlen(sl)) < 0)
goto error;

if (s2 & nwite(fd, s2, strlen(s2)) < 0)
goto error;

if (s3 & nwite(fd, s3, strlen(s3)) < 0)
goto error;

if (nwite(fd, "\015\012", 2) < 0)
goto error;

return 1;

error:
(*gErrorFunc) ("Wite error", NULL);
return O;

SendBody sends the body of the email:

static int SendBody(int fd, char *body)
{

char *lineStart = body;

i nt result = 0;

/1 send all the newine-term nated |lines
while (*body '= "\0" & & result == 0) {
if (*body == "\n") {
result = SendSi ngl eBodyLine(fd, lineStart,
body - lineStart);
lineStart = body + 1;
}
body++;
}

/1 send the last partial line
if (lineStart < body && result == 0)
result = SendSi ngl eBodyLine(fd, lineStart,
body - lineStart);
return result;

Itrelieson SendSi ngl eBodyLi ne, which converts\ n charsto <CRLF> and doubles"." characters that
occur at the beginning of lines:

/1 sends alLine which is length chars |ong
static int SendSingl eBodyLine(int fd, char *aLine, int |ength)

{
if (*aLine =="'.") // double-up on '."' lines
if (nwite(fd, ".", 1) <0)
goto error;
if (nwite(fd, aLine, length) < 0)
goto error;
if (nwite(fd, "\015\012", 2) < 0)
goto error;
error:
(*gErrorFunc) ("Wite error", NULL);
return O;

Both these sending routinesuse nwr i t e, a utility routine that does our writing:

static unsigned int nwite(int fd, char *ptr, unsigned int nbytes)
{

unsi gned i nt nleft;

i nt chunk;

i nt nwitten;

nl eft = nbytes;
while (nleft > 0) {

if (nleft > 0x7000) chunk = 0x7000;
el se chunk = nleft;

nwitten = wite(fd, ptr, chunk);
if (nwitten <= 0)
return(nwitten); /* error */

nleft -= nwitten;
ptr += nwitten;
}
return(nbytes - nleft);

}

This routine loops through, calling write over and over until all the datais sent. For sockets, the write routine

may not send al the data you request. A lesser amount may be al that will fit in a packet.
Testing the Linux application

Testing was simplified because the Linux machine is on a network with afull-time connection to the
Internet. Therefore, we have no time delays in making a connection. (If it hadn't had a full-time connection,
we could have run an SMTP server on the Linux machine and run standalone, with no connection to the
Internet.)

We used the Linux source-level debugger, GDB, to step through the original code. We also fixed some
errorsin our original attempt.

Porting the Linux application to Palm OS

Now let'stake alook at what it will take to port the Linux application to the Palm OS world. The sendmail.c
requires only one small change in order to work under the Palm OS. Another couple of changes need to be
made to the include files for the Palm OS, asthey are dlightly different. We use sys_socket.h instead of
sys/socket.h. No other changes to the guts of the application, sendmail.c, are necessary:

#i fdef |inux

#incl ude <sys/socket. h>
#i ncl ude <netdb. h>
#include <netinet/in.h>
#i ncl ude <arpalinet.h>
#el se

#incl ude <sys_socket. h>
#endi f

We need to handle the user interface of a Palm OS application. We won't use the command-line interface of
the Linux application. In our main source file, PilotSend.c, we must include NetMgr .h, declare
AppNet Ref num and defineer r no:

#i ncl ude <Net Mgr. h>

extern Word AppNet Ref num
Err errno; /1 needed for Berkely socket interfaces

We havefairly primitiveer r or and st at us routines; all they do is put up an alert:

static void MyErrorFunc(char *error, char *additional)

{
FrmCustomAl ert (ErrorAlert, error, additional ? additional : "", NULL)

}

static void MyStatusFunc(char *status)

{
}

FrmCustomAl ert (StatusAlert, status, NULL, NULL)

We also need anew utility routine that returns the text in afield:

/1 returns (locked) text in a field object

static char *GetLockedPtr(Wrd object! D)

{
FornmPtr frm = FrnGetActiveForm();
FieldPtr fld = FrnmGet Qbj ectPtr(frm FrnGet Qoj ectlndex(frm objectlD))
Handl e h = FI dGet Text Handl e(f I d)

if (h)

return MermHandl eLock(h)
el se

return 0

}

Here's the guts of the sending portion of our event-handling routine. Just asin the Linux version of the
application, we still call sendmai | to send the data:

if (event->data.ctlEnter.controll D == Sendnmai | Mai nSendBut t on) {

if (SysLibFind("Net.lib", &AppNetRefnum == 0) {
Wrd interfaceError;
Err error;
char *sntpServer = GetLockedPtr (Sendmai |l Mai nSnt pHost Fi el d) ;
char *to = GetLockedPtr (Sendmail Mai nToFi el d);
char *from = Get LockedPtr (Sendrai | Mai nFronfi el d) ;
char *subject = GetLockedPtr (Sendmail Mai nSubj ect Fi el d);
char *body = GetLockedPtr (Sendrai | Mai nBodyFi el d) ;

if (!sntpServer)
MyError Func("M ssing sntpServer", NULL);
else if (!to)
MyError Func("M ssing to", NULL);
else if (!from
MyError Func("M ssing froni, NULL);
else if (!body)
MyError Func("M ssing body", NULL);

else {
error = NetLi bOpen(AppNet Ref num & nterfaceError);
if (interfaceError !'=0) {

MyError Func(" Net Li bOpen: interface error”, NULL);
Net Li bCl ose(AppNet Ref num true);
} elseif (error == 0 || error == netErrAl readyOpen) {
if (sendmail (sntpServer, from to,
subj ect, body, MStatusFunc, MErrorFunc))
My St at usFunc(" Conpl et ed successfully");
Net Li bCl ose(AppNet Ref num fal se);
} else
MyEr ror Func(" net Li bOpen error™, NULL);

if (sntpServer)
MenPt r Unl ock(snt pServer);
if (to)
MenPt r Unl ock(to);
if (from
MenPt r Unl ock(from;
if (subject)
MenPt r Unl ock(subj ect);
i f (body)
MenPt r Unl ock(body) ;
}

el se
MyError Func("Can't SysLi bFind", NULL);
}

handl ed = true;
br eak;

The only additional networking code we need isacall to open the net library (Net Li bOQpen) and acall to
closeit (Net Li bCl ose). Notethat Net Li bCl ose does not immediately close the network connection,
but relies on the user's preferences for when to do so.

TCP/IP Summary

Y ou can see from this example that writing code that uses network services on the Palm OSisfairly simple.
A distinct advantage of Palm's implementation of the Berkeley Sockets APl isthat you can easily have code
that portsto many platforms. This also made it possible to write the data-sending portion of the email
program, the sendnai | function, on another platform where testing was easier. Very little was required to
get that email program up and running on the Palm platform after the Linux version was tested. We simply
had to give the Palm application a user interface, including error information, and put a new shell around the
data-sending portion of the code.

* Had we been willing to sacrifice a HotSync cable, we could have cut off the DB-9 end and soldered on a replacement Garmin
end. However, we weren't willing to make the sacrifice (although Figure 9-4 would certainly have looked less cluttered).

Y The NMEA 0183 protocol isadocument that is available only in hard copy form. It can be ordered from NMEA at (252) 638-

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! &

PRt

In this chapter:

Using POSE
Device Reset

Graffiti Shortcut Characters

Source-Level Debugging with CodeWarrior
Source-Level Debugging with GNU PamPilot SDK
Using Simulator on Mac OS

Gremlins

10. Debugging Palm Applications

There are avariety of useful tools to help you debug your Palm application. The best by far isthe Pam OS
Emulator (POSE). With it you can code, build, and test your handheld application, without ever leaving the
comfort of your desktop. Another useful tool is the strategic use of the reset buttons. There are a couple of
different forms that we discuss. There are also a number of hidden Graffiti shortcut characters that offer you
debugging aids and shortcuts.

Source-level debugging is available for both CodeWarrior and GNU PalmPilot SDK. This goes along way
toward making your debugging job easier. Using the Simulator on Mac OS is also worth a brief discussion
for those of you who will work on that platform.

Last, we discuss Gremlins-the useful testing creatures that bear not the slightest resemblance to fanciful
beings. Gremlins in the Palm world are little monkeys who bash about randomly on your code looking for
problems. Y ou may not like them, but you will find them very helpful for catching bugs you might otherwise
have missed.

Using POSE 'y

POSE emulates, at the hardware level, aPalm handheld. It emulates a Motorola Dragonball processor, a
display, and so on. Actual Palm OS handhelds also contain ROM-the emulator requires ROM, as well
(actually, afile containing a ROM image). POSE can emulate a 1.0, 2.0, or 3.0 OS device, depending on the
ROM you provide.

POSE is based on Copilot, an application written by Greg Hewgill. POSE is supported by Palm Computing
for both Windows and Mac (XPilot, a port of Copilot running under X Windows on Unix/Linux, also
exists). Better yet, source code is provided. Y ou are free to make changes, but if you do, please contribute
them to Palm Computing. Y our enhancements may be incorporated in the main code base, making life better
for everybody.

NOTE:

POSE can be downloaded from http://www.palm.convdevzone. Y ou should always check Palm's web site for the most
recent version, asthistool evolves rapidly. It also comes with the Metrowerks CodeWarrior for Palm OS. Versions of Copilot
are available, though not officially supported by Palm, for Unix and Linux. The Linux port is available at Red Hat Software
(http://www.redhat.com).

Debug versions of 2.0 and 3.0 ROMs can be downloaded from Palm's web site

(http: //mww.palm.com/devzone). These versions do extra sanity checking on calls; each can catch some
problems that would cause a crash on a nondebug ROM (or problems that don't cause an error today but are
still wrong).

Major Advantages to POSE

In our programming, we use POSE almost exclusively. Every once in awhile, we download to an actual
device for testing, but all the following reasons should make it clear why thisis aless attractive aternative:

POSE provides source-level debugging

If you have ever tried to work on a platform that did not have tools for source-level debugging (we have!),
you know how useful thisis.

POSE doesn't need batteries
We don't have to buy AAA batteries nearly as often.
POSE doesn't need cables to download an application

It can download an application directly from your desktop machine without a cable. (If you want to HotSync
with POSE, however, you need a cable.)

POSE can use the keyboard
Y ou can use the keyboard as an alternative to Graffiti.
POSE on a laptop is a self-contained environment

We've done development and testing at the beach, in the car, poolside, and in many other places where it
would have been very inconvenient to also have had a Palm OS device and associated cabling.

POSE detects bad programming practices

Though we personally don't need to worry about this, since there are never bugsin our code, POSE is great
for finding all sorts of violations. It lets you know if you are trying to access low memory, system globals,
screen memory, hardware registers, and unimplemented functions (okay, this one gets us occasionally).
Screenshots are a snap

It's easy to take screenshots (for product manuals or books!).

You can use POSE to demonstrate a Palm OS application

With an LCD projector, hundreds of people can see your application being demonstrated. If you don't know

that thisis an advantage, try displaying a Palm application running on an actual handheld to even two
people.

Future POSE Features

POSE is aheavily revised application, and you should always check Palm's web site for a current version.
This aso means new features are in the works for POSE if they haven't already been added. Here are some
of the forthcoming features that will be even more helpful for debugging:

Profiling

You'll be able to profile your code to determine where it is spending its time; almost a necessity for effective
optimizing.

Illegal access checking
Y ou can check for an application's accessing of any of the following memory locations:
- Low memory
- System globals
- LCD screen buffer
- Hardware registers
- Areas outside a heap block or the stack
Sack space
The emulator will check to make sure that the stack pointer doesn't exceed the space allocated for the stack.
Logging events

You will be able to keep alog of events, whether they are events in the event queue, alog of system or
application functions that are called, or CPU opcodes that get executed.

Memory block checking
Soon POSE should be able to do &l the following:
- Track memory leaks in an application
- Check for locked or busy database records when the application closes

- Fill newly allocated memory blocks with garbage to catch applications that don't properly initialize
their alocated memory

- Fill disposed memory with garbage to catch applications that attempt to reuse disposed memory

- Fill stack space with garbage when leaving a routine to catch applications that keep pointers to stack
variables that don't exist any longer

Minor Disadvantages to POSE
Though we hate to admit it, POSE is bad for certain things:

The speed isn't the same as on an actual device

POSE can be faster or much slower than an actual device, depending on the particulars of the desktop
machine on which it is running. (This makes optimizing wickedly difficult.)

Thisisn't the ROM on which your final application will run

Asaresult, you still need to test with the nondebug version of the ROM from an actual handheld unit. While
nondebug versions of the ROMs aren't available from Palm's web site, you can use POSE to copy the
(nondebug) ROM from your handheld. POSE comes with a handheld application that lets you upload a
ROM copy from your handheld to POSE. Even after testing with a nondebug ROM under POSE, you still
want to test on an actual handheld device.

Graffiti is harder to use

It's much harder to use Graffiti with a mouse (or touchpad) than it is with astylus. (Though, as we said, you
should see some improvement in future revisions.)

POSE doesn't contain support for infrared
This meansthat all beaming functionality must be tested with actual handheld devices.
Some current versions of POSE can't reliably do serial communication

We've had problems with 2.0b3 on both Windows and Mac OS on al machine configurations. A good test
for serial communication isto hook up a modem and attempt a dial-up TCP/IP connection; if POSE cannot
do this on your machine, it will have problems with the serial communication code that you write. If you
happen to be a serial communication wizard, please check to seeif this has been fixed; if not, consider fixing
it and giving back the changes!

Cross-Platform Capabilities

POSE is available for both Macintosh and Windows and both platforms share quite arange of capabilities.
POSE on Mac and Windows can:

o Reset

HotSync

Load an application or PDB file

Upload a copy of the ROM from adevice

Save a copy of the screen as afile (the Windows version saves in .BMP format; the Mac version saves
in PICT format)

o Do automated testing with Gremlins (see Figure 10-9)

There are settings that control the following:

RAM size

Emulate the 128K of the original PalmPilot, or be the first on your block to run with 8MB of RAM!
Screen doubling

Y ou can run with one pixel stretched to two pixelsin either direction. This can make it easier to see little
bitty controls and edges of things that aren't refreshing properly.

Communications port settings

This controls the emulator's connection to the available desktop ports.

Mac OS Jecific Commands
The Mac version has al commandsin a menubar (see Figure 10-1).

-Figure 10- 1. Palm OS Emulator on Mac OSwith commandsin menu

1 rie | Gremlins Help

Close Emulator oW | .
LGLA UL L Palm OS™ Emulator 3=

HotSync #H

Dpen Memory... 0 AT Ry
Save Memory i3

Save Memory As...

Save SCreen.. HM

Load Application... #L
Download ROM... D
Preferences.. ws

Quit %0

Windows-Specific Commands

The Windows version has all commands in a pop-up menu. Right-click on the POSE window to pop-up the
menu (see Figure 10-2).

Figure 10- 2. Palm OS Emulator on Windows with commands in pop-up menu

Palm 0S*Emulator =

:éiﬂﬂ: “:;ol:rm Elu%uk
O @ €

Merno Fod pllrc test Frafs

Sequrity T Do Lt Beset

About Palm 05 Emulates
Propeite:

Once you have used POSE for awhile, we think you will find it hard to imagine how you could have done
handheld development without it. It isavery useful development and debugging tool.

Device Reset -ﬁ

Now it istime to move back to a discussion of things on the handheld. There are a couple of different kinds
of resets that can be done to your Palm device:

Soft reset
Thisis done by pressing the reset button with a blunt instrument, like an unfolded paper clip. Thisresets the

dynamic heap but not the storage heaps, so no datais lost. Each installed application receives the
sysAppLaunchCndSyst enReset launch code.

Hard reset

Y ou do this by pressing the reset button while holding down the power key. Y ou are provided with the
option to erase everything in RAM. If you choose it, everything in RAM is erased, including all your data.

Debug reset

By pressing the reset button while pushing the down-arrow key, you get a debug reset. This puts the Palm
device into debug mode. Y ou see a flashing box in the upper |&ft.

No-notify reset

This happens we you press the reset button while holding down the up-arrow key. The OS boots without
sending reset launch codes to each application. Thisis essential to use if you've got a bug in your
Pi | ot Mai n (like trying to access globals without checking the launch code).

NOTE:

It's not uncommon to accidentally access globals when you shouldn't in your Pi | ot Mai n (typically by not
checking the launch code, for example). Y ou can get into a vicious cycle in such cases. After areset, your application is sent the

sysAppLaunchCndSyst enReset launch code, at which point you access globals, at which point you
crash and cause areset, and so on, and so on, and so on.

NOTE:

The solution to this vexing problem is to use the no-notify reset, which allows the device to successfully

boot. Now you can delete your application, fix the Pi | ot Mai n, and download anew version. Of course, a hard reset
would also solve the problem, but the cure would be worse than the disease.

Graffiti Shortcut Characters .&

There are a number of hidden debugging aids that you can access using the Graffiti shortcut mechanism.

NOTE:

These debugging mechanisms can drain your battery quickly or cause the loss of all your data. Use them
judiciously.

The Graffiti shortcuts are accessed by writing the Graffiti shortcut character (acursive lowercase L)
followed by two taps (the two taps generate a dot, or period), followed by a specific character or number. It's
common to open the Find dialog before writing them. (Find has atext field that's available in all
applications, and it's nice to have the feedback of seeing the characters as you write them.) Hereisa

complete list of these shortcuts:
A1

Enters debugger mode. The device opens the serial port and listens for alow-level debugger to connect to it
(for example, the unsupported Palm Debugger application). Do a soft reset to exit this mode.

A2

Enters console mode. The device opens the serial port and listens for a high-level debugger like
CodeWarrior to connect to it. Do a soft reset to exit this mode.

A 3

Turns off the power auto-off feature. The device does not power off after idle time (although the power key
still works). Do a soft reset to exit this mode.

A 4
Displays the user's name and random number.

A 5

Erases the user's name and random number. On the next HotSync, this device appears to be a never-before-
synced device. Syncing to an existing user recognizes all the records on the device as new; thus, they are al
duplicated for the existing user on the desktop and handheld.

A 6
Displays the ROM build date and time.
A 7

Switches battery profiles from akaline to NiCad (theoretically to adjust when the battery warning alerts
appear). We didn't find this to be very effective.

At

Toggles loopback mode on and off for the Exchange Manager. This alows loopback mode testing even for
applications that haven't set thel ocal Mode field to true in the ExgSocket Type structure (like the built-
in applications, for instance). See " Send an entry” on page 239 for information on initializing the
ExgSocket Type structure.

A s

Toggles between serial and IR modes on the device. In serial mode, information that would normally be sent
viainfrared is sent viathe serial port. Thisworks on aPalm I11 device with a built-in IR port, but may or
may not work on an OS 3.0 upgraded unit that has an IR port on the memory card.

Source-Level Debugging with CodeWarrior B

CodeWarrior can do source-level debugging either with a handheld (attached via a serial cable) or with

POSE.

In either case, you've got to enable source-level debugging with Enable Debugger from the Project menu.
(Thisisatoggle menu item, so if it says Disable Debugger, debugging ison.)

Choosing a Target

Y ou need to tell CodeWarrior whether you are using POSE or the handheld; then it needs to acquireits
target.

Using POSE

To use POSE, select Palm OS Emulator from the Target pop-up menu in the Preferences dialog box (see
Figure 10-3).

Figure 10- 3. Selecting optionsfor debugging using POSE

:EQIDE Preferences

E IDE Preferenca Panels H Palm Connection Seltigs:
- Genara 'ﬁ
Build Settings Target: (Falm 05 Erudator =
IDE Estras I
Ky Bindings Iﬁ
= Edibor
Browszer Coloring W Alweays Launch Emulator
Editor Sedtings Emulstor [D\380730_Cw_PalmDS_RS\Palm 05 Emulslon]| Chooss. . |
Fork & Tabsz
Gyrkan Colaing Launch Parameters
= Debugge [T syatipplaunchFlaghewSiack ™ spebpplaunchFlagh ewGiobals
Dizplay Setlings
Global Seltings ™ spstipplaunchFlaghiewThread
Palm Connection 5
[+ Alwaps Download Application to Device
[v Show Paim OS5 menu

Factary Sestings | Ryt Panel | Save

In order to debug, POSE has to be running. When you choose Debug from the Project menu, CodeWarrior
automatically downloads the PRC file to the Emulator and stops at the first line of the program.

Using a handheld

To use the handheld, specify the target as Palm OS Device in the Preferences dialog box (see Figure 10-4).
When you choose Debug from the Project menu, CodeWarrior prompts you to enter console mode (see
Figure 10-5). At that point, use shortcut .2 on the handheld, and click OK in the CodeWarrior dialog box.
CodeWarrior then automatically downloads the PRC file to the device and stops at the first line of the

program.

Figure 10- 4. Specifying the device asthe target in the Preferences dialog box

EQIDE Freferences ﬂ E
E IDE Prafesence Fanalz E Falm Connechion Setbgs
- General lﬁ
Buald S ettings Tanget: |Palm 05 Devica =
IDE Extras Emnanlimm
Fep Bindmgs l
o Editer Baud Rate: (576 ~
Browvessr Colaiing ™ - _
Editor Selbngs Emulator I
Fork & Tabs
Syrtax Coloring Lavrch Farametars
= Debugger I spstpplaunchFlaglewStack ™ spsépplaunchFlaghewGiobal:
Digplay Setlings
Global Seltings ™ sysipplaunchFlaghewTheead

[0 ST EnT BT =
[« Elwaps Dowrload Application o Device

W Skhaow Palm 05 manu

Figure 10- 5. CodeWarrior prompting to enter console mode

Metroweiks Code'w amion |]
Console Mode

O Face the Palmos Device in Consoie Mode

uging Shodout’ .. 2
e

Debugging Commands
Figure 10-6 shows CodeWarrior source-level debugging in action. With it you can do all of the following.
o Control execution of the program
- Set and remove breakpoints
- Single-step (step into and step over)
- Step out
o View variables and memory

Figure 10- 6. Debugging in CodeWarrior

File Ec Geach Pwiecl Debsg Daln Windoew Pamis Hep
BB &oT oo ol G WA= SR [el

T = |
o]r (=] [z T ol
J ! ! =ize=lrdhic =
Y amnclz] card D=0
r—— TR L. dbID=0xliel 2d
VP
handisd 1]
1o =]
0w POCATERY Fror Doz abciE wurd
s D004 ML) Frovll g asdoid vmrd . [
L L [el
e — Hrvustie hs o
S:hrnoe DohT it SachSine o p—— ST ABIT]
. . sTyps el venl 0 @3
Boolean kandled = [al
FrenPiy [rwP pedllas 0 -
oA, 7 -
]
-) el TR _L""I_I
it F | mrwmn P T e 4 dais [T v fa
Tl e | a
pare b 1Ly (eventP-sdats menu. iten _| {Word command) I
came EralpemErent ~
fruF » FraCathictiveFors|)
i IzmP}
by FralravFors | IrmFP)
kamdled = frme;
ol Line 248 | Sosee w4 | _-|J tws (1)
o hardled I
i hencled
)
Lirac 285 1] | v}

While you are debugging, a console window is available to you. From the Palm OS menu, choose the Open
Debug Console menu item to open this window. In this command-line-oriented window, you can issue

commands to the device (or emulator) in order to obtain information about memory and databases and to
export databases.

NOTE:

To execute linesin the console window, use the Enter key on the numeric keypad, not the Enter key on the
main keyboard area.

Common debugger commands are:

help

Displays alist of all commands.

help command

Displays help for the specified command.

dir O

Lists all the databases on card 0. Thisis useful to see whether your application’s database or databases exist.
ht heapNumber

Displays a summary of the given heap. A heap number of 0 specifies the dynamic heap. Here's example
output (note that it shows the amount of free space available):

Di spl ayi ng Heap | D: 0000, napped to 00001480

Heap Summary

flags: 8000

si ze: 016B80

nurHandl es: #40

Free Chunks: #7 (01204A bytes)

Movabl e Chunks: #4 (0004E4 byt es)

Non- Movabl e Chunks: #39 (0045A2 byt es)
hd heapNumber

Displays not just a summary, but all the chunksin aheap. A heap number of 0 specifies the dynamic heap.
This alows you to see which chunks are where, which are locked, which are unlocked, etc. It's not necessary
to see the heap in such detail very often, however.

Source-Level Debugging with GNU PalmPilot SDK B

The GNU tools can't debug an application running on the handheld. Y ou only have POSE available to you.
To debug:

1. Compile and link your application with the - g flag.

2. Run POSE and load your application.

3. Run an intermediary application called gdbplug, which communicates via TCP/IP to GDB. It
communicates with POSE using a POSE debugging protocol. See http://www.tiac.net/user s'thomas/pil ot-
gdbplug.html for documentation and the latest version.

In a separate DOS window, run:

gdbpl ug -port 2000 -enable

4. Run GDB. Pass as a command-line argument your linked file, not the PRC (if your application is foo, pass
foo as the parameter, not foo.prc):

n68k- pal nos- cof f - gdb your_linked_app

5. Within GDB, specify the PamPilot as atarget by executing:

target pilot |ocal host: 2000
6. Within POSE, start your application. GDB stops at the first line.
Here are the most important commands that GDB supports:

print expressionToPrintl, ..., expressionToPrintN

Use the print command to look at the values of variables. Here's an example:

print *nyStructPtr, theString[5], nyQ herStruct.x
backtrace

Prints a stack crawl, showing each function in the stack, including parameter names and values.
step

Single-steps, stepping into functions.

next

Single-steps, stepping over functions.

cont

Continues running the program until it reaches a breakpoint, causes an error, or exits.

break funcNameOr LineNumber

Sets a breakpoint. You can break at afunction:

break MyFuncti on

Or you can set a breakpoint at a specific line number in afile:

break MyFile.c: 16
quit

Quits the program. If the program is still running, you are prompted for GDB to automatically quit it (by

resetting POSE).

help

There are, of course, many other functions. Use help to find out more about them all.

GDB is atext-oriented debugger, where commands and responses to commands are interleaved (Figure 10-7
shows an example of GDB running). GNU PalmPilot SDK comes with the Emacs text editor. Emacs can be
used as an Integrated Devel opment Environment (IDE) that can control the debugging process. Asyou
debug, Emacs makes sure that the source file with the current line is always displayed, and it provides some
menu commands that can be used instead of typing into GDB.

Figure 10- 7. GDB debugging an application

Using Simulator on Mac OS 2

CodeWarrior running on the Mac OS has a feature not found on the Windows version: the Simulator. The
Simulator consists of some libraries that contain a subset of the Palm OS. These libraries are hosted so that
they run on the Mac OS. When you create a Simulator version of your application, you actually build aMac
OS application that ssimulates a Palm OS application. It does not simulate the entire PaAlm OS, only your
application-no other applications are present. Figure 10-8 shows a Simulator application running.

Figure 10- 8. Datebook running asa Simulator application on Mac OS

« File Window HReplay Gremlin Serial Panels Help

FalmPilot Simulator

[(Few) (Detoie] (Go'ts) 4

|@®8®0|

Before POSE was available, the Simulator was an almost indispensable tool. Like POSE, the Simulator
doesn't require a Palm device to be connected. It also allows debugging applications that use seria
communications (tough to do if you're debugging with the device itself and have the one-and-only seria port
connected to the debugger).

Now that POSE is available, however, the Simulator is much less useful. In fact, we don't use it anymore.
We can think of only one advantage that the Simulator has compared to POSE-it is faster. On a reasonably
fast Mac OS machine, POSE is quick enough, so the speed isn't much of an issue.

Gremlins .&

There are two approaches to testing software, which can often be used in a complementary fashion:

o Functionality testing-careful systematic testing on afeature-by-feature basis, making sure everything
works as advertised.
e Bashing on it-an ailmost random use of the software to make sure it doesn't break when stressed.

Gremlins does the second sort of testing. Imagine, if you will, avery inquisitive monkey given a Palm OS
device with your application on it. The monkey grabs the stylus and starts tapping away. Let's ook at some
characteristics of the monkey:

o It'sespecialy attracted to buttons, pop-ups, and other active items on the screen. It tapsin nonactive
areas on the screen but not very often; it likes active aress.

o It'saliterate monkey that knows Graffiti. It inputs Graffiti characters-sometimes garbage runs of
characters but occasionally fragments of Shakespeare.

e It'shyperactive. On one of our machines, it can do 1,000 events in 30 seconds.

o It'swell-behaved. If told to debug a certain application, it won't switch out of that application.

Y ou start a Gremlin from the Gremlins dialog of POSE by selecting New from the Gremlins menu. In this
dialog you specify which Gremlin you want to use and on what application (see Figure 10-9). Y ou get to
choose from 1,000 of them, each of which acts dlightly differently in terms of the eventsit generates.
Looking at Figure 10-9, you see that we've specified our own Sales application to test. Y ou can also specify
the entire device to check for problems between applications.

Figure 10- 9. Gremlins dialog box, where you select the application and Gremlin number

Mew Gremlin

Grerrlln nurbes 0 Choose applcation 1o launch:
40-299: Entire Palf DS device
Murrber of STeps |:| Acdress
{-1= foreverk Calc
0 o) Daite Book

Log postediretrigved avents Experie
[Log swsrermn calls HotSme

) Ttall
[Display elapsed time Merma Pad
Prefs

Security
Ta Do List

‘ | T ‘

Gremlins goes to work by generating events and causing your application to respond to them. It generates
pen-downs (mostly on active areas), inputs keys, and does everything a user could do. You'll find, however,
that it will end up exercising parts of your program you'd never tested: fields with more characters than you'd
anticipated or more records than you'd planned for (to the extent that the entire data heap will probably be
filled).

Here are the various things you can specify for Gremlins:

¢ You can choose a Gremlin number (each does the same thing every time you run it).

¢ You can choose an application (from among those installed), and the Gremlin will not exit that
application.

¢ You can specify the number of eventsto run (it's not uncommon to have a bug that shows up only
after hundreds of thousands of events).

Figure 10-10 shows the dialog that occurs after the Gremlinsrun isover. Y ou have to request it, however, in
theinitial-run dialog box by selecting "Display elapsed time.”

Figure 10- 10. Dialog shown after a Gremlinsrun with " Displays elapsed time" chosen

Palm DS Emulator E o =]

.

¢ _;l Gremlin 2 stopped at 101 of 100 after 12841 mescs

If you encounter an error while running Gremlins (asis often the case), the dialog box shown in Figure 10-
11 tells you about the problem.

Figure 10- 11. Gremlin error dialog failing on the 971st event; clicking the Debug button drops you into the debugger

€ ‘ﬁg Sales 1.1 has failed while Funning Gremlin O after 271 events

u Sales compleing “Formoc, Line: 1281, Object not in form™. I thia

T s the Tatest version of Sales, plesze report this to the application
author

| Reset || Debug |

If you choose to "L og posted/retrieved events' (see Figure 10-9), POSE creates afile (named Event Log
#n.txt, where n increments on every run). Thisis useful if you want to know how far Gremlins got before an
error occurred, or to find out events that happened before the error. Here's an example output:

Genmlin #2 started, 10 steps.

>>> Evt EnqueueKey: ascii = 0x007C, keycode = 0x0000, nodifiers = 0x0000.
<<< 0: keyDownEvent Key:'|"' Ox7c, Modifiers: 0x0000
>>> Evt EnqueuePenPoi nt: pen->x=99, pen->y=150.

<<< 1. penDownEvent X: 97 Y: 136

<<< 1: ctlEnterEvent I D: 10307

>>> Evt EnqueuePenPoi nt: pen->x=91, pen->y=157.

<<< 2: EvtGetPen: screenX=89, screenY=143, penDown=1.
>>> Evt EnqueuePenPoi nt: pen->x=156, pen->y=87.

<<< 3: EvtGetPen: screenX=154, screenY=73, penDown=1.
>>> Evt EnqueuePenPoi nt: pen->x=-1, pen->y=-1.

<<< 4: EvtGetPen: screenX=154, screenY=73, penDown=0.
<<< 4: ctl Exi tEvent

<<< 4: penUpEvent X: 154 Y: 73

>>> KeyHandl el nterrupt: periodi c=0, status=0x00000020.

>>> Evt EnqueueKey: ascii = 0x0069, keycode = 0x0000, nodifiers = 0x0000
<<< 6: keyDownEvent Key:'i' 0x69, Modifiers: 0x0000
>>> Evt EnqueueKey: ascii = 0x0079, keycode = 0x0000, nodifiers = 0x0000
<<< 7: keyDownEvent Key:'y' 0x79, Modifiers: 0x0000
>>> Evt EnqueueKey: ascii = 0x0044, keycode = 0x0000, nodifiers = 0x0000
<<< 8: keyDownEvent Key:' D 0x44, Modifiers: 0x0000
>>> Evt EnqueueKey: ascii = 0x0065, keycode = 0x0000, nodifiers = 0x0000
<<< 9: keyDownEvent Key:'e' 0x65, Modifiers: 0x0000
>>> Evt EnqueueKey: ascii = 0x0020, keycode = 0x0000, nodifiers = 0x0000
<<< 10: keyDownEvent Key:' ' 0x20, Modifiers: 0x0000

Genmin #2 stopped at 11 of 10 after 378 msecs.

If you request "Log system calls," the system calls that are executed are output. Here's a portion of output
where logging was requested (some of the lines were removed for brevity):

Genlin #2 started, 5 steps.

--- System Call OxA2C9: SysEvGroupSignal .
- System Call 0xA08D: SysDoze.
- System Call 0xA23F: Hwr Doze.

- System Call 0xA2C9: SysEvG oupSignal .

- System Call OxAOA5: SysDisablelnts.

- System Call 0xA0A6: SysRestoreStat us.

- System Call OxAl12E: EvtDequeueKeyEvent.

-- System Call O0xA23A: Al nDi spl ayAl arm
- System Call OxA2CB: SysEvG oupWait.
>>> Evt EnqueueKey: ascii = 0x007C, keycode = 0x0000, nodifiers = 0x0000.

- System Call O0xA2C9: SysEvG oupSignal .

- System Call OxAOA5: SysDisablelnts.

- System Call 0xA0A6: SysRestoreStat us.

- System Call OxAl12E: EvtDequeueKeyEvent.

-- System Call 0xA272: PenRawToScr een.
- System Call 0xA20D: W nDi spl ayTow ndowPt .

Logs are verbose; it's not uncommon to have an average of 10K per event when both types of logging are
enabled. Rather than growing the log without bounds, POSE reuses log files that reach 128K. Thus, only the
last 128K of log information is saved. A nice refinement, we think.

Gremlins and Gadgets

Gremlins generate pen taps almost exclusively on active areas of the screen: buttons, fields, lists, places
where there are form objects. This also means that areas of the screen where there are no form objects are
almost completely ignored. Y ou can take advantage of this behavior in your application if you wish. A good
testing technique can be to place an empty gadget in an area of your screen where tapping does something;
thisway, you will grab the Gremlin's attention, and it will do some tapping there.

Using Gremlins Repeatedly

One very nice thing about Gremlinsis that even though each Gremlin (of the 1,000 different ones) hasits
own sequence of eventsthat it generates, a specific Gremlin always generates the same sequence of events.
Thus, if you run Gremlin 5 and find that, on a fresh POSE with your application just loaded on it, your
application crashes after event 3006, every time you run that Gremlin with the same starting configuration,
the crash happens. We're sure you'll appreciate the ability to reproduce the bug easily.

Other Advice

Make sure you start your Gremlins run in a known configuration. Have a known amount of memory
available (best done by starting with afresh RAM file with POSE by deleting the old RAM file). Let
Gremlins launch your application (so that from the beginning your application is receiving events from
Gremlins).

Test your application with Gremlins set to generate one million events (start it before you go home at night).
That's enough to catch almost anything. Y ou certainly don't need to try each of the 1,000 different Gremlins.

Start with just numbers 0 and 1.

Run Gremlins while your source-level debugger is active. That way, if and when your application crashes,
you can drop into the debugger and see what's going on. If you can't tell what's going on at the error,
Gremlins does provide the ability to step event by event. The log shows the event number at which the error
occurs. You can run Gremlinsuntil 5 or 10 events before the error. Then you can step event by event until
the error occurs. Thismay give you a better context to figure out what's going on.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

T T L LR

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! |

crammcich
1]

|11. Designing Conduits

You get adetailed look at conduits in this section-everything from a complete description of the parts of a
conduit to development platforms for conduits and code walkthroughs. Chapter 11, Getting Sarted with
Conduits, starts with the big picture and ends with the code for the shell of a conduit. Chapter 12, Uploading
and Downloading Data with a Conduit, takes this a step further; you see how to upload and download data
between the desktop and the conduit. Chapter 13, Two-Way Syncing, shows you a conduit that uses full-
blown data syncing, with exchange of data depending on where it has last been modified. The chapter covers
two very different ways of creating this type of conduit. Chapter 14, Debugging Conduits, shows you how to
debug the conduit you just finished creating. Last, in the appendix, Where to Go From Here, we tell you
about some useful resources for Palm programming.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PaaPaaac

Thispage intentionally left blank

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! &

PRt

In this chapter:

Overview of Conduits

Registering and Unregistering a Conduit
Conduit Entry Points

The HotSync Log

When the HotSync Button Gets Pressed
Using the Backup Conduit

Creating aMinimal Sales Conduit

11. Getting Started
with Conduits

It istime to discuss conduits-what they do, how to create them, what's involved in getting a minimal conduit
working. It would also help if you understood (codewise) what happens when a Palm device is plopped into
a cradle and the user pushes the HotSync button.

NOTE:

Thisisuseful if you want a detailed understanding of what happens when your conduit codeis called, and
how it interacts with the Sync Manager to perform its tasks.

We take a brief detour to discuss the types of applications that can profitably use the Backup conduit (a
conduit that ssmply archives application data on the desktop). We also show you the code changes required
to do this. Last, we create an actual conduit. As you might imagine, we build a conduit for the Sales
application using Visual C++. This conduit doesn't do much; it just writes a message to the log file.
However, it's still quite useful. You can see very easily what isinvolved in creating aminimal conduit and
what it takes to get to the point where syncing is ready to begin.

Overview of Conduits .&

A conduit can be simple or complex, depending on the job it has to do. Regardless of its complexity, you
create it in the same way-a conduit is a desktop plug-in made in a desktop development environment. This
isn't code that runs on the Palm handheld, but an executable library that runs during the HotSync
synchronization.

What Does a Conduit Do?

A conduit is responsible for the application's data during a synchronization between the handheld and a

desktop computer. The conduit needs to:

Open and close databases on the Palm device.

Determine whether data should be uploaded only, downloaded only, or some combination of both.

Appropriately add, delete, and modify records on the handheld and on the desktop.

Be able to work within a multiuser environment where more that one Palm handheld may be syncing

to the same network or desktop computer (though not necessarily at the same time).

o Convert the datain the application's database records to appropriate data structures on the desktop
compulter.

o Optionally, though usually recommended, compare records so that only modified records are synced.

Y our conduit is responsible for saving the data on the desktop in whatever way makes sense. If your conduit
syncsto afile for a desktop application, it needs to read and write datain that application's file format. Y our
conduit may read and write records from a database on the desktop or some database on the network. Asa
result, each conduit handles storing and retrieving desktop data differently.

There are three broad categories of conduits:

Upload- or download-only

Conduits that just copy a database to or from the handheld.

Mirror-image record synchronization

Conduits that do atwo-way synchronization. The conduits for Address Book, Memo Pad, and To Do are
examples.

Transaction processing
Conduits that do some sort of processing of records but aren't doing a mirror-image synchronization. A good

example might be an order entry application on the handheld that sends transactions out the conduit to be
processed on the desktop.

Conduit Development on Windows
At the current time, conduit development is only possible on Windows 95/98/NT. Releases of the Conduit
Development Kit (CDK) in the very near future will see this change, but for now we are discussing only
Windows.
CDK 3.0
At the time this book was written, the final version of CDK 3.0 had not yet been released. We, of course, did
the logical thing and used the beta version. As aresult, our information is based on that and on the planned
content of the final version.
Thefinal version should include the following important features:

e A wizard for creating conduits

e The ability to use languages other than C++ (C rather than C++ or Visual Basic, for example)
e The ability to use compilers other than Visual C++ (Borland C++, for example)

NOTE:

Conduits developed using the older 2.1 version of the CDK work with both the PalmPilot Desktop 2.0
(shipped with the PalmPilot and PalmPilot Pro) and the Pilot Desktop 1.1 (shipped with various versions
of the Pilot 1000 and 5000). 2.1-based conduits are a'so upward compatible with Palm Desktop 3.0
(shipped with the Palm I11).

Certain new features of Palm Desktop 3.0 are only supported for conduits created with CDK 3.0. The major
new featureis File Linking, which provides away to copy information from an external file to a separate
category. An example of thiswould be as part of syncing to a user's personal address book on the desktop, to
copy entries from a company-wide address book to a special category on the handheld. There are some other
slight API changesin 3.0.

Conduits created with CDK 3.0 are generally backward-compatible with older versions of the desktop
software, although the new API calls can't be called in earlier versions (your application can make a call to
find out what version of the APIsis available).

Using Visual C++

The betaversion of CDK 3.0 requires Visual C++ 5.0 or later running on Windows 95/NT or later. We use
Visual C++ 5.0 to create our Sales conduit.

Using Java

Using the CDK Java Edition you can aso create a conduit using everyone's favorite caffeinated devel opment
language.

This CDK supports development using Visual J++ or Symantec Visual Cafe for Java.

We don't cover creating Java conduits in this book.

NOTE:

Although other Java development environments aren't officially supported, it seemsto us that they should
work. Remember, however, this is advice coming from people who haven't actually used these products.

Conduit Development on Macintosh

Asthetime of this book's writing, the CDK C/C++ version for Macintosh was still in itsinfancy (read: an
amost unusable aphaversion). When Pam finishes the Mac OS HotSync Manager and this devel opment
kit, you will be able to create conduits on Macintosh using CodeWarrior for Macintosh, developing in
C/C++. Hopefully, by the time this book isin your hands, it will be out. See http: //www.palm.com/devzone
for the status of this project.

Required Elementsin a Minimal Conduit

In alittle while, we will show you how to create a minimal conduit. That conduit will contain afew essential
elements that we want to tell you about now:

A mechanism for installation and uninstallation

Different versions of the CDK require different mechanisms for registering and unregistering your
application.

Three C entry points

One entry point registers the conduit's name, another its version number, and the last serves as an entryway
into the conduit.

Log messages

Y ou need to provide log messages to the user. Among other things, you must tell the user whether the sync
was successful or not.

Wefirst ook at installation and uninstallation issues and then discuss the entry points. Last, we discuss log
messages.

Registering and Unregistering a Conduit 2

Before the conduit can be used, it needs to be registered. Thisis how the HotSync Manager application
knows that it exists and knows which databases the conduit is responsible for syncing. Depending on which
version of the CDK you have, there are differences in what you do to register. We talk about the old,
difficult way and then the new improved methods.

The Old, Ugly Way

Inversion 2.1 (and earlier versions) of the CDK, this registration was done by adding entries to the Windows
Registry. Unregistration required removing entries from the Registry (and possibly renaming existing
entries). Further, this process for adding entries was fragile-one developer modifying the registry incorrectly
could cause some or al of the other conduits to fail.

These troubles only increased during the acquisition frenzy, when the keys used for the Windows Registry
by various versions of HotSync Manager and the Desktop Manager changed from Palm Computing to U.S.
Robotics.*

Conduits then needed to be aware of various registry keys and needed to perform a careful set of steps when
registering and an even more careful set when unregistering.

The time was ripe for a better approach to registration.

The New, Seek Way

The Conduit Manager, provided as part of Palm Desktop 3.0 and as part of the 3.0 version of the CDK,
contains an API for registration and unregistration. It knows about the various versions of HotSync, the
different keys used in the Windows Registry, and the careful steps needed for registering and unregistering.
The Conduit Manager functionality is provided in a DLL that ships with the new version of the Palm

Desktop. Aswe discuss later in "Finding the Correct Conduit Manager DLL," you also need to include the
DLL as part of your installer.

The 3.0 version of HotSync Manager continues to use the Windows Registry for the sake of older conduits
that don't use the Conduit Manager. Y ou should expect, however, that future versions of HotSync may not
use the Windows Registry at all.

Aslong as you use the Conduit Manager, you'll be shielded from any such changes to the underlying registry
mechanism.

CDK 3.0-Information Needed to Register

There are different types of entries that you need to have in order to register a conduit. Some are required;
others are optional.

Required conduit entries

The following entries are required to register a conduit:

Conduit

The name of the conduit DLL. If this entry doesn't include a directory, the name must be found in the
HotSync directory or current PATH; otherwise, it should include the full pathname to the DLL. (Generally,
you keep your DLLsin the HotSync directory.) If your conduit iswritten using Java, this entry should be
"JSync.DLL", a C++ shim that trandates between C++ and Java.

Creator

The four-character creator 1D of the database(s) your conduit is responsible for. Y our conduit will be called
during aHotSync only if an application with this creator 1D exists on the handheld.

Directory

In the HotSync directory, each user has a subdirectory. Within each user's directory, each conduit hasits own
directory where it can store files. This string specifies the conduit's directory name.

Optional entries

The optional entries are more numerous. They include the following:

File

A string specifying afile (if the string doesn't include a directory, it is assumed to be within the conduit's
directory). Thisisintended to be the local file that the conduit will sync the handheld against. However, your
conduit is not restricted to using only this file (some conduits may need to read/write multiple files on the
desktop).

Information

A string that provides information about your conduit. This string can be used to resolve conflicts. If more
than one conduit wants to handle the same creator 1D, an installation tool could display this string and ask
the user which conduit should be used for syncing.

Name

A string that is the user-visible name of the conduit.

Priority

A value between 0 and 4, this controls the relative order in which conduits run. Conduits registered with a
lower priority run before conduits registered with higher priorities. If you don't set this value, the HotSync
Manger uses adefault value of 2 for your application.

Remote DB

A string specifying a database name on the handheld. This string is provided for you to use in your conduit

when it runs; your conduit isn't required to use it, however.

Username

The name of the user for which this conduit isinstalled. Note that this entry is not currently used.
Java-only entries

Finally, there are entries relevant only if the conduit iswritten in Java:

Class name

The name of the Java conduit class (including package).

Class path

The directory that contains all the classes used by the Java conduit.

VM

Specify "Sun" for the Sun Java Virtua Machineor "MS" for the Microsoft Java Virtual Machine. Thisis
provided since some Java code is, unfortunately, sensitive to the virtual machine on which it runs.

Registering and Unregistering Manually
Using CondCfg

Along with the Conduit Manager DLL is an application, CondCfg, that uses the Conduit Manager (see
Figure 11-1). This application displays all the registered conduits and allows you to register conduits, change
registered information, and delete conduits.

Figure 11- 1. CondCfg-a developer utility for registering and unregistering conduits

' Corduil Configuration I
| ‘iewe Conduts I Views Motifiess | HolSyne Selfinge..
Creator Condhl M ame

date) datcn2B.dll

addr addcnZB.dll

todo dvposcondytodend21ydebugitodon:
memo memcnZB.dll

Sles C:hSalesCondyDebughSalesCond . .DL

&dd .. Eqt

Y our end users won't use or even see CondCf g, however, as you automate the conduit registration process
as part of installing and uninstalling it on the desktop.

Automatically Installing and Uninstalling
a Conduit

A small command-line program (Conduitlnstall.exe) is going to install and register our conduit. We use a
separate one (ConduitDeinstall.exe) to uninstall.

Installing the conduit

As Conduitlnstall.exe executes, it makes calls to the Conduit Manager API to install and register our
conduit. It also needs to make calls to the three required entry points of the conduit (Condui t , Cr eat or,
Di r ect ory) and to any of the optional entry points we want to set.

NOTE:

We use Conduitinstall.exe, asimple command-line program, to avoid clouding the relevant issues with alot of technical
details concerning Windows application programming. We couldn't possibly cover all the available methods. Y ou could fold
your installation into a program that handles other installations, as well. Y ou could be using the popular installer utility
InstallShield (the CDK contains a sample that shows how to use this). In any event, we keep things simple so that you can
understand exactly what is hecessary to install and register a conduit.

Thefirst call you make is one that registersthe Cr eat or entry point of the conduit:

int Cnlnstall Creator(const char *creatorString, int conduitType);

If that succeeds, you call adifferent CnSet Cr eat or routine for all the rest of your entry points. Most of
the CnSet Cr eat or routines match the entry point name and are easy to figure out (the two exceptions are
Cntet Cr eat or Nane and CnSet Cr eat or Ti t | e). Here are the routines we use and the entry points
they register:

CmSetCreatorName

Setsthe required Condui t entry point
CmSetCreator Directory
Setstherequired Di r ect or y entry point
CmSetCreatorFile

Setsthefi | e entry point
CmSetCreatorPriority

Setsthepri ori ty entry point
CmSetCreatorTitle

Setsthe name entry point
Conduitlnstall.exe

Here's our command-line program, Conduitlnstall.exe, that registers a conduit:

#i ncl ude <W ndows. h>
#i ncl ude "CondMyre. h"
#i ncl ude <stdio. h>

int main(int argc, char **argv)

{

const char *kCreator = "Sles";

err = Cminstall Creator(kCreator, CONDU T_APPLI CATI ON);
if (err == 0)
err = CnBet Cr eat or Nane(kCr eat or,
"C:\\ Sal esCond\ \ Debug\ \ Sal esCond. DLL") ;

if (err == 0)

err = CnSet CreatorDirectory(kCreator, "Sales");
if (err == 0)

err = CnSet CreatorFil e(kCreator, "Sales");
if (err == 0)

err = CnSet CreatorPriority(kCreator, 2);
if (err == 0)

printf("Registration succeeded\n");

el se

printf("Registration failed %\n", err);

return err;

}

Automatically uninstalling a conduit

Uninstalling isjust as simple. Our application, ConduitDeinstall.exe, uses

CnRenoveCondui t ByCr eat or | D, which removes all the conduits registered with a particular creator
ID. It returns with the number of conduits removed (or a negative number in the case of an error). The
application prints the number of conduits it unregistered.

ConduitDeinstall .exe

#i ncl ude <W ndows. h>
#i ncl ude " CondMyre. h"

int main(int argc, char **argv)
{
const char *kCreator = "Sles";
i nt nunCondui t sRenoved = CnRenpveCondui t ByCreat or | D(kCreat or) ;
i f (nunCondui t sRenoved >= 0)
printf("Unregistration succeeded for %l conduits\n",
nunCondui t sRenoved) ;
el se

printf("Unregistration failed %\ n", nunConduitsRenoved);
}

Finding the Correct Conduit Manager DLL

The Conduit Manager calls that our installation program relieson arein aDLL, specificaly the
CondMgr.DLL. Thisis quite useful, as we are not required to recompile if the underlying registration
architecture changes. A new DLL could register in adifferent way, and our code won't need to know about
it.

Thereis aproblem, however, and it doesn't have a very simple workaround. Y ou might wonder how it is that
your installation code could use a new version of the conduit manager DLL. Y ou might assume that Palm
Computing would help you out here and ensure that CondMgr.DLL would aways be found in the same
place. For example, if CondMgr.DLL were installed in the system directory, it would be part of the path that
the system searched to load DL L s and would be automatically found and loaded when your installation
program ran. Well, things are not that smple.

CondMgr.DLL isnot (currently) installed in the system directory when the user installs the Palm Desktop
software. Instead, it is put in the same directory as the Palm Desktop software. Y ou might say that thisis no
big deal; you just need to know where the Palm Desktop softwareis. The folks at Palm Computing are
happy to provide that information-they tell you the path to that directory in the Windows Registry.

Here isthe problem. Y ou may remember how we get into the Registry. Y ep-using the Conduit Manager
APIsthat arein the Conduit Manager DLL. It's a chicken-and-egg problem. Fortunately, we have a solution.

The solution to finding CondMgr.DLL
Here's the solution:

1. Check to seeif the CondMgr.DLL isin the system path. If so, useit (it was probably installed by alater

version of the Palm Desktop software).

2. If not, use a copy of CondMgr.DLL that you ship with your installation program to find the directory
containing the Palm Desktop software (CniGet Cor ePat h returns the directory). Check in that directory for
CondMgr.DLL. If it'sthere, useit (it may be newer than the version you are shipping in your installation
program).

3. If there's no CondMgr.DLL in the system path, and no CondMgr.DLL in the Palm Desktop software,
revert to using the CondMgr.DLL that you ship along with your installation program (Palm Desktop
software prior to version 3.0 didn't have CondMgr.DLL).

I mplementing the solution

We use a separate program that checks for which CondMgr.DLL to use. Once this program finds that
dlippery little DLL, it changes the current directory to that location. This location is one of the following:

¢ A subdirectory containing aversion of CondMgr.DLL that we ship.
o The Palm Desktop directory.
o If we're using CondMgr.DLL from the system path, we won't change the directory.

Then this program launches our real installation program, which automatically loads the CondMgr.DLL
from the current directory.

An dternative approach would have been to have one program and call LoadLi br ar y to explicitly load
the CondMgr.DLL we wanted. We didn't go this route because it's not as simple to call routinesin an
explicitly loaded DLL asitisin animplicitly loaded DLL.

The elementsin our installation

Our installation directory contains:

Install.exe

Thisisthe program that figures out which CondMgr.DLL to use. It then changes the current directory and
runs Conduitlnstall.exe.

Conduitlnstall.exe

This application just makes Conduit Manager API calls and is blissfully unaware of the trouble of finding
the correct CondMgr.DLL. It implicitly loads CondMgr.DLL (that is, the system loads it when the
application starts; if the system can't find CondMgr.DLL, it produces an error-Install.exe sets things up to
guarantee the system can find CondMgr.DLL).

CondMgr
A subdirectory containing onefile:
CondMgr.DLL

The Palm DLL that we ship with our installation. We use it to find the Palm Desktop directory. In the
case that Install.exe can't find an installed CondMgr.DLL, we also use thisDLL for our registration.

Here's the entire code for Install.exe (LoadLi br ary, Get Pr ocAddr ess, FreelLi brary, getcwd,
_chdi r,andsyst emareall calls provided by the Windows OS):

#i ncl ude <W ndows. h>
#i ncl ude <Condnygre. h>
#i ncl ude <stdio. h>

#include <direct. h>
#i ncl ude <process. h>

typedef int (WNAPI *CmGet CorePathPtr)(TCHAR *pPath, int *piSize);

int main(int argc, char **argv)

{
int result =0
char condui t Execut abl e[_MAX_PATH]
/* Get the current working directory: */
i f(_getcwd(conduitExecutable, _MAX_PATH) == NULL) {
fprintf(stderr, "_getcwd error”)
result = 3
}
el se
strcat (condui t Executable, "\\Conduitlnstall.exe")
i f (LoadLibrary("Condngr.dll"))
printf("loaded library using normal path\n")
el se {
printf("didn't find library in normal path\n")
HI NSTANCE | i b;
if ((lib = LoadLibrary(".\\CondMgr\\ CondMgr.dll")) !'= NULL) {
printf("loaded ny version of condngr\n")
char buf f er[512]
int size = sizeof (buffer)
Cntet Cor ePat hPtr cor ePat hFunc
corePat hFunc = (CnGet CorePat hPtr) Get ProcAddress(
I'ib, "CnetCorePath")
i f (corePathFunc) {
if ((*corePathFunc)(buffer, &size) == 0) {
char ful | Pat hnameCondui t Myr [512]
printf("path = \"%\"\n", buffer)
FreeLi brary(lib)
strcpy(full Pat hnameCondui t Myr, buffer)
strcat (ful | Pat hnameCondui t Mgr, "\\ CondMgr.dl ")
HI NSTANCE full = LoadLi brary(full PathnameConduit Myr)
if (full !'= NULL) {
printf("Found %\n", fullPathnanmeConduitMr)
FreelLi brary(full);
result = _chdir(buffer)
} else {
printf("nmust use our conduit ngr\n")
result = _chdir(".\\CondMgr")
}
}
} else {
fprintf(stderr, "couldn't |oad CrGet CorePath\n")
result = 1;
}
} else {
fprintf(stderr, "Couldn't load .\\CondMgr\\CondMgr.dll\n")
result = 2
}
}
if (result == 0) {
/1 we found a library and we've changed directories
/1 if necessary
fprintf(stderr, "running \"%\"\n", conduitExecutable)
result = systen{conduitExecut abl e)
if (result '=0)
fprintf(stderr, "Calling Conduitlnstall failed\n")
}
return result;
}

Asit runs, it prints acommentary of what is happening. When it's complete, it returns 0 in case of success; a
nonzero result indicates an error.

Conduit Entry Points 2

We told you before that a conduit has three required entry points. There are also some optional ones
(including some that are only for CDK 3.0), which we look at next.

Required Entry Points

The required entry points are as follows:

GetConduitName

This returns the conduit's name.

GetConduitVersion

This function returns the version of the conduit as a four-byte value. The minor version isin the low byte.
-rrert]Srrr?gj >?2r 1v.ersi onisin the next byte. The upper two bytes are unused. A conduit with Version 2.1 would

OpenConduit

It isfrom this entry point that the conduit actually doesits work. This point passes a parameter that isaclass
object with information about the sync. The information includes:

- The username
- Remote database and filename

- The type of synchronization to be performed-copy handheld to desktop, copy desktop to PC, fast
sync, slow sync, or do nothing

Optional Entry Points
The optional entry points have to do with customization (and File Linking in 3.0):
ConfigureConduit (CfgConduit is a newer version of this)

Thisis called when the user wants to customize the conduit by pressing Change in the Custom Hotsync
dialog (see Figure 11-2). The conduit is responsible for displaying a dialog and saving user choices. A
mirror-image synchronization conduit is responsible for displaying the dialog shown in Figure 11-3. The
user chooses what action should happen when a sync occurs (unchecking the permanent checkbox in the
dialog specifies that the dialog setting should occur only on the next sync).

Specific conduits may also have different things the user can configure. In any case, conduit configuration
should always allow the user the option to do nothing. Thisway, the user can pick and choose which
conduits are active (for example, to expedite syncing just the address book before rushing to a meeting).

If this entry point isn't present in your conduit, pressing the Change button does nothing-an action
guaranteed to be confusing and annoying to users. Even if you are unwilling to provide away for the user to
configure your conduit to do nothing, you should provide this entry point and have it tell the user that the
conduit can't be configured.

NOTE:

Our reasoning relies on an age-old adage of good design: every allowable user action should produce a
visible effect. Words to warm a designer's heart.

Figure 11- 2. HotSync dialog for customizing conduits

|N'l.‘!| Rhodes j
Laoppduit Aichion
Izl Do Mothing
Diate Book Synichronize the files
Synchronize the files
To Do Lt Synchionize e files
tema Pad Sunchionize e files
Experse Synchionize the files
Instal Ershled
System Handheld ovenaites Deskiop

Figure 11- 3. A conduit's configuration dialog

x|
HalSync Action lor Address Book ok |
DF‘E, % Synchiorize the files ﬂl
*
E. ™ Deskiop ovenwrie: handhald
I~ Set gz defouk
Q- ™ Handheld overvwrbes dezkiop
™~ Do pothing

CfgConduit

Thisisanewer entry point that replaces Conf i gur eCondui t . Its purpose is the same as that of

Conf i gur eCondui t, but it receives more information when called. Because it is extensible (dueto a
variable-size argument block), even more information will probably be provided in the future.

It's called by HotSync Manager 3.0 and later. If this entry point isn't there, HotSync Manager 3.0 revertsto
calling Conf i gur eCondui t .

NOTE:

Support for calling Conf i gur eCondui t may be phased out in future versions of the HotSync Manager.

GetConduitinfo

Thisis called by the HotSync Manager to return the name of the conduit (as an aternative to

CGet Condui t Nane), the version of Microsoft Foundation Classes (MFC) used to build the conduit, and the
default action of the conduit (the choices being: no action, sync, handheld overwrites desktop, or desktop
overwrites handheld).

These are the entry points used only for File Linking. (File Linking is provided in HotSync 3.0 or later and is
not covered in this book):

SubscriptionSupported

If this entry point exists and returns O, File Linking is supported by this conduit.
ConfigureSubscription

Called to provide information necessary for File Linking.

ImportData

Imports data from alinked file and displays it to the user.

UpdateTables

Called to update desktop files when File Linking information changes.

The HotSync Log 2

The CDK provides routines that add to a HotSync log. There are several useful routines, but the main one to
useisLogAddEnt ry.

LogAddEntry
Use thisroutine to add entries to the HotSync all the time.
LogAddEntry(logString, activity, timestamp)
ti mestanp
Thisis aboolean. True means that the log entry will be timestamped.
activity
Thisis an enumerated type. There are many different enumeration constants available for your use.
The enumerated types used most often asavaluefor acti vi ty are
sSyncSarted

Tellsthe log that your conduit is beginning synchronization. Call the following when you begin the
Sync process:

LogAddEntry("", slSyncStarted, false)
slSyncAborted
Tellsthe log that your conduit is done and that there was an error. Call:

LogAddEntry(your conduit name, slSyncAborted, false)

when you finish syncing with an error.

slSyncFinished

Tellsthe log that your conduit is done without errors. Call:
LogAddEntry(your conduit name, slSyncFinished, false)

when you finish syncing without an error.

slWarning

Adds the specified | ogSt r i ng to the log and tells the user at the end of the HotSync that there are
messages in the log.

dText

Addsthe specified | ogSt ri ng to the log, but doesn't tell the user about the message.

LogAddFormattedEntry

Another useful routineis LogAddFor mat t edEnt ry. It acts asacombination of spri nt f and
LogAddEnt r y and helpsif you need to construct the log string from numbers or other strings. Here's an
example of its use:

LogAddFor mat t edEnt ry(sl Text, false, "The nunber (%) is bad", myNunber)

Thisisall that you need to know about installation, entry points, and log messages. Next, we discuss the
events that occur when the user does a sync.

When the HotSync Button Gets Pressed 2

It isworth going through a step-by-step sequence of the events that occur when the user pops a Palm device
into the cradle and pushes the HotSync button. From this sequence (started here and continued in the next
chapter), you can see exactly when and how the code in your conduit interacts with the desktop, the Palm
device, and the Sync Manager.

For the purposes of this example, you should assume that our sample application has been successfully
installed and contains no problems. Table 11-1 contains a description on the left of what the user does or
what activity is occurring; the right column indicates what's going on programmeatically in your conduit or
on the desktop.

NOTE:
For now, we are just going to wave our hands around when we get to a description of data

up/downloading, and exporting and importing. We fill in these gaps in the next chapter. The whole grand
system should be clear by that point.

-Table 11- 1. What Happens When a Synchronization Occurs

Action (by the User or by the
System)

User pushes the HotSync Button.

HotSync synchronizing starts.

What s Happening Programmatically

The handheld sends an "Are you there" message
out the serial port until the HotSync Manger on the
desktop notices that someone is knocking.

The HotSync Manager negotiates a baud rate with
the handheld and begins communication. It reads

the user ID and name from the handheld and tries
to find a corresponding HotSync user. If it doesn't
find one, it prompts on the desktop for the user to
select one or to create a new one.

For each database on the handheld, the HotSync
Manager triesto find a conduit registered for that

The user gets the message: Connecting Creator.

with the desktop. HotSync retrieves
from the handheld alist of all
databases and their creators.

3.0 or later-Sync Manager installs
new databases.

The HotSync Manager determines
whether afast syncis possible (if this
is the same desktop machine last
synced with) or whether aslow syncis
required (if it is different).

The user gets notified that syncing has
now started.

The HotSync Manager finishes with
the conduit prior to ours.

The HotSync Manager prepares to
sync.

The HotSync Manager checks the
conduit's version number.

The HotSync Manager gets the
conduit name so that is can display
information in the Status dialog.

The HotSync Manager prepares to
sync by passing the synchronization
off to the conduit.

The HotSync Manager runsthe
remaining conduits.

The HotSync Manager backs up
modified databases that don't have a
corresponding conduit but do have the
backup bit set.

2.0 or earlier-Sync Manager installs
new databases.

Handheld notifies applications whose

conduits have run that their database
() have been synced.

Syncing is complete.

Databases that don't have a corresponding conduit
but that have the backup bit set get added to the
list to be backed up by the Backup conduit.
Remaining databases are ignored completely.
Thelnstall conduit getscalled to install
databases.

Conduits can take advantage of afast sync by only
reading from the handheld records marked as
modified; nonmarked records won't have changed
since the last sync.

Install conduit gets run and new applications are
installed.

The HotSync Manager starts the iteration through
itslist of conduits based on their priority code (as
specified when the conduit was registered).

Our conduit gets |oaded.

CGet Condui t Ver si on iscalled and returns the
conduit's version number.

Cet Condui t Name iscalled and returns the
name of the conduit.

OpenCondui t gets called, and the conduit's
DLL getsloaded into memory. It istold whether to
do afast sync, aslow sync, a copy from handheld
to desktop, a copy from desktop to handheld, or
nothing. When OpenCondui t returns, it has
completed the task.

The Backup conduit gets called.

Thelnstall conduit getscalled to install
databases.

Y our handheld application gets a
sysAppLaunchCndSyncNoti fy
launch code if any of its databases have
been modified during the sync.

Using the Backup Conduit 2

Y ou may have an application that doesn't require its own conduit. In such cases, you can rely on the Backup
conduit. First, let's discuss the types of applications that can profitably use this approach and then tell you
what you need to do to your application.
The Backup conduit works on any application's database that:
e Hasno other conduit
o Hasthe backup flag set
o Has been modified since the last sync
Whenever the Backup conduit is used, the datain the database is completely copied from the Palm device to
the desktop and saved as a PDB (database) or PRC (application) file. Thistype of backup occurs during
every sync, which iswhy you don't want to use this as a solution for large databases or most applications.
Applications That Might Use the Backup Conduit
The Backup conduit is well suited to the following types of applications:
Games
Where you save top score information
Utilities
Where you save some user settings
Alarm clocks or other timers
Where you save world clock information or other types of alarm settings
Electronic books
Where you save display information, bookmarks, or the books themselves
Newsreaders
Where you save newsgroup lists
Using System Prefs Instead
Another approach for these types of applicationsisto use the System Prefs database. This database contains

arecord for each application that stores preferences. These preferences are automatically backed up because
the Systems Prefs database has the backup bit set.

NOTE:

Actually, when you create system preferences, you can specify whether you want them to be backed up or
not (atrue value for thesaved parameter to Pr ef Set AppPr ef er ences means you want the
preferences backed up). If you've got some information that you want to save between calls to your
application but that you don't need backed up, you'll use the nonbacked-up preferences (afase value for
the saved parameter).

NOTE:

A game might want the 512 bytes of high scores backed up (heaven forbid they get lost!), but not the 6K of
information about what level the user was on, what weapons were in what hands, etc.

Setting the Backup Bit for a Database

To set the backup bit, you can usethe DnSet Dat abasel nf o call on the handheld to change the
attributes of a database. Here's code for the handheld that changes the open database ny DB:

Local I D t heLocal I O;
Ul nt t heCar dNum
Ul nt theAttributes;

DnOpenDat abasel nf o(nyDB, &t heLocal I D, NULL, NULL, &theCardNum NULL);

DnDat abasel nf o(t heCar dNum t heLocal I D, NULL, &theAttributes, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);

theAttributes | = dnmHdr At trBackup;

DnfSet Dat abasel nf o(t heCar dNum t heLocal I D, NULL, &theAttributes, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);

Note that the backup bit isn't reset automatically after a backup. With devices running versions of the Palm
OS prior to 2.0, aslong as the backup bit of a database is set-and there is no conduit installed for it-the
database is backed up every time the user syncs. With Palm OS 2.0 and | ater, the database is backed up only
if it has been modified since the last sync.

Creating a Minimal Sales Conduit B

Using Visual C++ and the development kit, only afew steps are required to create aminimal conduit. We
assume that you've installed the CDK on your C: drivein the \CDK folder. Let's walk through the steps.

NOTE:

Thefina 3.0 version of the CDK promises a Conduit Wizard, which may make this creation process even
easier.

1. Create anew project of type MFC AppWizard (dil) (see Figure 11-4).
2. Specify that the project isaregular DLL using the MFC shared library as shown in Figure 11-5.
3. Add the Conduit SDK'sinclude directory to the list of places the compiler searches for include files. To

do this, after you've created the project, open the Project Settings dialog and, in the C/C++ settings panel
(see Figure 11-6), add the following to the Project Options area:

/1 "C:\ CDK\ | NCLUDE"

4. Add needed libraries to the project in the Link panel of the same dialog (see Figure 11-7). For this

minimal conduit, you need to add three libraries, one containing entry points for logging, one containing
entry points for the HotSync dialog, and the last containing entry points for the Sync Manager

initialization/deinitialization:

C:\CDK\ | i b\ hsl 0g20d. i b

C:\CDK\| i b\ pdcrm21d.1i b
C.\CDK\lib\sync20d.lib

If you edit the Win32 version of your DLL, link with the nondebug versions of the libraries (hslog20.lib,

pdcmn21.lib, and sync20.lib).

-Figure 11- 4. A new MFC AppWizard project for our do-nothing minimal conduit

Fil=z Projects | Warkspaces | Otkesr Documeants I

_T‘:' Jawa Pioject

L2 ATL COM appivwizard Fioject nare:
g Cuztom Appwizard [z alesCond
s [atabase \ahizand for J ava)
b DevStudio Addin Wizaid Lagation:
%I&!\H Estensice Wizard [cvsalesCond J
Jawa Applet Wizard

Mk efile i+ Create nevs workspace
MFC Actives ConfrobW zard r
5] MFC Apehefizand [dI] r
MFC Apptadizand [exe) I J
5] Win32 Applcation
I~ 1'Win32 Conzole Apphcation
%] wind2 Dynamic-Link Libran :
] Win32 Static Library Blatfomns:

|-ﬂ‘w'in32

ok I Cancel

Figure 11- 5. Selecting the type of MFC DLL

MFC AppWizaid - Step 1 of 1

& Microsoft
Fille Edit ¥izw Inzert Build Help

‘What type of DLL would pou ke bo create?

1+ Heguar DLL using shared MFC DLL

A4 TOD0
i

™ WFC Extercsion DLL [uzing hared MFC DLL)

S ‘What heatures would pou blue in your DLLY

T [T Automation
™ ‘gindows Sockets

“Wiould you ke to generste source fle comments?

¥ Yes, pleass
™ Mo, thark you

<gack | | Frsh | Cancel

Figure 11- 6. C/C++ Project Settingsto add to theinclude sear ch path

Project Settings HE

Settings For: [14in32 Debug =] | Genersl | Detwg CiCes | Lk | Resowc: []¥)]
[~] Calzgow |Genesal = Hesst |
Wfarming |eseel;
[Level 3 =]
™ ‘wamings as enoes [T Gererste browse o
Diebug infio

| Progeam Database ﬂ

Pregrogeszor defimbons:
[WIN3Z,_DEEUG, WINDOWS _WINDLL,_AFXDLL,_USR

Project D ptions

A A Cond 5 DE include” Anologo /HMDd A3 fGm il
S SZN A D WINEE D DEEUG" D
"wND DS D WANDLL" AD "_ARDLL" /D j

ok | Cancel |

-Figure 11- 7. Adding librariesto link with

Project Settings [7] x]
Settings For: |'-_.-,.n'..-.3:' [j General | Drmbug | CiC+s Link I Rezouc []w

- S Caesor FECTRN=] e |

Dutput fike pamec
[Debug?s slesCond dll

ObpectAitsany madules;
|E-\CondSDE b heleg20d b T\ CondSDENb\pdemn2] o

[V Generste debuginfo [gnoee ol defsull braries
W Link incrementaly [T Gererate mapfle

™ Igrone expost fbrary

Project D ptions

C\Cond5 DE b\ halog20d b il
C:ACond5 DEABApdemn2 1 dib

L \Cond5 DE A syrc20d b fnaloge |

ok | Cancel |

Code for the Sales Conduit

Aswe said before, thisis a conduit that does very little. It considersitself successful if it writes a message to
thelog file. It's great, however, at distilling the process you use for creating the outer shell of the conduit.
Wefirst cover the code and then look at registering and testing the conduit.

The SalesCond.cpp file aready contains the shell of aDLL as created by the MFC DLL wizard.

Let's add some include files we need:

#i ncl ude <af xwi n. h> /1 MFC core and standard conponents
#i ncl ude <HSLog. h> /1 for LogAddEntry

#i ncl ude <SyncMyr. h>

#i ncl ude <CondAPI . h>

#i ncl ude <pdcmDi | . h> /1 for the dial ogs

#i ncl ude <cmres. h>
#i ncl ude <ActD g. h>

WEe'll create some constants that define the conduit name and major and minor version numbers:

#def i ne kCondui t Nanme "Sal es"

#defi ne kMaj or Ver si on 1
#defi ne kM nor Versi on 0

Adding GetConduitName

Thefirst entry point welook at is Get Condui t Nane. It gets passed a buffer in which it writes the name
and the length of that name. It returns O in the case of no error.

NOTE:

Like al the entry points of the conduit, Get Condui t Name must call the AFX_MANAGE_STATE macro before
doing anything else (thisis arequirement of these types of MFC DLLS). All the entry points must also be
declared withthe __decl sepc(dl | export) type modifiers.

__decl spec(dl | export) |ong Get ConduitNanme(char *nanme, WORD maxLen)
{

AFX_MANAGE_STATE(Af xGet St at i cModul eState());

nenset (name, 0, maxlLen);

strncpy(name, kConduitName, maxLen-1);

return O;

}

Adding GetConduitVersion

Hereis Get Condui t Ver si on, whose low byte is the minor version and whose next higher byte isthe
major version:

__decl spec(dl | export) DWORD Get Condui t Ver si on()

{
AFX_MANAGE_STATE(Af xGet St at i cModul eState());
return (kMajorVersion << 8) | kM nor Version;

}

Adding OpenConduit

OpenCondui t ispassed aclass, CSyncPr operti es, which contains information about the sync that
will take place. We'reinterested inthem SyncType field of that class. Thistells us what type of sync we
have. The only type of sync we can handleiseDoNot hi ng. In that case, we write an appropriate message
to the log and then return.

For any other type of sync, we begin the sync process by calling SyncRegi st er Condui t (if that fails,
we return the error) then we write to the log that we've begun. When we finish, we write to the log that we've
finished (or, if an error had occurred, that we've aborted). We call SyncUnRegi st er Condui t and
return any error:

__decl spec(dl |l export) |ong OpenConduit (PROGRESSFN progress,
ppppCSyncProperties &sync)
{

AFX_MANAGE_STATE(Af xGet St ati cModul eState());

long err = 0;

if (sync. mSyncType == eDoNot hi ng) {
LogAddEntry("Sal es - sync configured to Do Nothing", sl Text,
pbbpf al se);

return O;

}

CONDHANDLE mnyCondui t Handl e;
if ((err = SyncRegi st erCondui t (nyCondui tHandl e)) !'= 0) {

return err;

}

LogAddEntry("", sl SyncStarted, false);

/1 this is where we'll actually sync

LogAddEnt ry(kCondui t Name, err ? sl SyncAborted : sl SyncFini shed,
ppbppf al se);

SyncUnRegi st er Condui t (myCondui t Handl e) ;

return err;

Adding ConfigureConduit

Although these three functions, Get Condui t Nanme, Get Condui t Ver si on, and OQpenCondui t , are
the only required entry points, we also provide Conf i gur eCondui t , so that the user can change what
happens in our conduit on async:

__decl spec(dl |l export) |long ConfigureConduit (CSyncPreference& pref)

{
AFX_MANAGE_STATE(Af xGet St ati chModul eState());
long nRtn = -1;
CHot SyncActi onDl g act Dl g;

pref.m SyncPref = eNoPreference;
act Dl g. m csG oupText = kCondui t Nane;

switch (pref.mSyncType)

{
case eFast:
case eS|l ow
act Dl g. m nActi onl ndex = 0;
br eak;
case ePCt oHH:
act Dl g. m nActionl ndex = 1;
br eak;
case eHHt oPC:
act Dl g. m nActionl ndex = 2;
br eak;
case eDoNot hi ng:
defaul t:
act Dl g. m nActionl ndex = 3;
}
if (actD g. DoModal () == | DOK)
{
switch (actD g. m nActionl ndex)
{
case 0:
pref.m SyncType = eFast;
br eak;
case 1:
pref.m SyncType = ePCt oHH,
br eak;
case 2:
pref.m SyncType = eHH oPC,
br eak;
case 3:
defaul t:
pref.m SyncType = eDoNot hi ng;
br eak;
}
pref.m SyncPref = (actDl g. m bvakeDefault) ? ePermanent Preference :
eTenpor ar yPr ef erence;
nRtn = 0O;
}

return nRtn;

}

The code gets a standard HotSync dialog, putting the conduit's name and current sync type setting in it. After
the dialog is dismissed, it updates the sync type.

NOTE:

We use Conf i gur eCondui t instead of Cf gCondui t because we want our conduit to work on versions of HotSync
earlier than 3.0. Plus, we really don't need the additional information that Cf gCondui t provides.

The dialog that Conf i gur eCondui t usesis provided by the pdcmn DLL. In order to useit, our DLL
must initialize the pdecmn DLL. We'll do that when our DLL starts.

DLL doings

Here'sour DLL's class declaration (as created by the Visual C++ automatically) to which we've overridden
Initlnstance andExitl nstance:

class CSal esCondDli | : public CW nApp

{

public:
/1 CSal esCondDl | ();
virtual BOCOL Initlnstance(); // Initialization
virtual int Exitlnstance(); // Term nation

/'l COverrides
/1 O assWzard generated virtual function overrides
/1 {{ AFX_VI RTUAL(CSal esCondDl |)
/1}} AFX_VI RTUAL

/1 {{ AFX_MSG CSal esCondDl |)
/1 NOTE - the dassWzard will add/renmove menber functions here.
I DO NOT EDI T what you see in these bl ocks of generated code !
/1}} AFX_MSG
DECLARE_NESSAGE_MAP()
}s

We define aglobal count to keep track of how many instances of our DLL are active:

static int CientCount = 0;

Our | ni t 1 nst ance will increment the Cl i ent Count and initialize the pdcmn DLL:

BOOL CSal esCondApp: : I nitlnstance()

{
/1 DLL initialization

TRACEO(" Sal esCond. DLL initializing\n");
if (!dientCount) {

/1 add any extension DLLs into CDynLi nkLi brary chain
I ni t Pdcrm5DLL();

}

Cl i ent Count ++;

return TRUE;
}

Our Exi t | nst ance will decrement thed i ent Count :

int CSal esCondApp: : Exi t |l nstance()

{
TRACEO(" UpDownCond. DLL Termi nating!\n");

/1 Check for last client and clean up potential menory | eak.
if (--dientCount <= 0)

{
}

// DLL clean up, if required
return CW nApp: : Exitlnstance();

Adding GetConduitinfo

Wedso provide Get Condui t | nf o. It can return the name of the conduit, the default action of the
conduit, aswell as the version of MFC used by the conduit:

__decl spec(dl I export) |ong Get Conduit!| nfo(ConduitlnfoEnum infoType,
void *plnArgs, void *pQut, DWORD *pdwQut Si ze)
{
AFX_MANAGE_STATE(Af xGet St ati cModul eState());

if (!pout)
return CONDERR | NVALI D_PTR;
if (!pdwout Si ze)
return CONDERR | NVALI D_OUTSI ZE_PTR;

switch (infoType) {
case eCondui t Name:

if (!plnArgs)
return CONDERR_I NVALI D_I NARGS_PTR;
Condui t Request | nf oType *pl nfo;
pl nfo = (Condui t Request | nfoType *)pl nArgs;
if ((plnfo->dwVersion != CONDU TREQUESTI NFO VERSI ON_1) ||
(p! nfo->dwSi ze ! = SZ_CONDUI TREQUESTI NFO))
return CONDERR_I NVALI D_I NARGS_STRUCT;

strncpy((TCHAR*) pQut, kConduitName, (*pdwQutSize) - 1);
br eak;
case eDefaul t Action:
if (*pdwQutSize != sizeof (eSyncTypes))
return CONDERR_I NVALI D_BUFFER_SI ZE;
(*(eSyncTypes*)pQut) = eFast;
br eak;
case eM cVersion:
if (*pdwQutSize != sizeof (DWORD))
return CONDERR_I NVALI D_BUFFER_SI ZE;
(* (DWORD*) pQut) = MFC_VERSI ON _50;
br eak;
defaul t:
ret urn CONDERR_UNSUPPORTED_CONDUI TI NFO_ENUM
}

return O;

Registering the Conduit
We run CondCf g and add a new entry. Figure 11-8 shows the settings we use.

Figure 11- 8. Registering the Sales conduit in CondCfg

Conduit Information

| %]

Conduit Type

)

- ﬁ;:;:t Cancel

Help I

Candut |-\ alesCondDebug\SalezCond D
Craston 1D [Slez
Ditectany |":~.5I35

Bile [<aled

Bemote [atdhase:

Mame

Prioiity

I
I
Usemame I
I
I

Inlommalior

Jawa Infoemation
Chass Mame: [

Clars Path [

| <]

Testing

Once you've registered the conduit, start the HotSync Manager (quit it first if it is already running so that the
registry gets properly updated). If you've registered a debug version of your conduit, make sure you start the
debug version of HotSync Manager. Then choose Custom from the HotSync menu. Y ou should see the Sales

conduit in the list of conduits (see Figure 11-9).

Figure 11- 9. The Custom dialog of HotSync showing the list of registered conduits

|Fen Rhades =]
Conduk Achan

Ieail Do Mothing

[ate Bock Synchionize the fies

Address Book Semchianize e fles

Ta Do List Syrchionize the fles

ema Pad Swnchionize the fles

Synchionize the files

Expiiie Syruchionize ke fles Help
Irestall Enabled

Syetem Handheld owensites Deckiop

Proving ChangeConduit works

Select the Sales application and click the Change button. Y ou should see the dialog shown in Figure 11-10.
Bringing this dialog up proves that your conduit's ChangeCondui t function gets called.

Figure 11- 10. Changing the HotSync settings of the Sales conduit

Change HotSync Action E
HotSpne Action for Sales _
Ok
OB G e B
Help
+ .
E. " Desklop cvensrites handheld
[T Set as defal
Q- € Handheld ovensniles deskiop
" Do nothing

Next, it's time to test syncing. First, make sure that the Sales application has been installed on the handheld

(otherwise, a database with the correct creator won't exist on the handheld, and the Sales conduit won't be
invoked).

Seeing the conduit in the HotSync log

When you sync, you should see the message " Synchronizing Sales" as part of the process. Once a sync has
been completed, open the HotSync log for that device. Y ou should see information that includes a line about
the Sales conduit. For example:

Hot Sync started 07/30/98 11:59:53
OK Dat e Book

OK Addr ess Book

OK To Do List

OK Menmo Pad

K Sal es
K Expense

Setting the conduit to Do Nothing

Now change the HotSync settings for the Sales conduit to Do Nothing. After you sync, the log should show
the following:

Hot Sync started 07/30/98 12:02: 37
OK Dat e Book

OK Addr ess Book

OK To Do List

OK Meno Pad

Sal es - sync configured to Do Nothing
OK Expense

If you run into any problems getting the conduit to work, see Chapter 14, Debugging Conduits.

Now that you have a conduit shell that has been tested and works correctly, we can continue adding
functionality to it. Let's start in the next chapter by uploading and downloading data.

* Palm Computing was acquired by U.S. Robotics, which was in turn acquired by 3Com.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PaaPaaac

Thispage intentionally left blank

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! &

PRt

In this chapter:

Conduit Requirements

Where to Store Data

Creating, Opening, and Closing Databases
Downloading to the Handheld

Uploading to the Desktop

When the HotSync Button Gets Pressed
Portability Issues

The Sales Conduit

12. Uploading and Downloading Data with a
Conduit

Now we are going to show you how to move data back and forth from the desktop to the handheld. To do
this, we need to discuss quite afew Sync Manager functions. We show you the functionality required in a
conduit to support data transfers and some useful additional features as well. After we discuss these topics,
we return to our walkthrough of what happens after the HotSync button gets pressed.

Next we discuss portability issues. Knowing that you are breathless with anticipation by this point, we return
to the Sales application conduit. We walk through the code that handles uploading and downloading. We
show how to upload the sales orders and customers from the handheld, and download the products and
customers from the desktop. We aso handle deleted records in the customer database.

Conduit Requirements 2

At abare minimum, a conduit that handles data uploading and downloading has to do all of the following:

¢ Register and unregister the conduit with the Sync Manager
¢ Open and close databases

o Read and write records

o Deal with categories (if the application supports categories)

Whereto Store Data .&

There is an important demarcation to remember when deciding where to store data on the desktop. Data
specific to a particular user should be stored in a private location, whereas data shared among many users

should be stored in a group location. For example, in our Sales A pplication each salesperson has her or his
own list of customers but gets the product list from a genera location. The first set of datais specificto a
particular user; the second type is general. They should be stored in separate |ocations.

Soecific data

Store this datain your conduit folder in the user's folder in the HotSync folder.

General data

Store this data in your application's desktop folder.

Also keep in mind that data doesn't necessary need to be stored locally. While it may be stored on a
particular desktop, it isjust as likely to be stored on a server or aweb site.

Creating, Opening, and Closing Databases 2

Database management during synchronization is handled completely by the conduit.
Creating a Database

Thereis a standard database call used by the Sync Manger to create a database:
SyncCr eat eDB(CDbCr eat eDB& r DbSt at s)
SyncCr eat eDB creates a new record or resource database on the handheld and then opensit. You have the
same control over database creation from within the conduit that you have on the handheld. Ther Db St at s
parameter is of type CDbCr eat eDBCl ass and contains the following important fields:
m_Fi | eHandl e
Output field. On a successful return, this contains a handle to the created database with read/write access.
m Cr eat or
Database creator ID. This should match the creator 1D of the application.

m_Fl ags

The database attributes. Choose one of the following: eRecor d for a standard database, eResour ce for a
resource database. Another flag is eBackupDB, which you set for the backup bit.

m Type
The four-byte database type.
m_Car dNo

Memory card where the database is located. Use 0, since no Palm OS device currently has more than one
memory card.

m_Nane

The database name.

m_Ver si on
The version of the database.
m _dwReser ved

Reserved for future use. Must be set to O.
Opening a Database

The Sync Manager call to open aremote databaseis.

SyncOpenDB(char *pname, int nCardNum Byte& rHandl e, Byte openhbde)
The values for the four parameters are:
pNanme
Name of the database.
nCar dNum

Memory card where database is located. Use 0, since no Palm OS device currently has more than one
memory card.

r Handl e
Output parameter. On a successful return, this contains a handle to the open database.
openhode

Use (eDbRead | eDbShowSecr et) to read all records, including private ones. Use (eDbRead |
eDbW i t e |eDbShowSecr et) to be able to write and/or delete records.

Y ou need to close any database you open; only one can be open at atime. An error resultsif you try to open
anew database without closing the prior one.

Closing the Database

The Sync Manager call to close aremote database should come as no surprise. ItisSyncCl oseDB, and it
takes only one parameter, the handle you created when you opened or created a database:

SyncCl oseDB(Byt e fHandl e)

Slightly more sophisticated results can be had from SyncC oseDBEx. Thisfunction also allows you to
modify the database's backup and modification date. Both functions close databases that were opened with
either SyncCr eat eDB or SyncQpenDB.

Downloading to the Handheld 2

Aswe discussed earlier, there are several different ways that you might want to move data around during a
synchronization. Let'slook at what isinvolved in moving data from the desktop to the handheld. Thisis
commonly done with databases that are exclusively updated on the desktop and are routinely downloaded to

handhelds where they aren't modified. Or you may do thisin the case that the user chooses " Desktop
overwrites handheld" in the HotSync settings dialog (see Figure 11-3 on page 315).

Y ou need to create the database if it doesn't yet exist. Y ou should also delete any existing records before
downloading the ones from the desktop. Thisis necessary because you don't want the old ones; all you want
are the newly downloaded ones.
Deleting Existing Records
There are afew different routines to choose from for deleting records:
SyncDeleteRec
Deletes one specific record
SyncPurgeAllRecs
Deletes all records
SyncPurgeAll RecslnCategory
Deletes all records from the specified category
SyncPurgeDel etedRecs

Deletes all records that have been marked as deleted or archived

In our particular case, SyncPur geAl | Recs isthe cal we want to use.
Writing Records

Once you have a nice, empty database, you can fill it up with fresh records from the desktop. Y ou do this
with the Sync Manager call SyncW i t eRec.

SyncWiteRec (CRawRecordl nfo &rl nfo)
The parameter r | nf o (of class CRawRecor dI nf 0) contains several important fields:
m _Fi | eHandl e
Handle to the open database.
m Recl d
Input/output field; the record's unique ID. To add a new record, set thisfield to O; on return, the field
contains the new record's unique ID. To modify an existing record, set thisfield to the unique ID of one of
the records in the database. An error occursif this field doesn't match an existing unique record ID. Note that
when you add a new record, it's the handheld that assigns the unique record ID.
mAttribs
The attributes of the record. See "Working with Records" on page 145 for a complete discussion.
m Cat | d

The record's category index. Use values from O to 14.

m RecSi ze
The number of bytesin the record.
m Tot al Byt es

The number of bytes of datainthem pByt es buffer. It should be set to the number of bytesin the record,
however, to work around bugs in some versions of the Sync Manager.

NOTE:

Unique record IDs are not perfect. A record maintainsits unique 1D unless a hard reset happens. Prior to
HotSync 3.0, after a hard reset HotSync would generate new unique IDs for the records when it restored
the database. Only HotSync 3.0 or later restores the unique record 1Ds correctly.

On the handheld, when you create a database record you specify the location in the database of that record.
When using a conduit, on the other hand, you have no way to specify the record's exact location. Although it
could change in the future, SyncW i t eRec currently adds new records at the end of the database.

Thislack of control over the order of records can be a problem for databases that need to have a specific
order. For example, you may have a database sorted by date. The question then becomes, "How can the
conduit create the database in sorted order?"

The answer is that unfortunately it can't.

NOTE:

There is aworkaround with existing versions of the Sync Manager. If your conduit is writing recordsto an
empty database, it should add them in sorted order. With existing versions of the Sync Manager, the
records will then be in the correct order. Be careful, however, as future versions of the Sync Manager may
cause the records not to be in sorted order.

NOTE:
In such cases, thesysAppLaunchCnmdSyncNot i fy launch code for Palm OS applications comes to
the rescue. After a sync occurs for a database with a specific creator, that database's application is called

with the sys AppLaunchCndSyncNot i fy launch code. This launch code tells the application that its
database has changed, and gives the application a chance to sort it.

Wkiting the Applnfo Block

Y ou commonly use the Appl nf o block of a database to store categories and other information relevant to
the database as awhole. The Sync Manager call that you use to write the Appinfo block is:

SyncW i t eDBAppl nf oBl ock (BYTE fHandl e, CDbGenlnfo & I nf o)
The parameter r | nf o isan object of type CdbGenl nf o and contains the following fields:
m _pByt es
A pointer to the data you want copied to the app info block.

m Tot al Byt es

The number of bytes of datainthem pByt es buffer. This should be set to the number of bytesin the

record to work around bugs in some versions of the Sync Manager.

m Byt esRead

To work around bugs in some versions of the Sync Manager, set thistom Tot al Byt es.
m dwReser ved

Reserved for the future. Set thisfield to 0.

Uploading to the Desktop 2

When you need to send data from the handheld to the desktop you have to read through the records of the
remote database and translate them into appropriate structures on the desktop. Here is the process, astep a a
time, starting with the choices you have in how you read through the records.

Finding the Number of Records

SyncGet DBRecor dCount findsthe number of records in a database:

| ong SycnGet DBRecor dCount (BYTE f Handl e, WORD & NunRecs) ;

Call it with;

WORD nunRecor ds;
err = SyncGet DBRecor dCount (r Handl e, nunRecords);

Reading Records

Y ou can read records in aremote database using any of the following strategies:
o lIterate through each record, locating the next altered record
o L ook up exact records via unique record ID

e Read the nth record in the database

We employ the last strategy for reading the records from our Sales order databases and the first strategy
when we fully synchronize our customer list. There are afew points worth mentioning about each strategy.

Iterating through each record stopping only for altered ones
If you want to iterate through the records and stop only on the ones that have been modified, use
SyncReadNext Modi f i edRec. It retrieves arecord from the remote database if the dirty bit in the

record has been set.

A variation of thisroutineis SyncReadNext Modi fi edRecl nCat egor y, which aso filters based on
the record's category. This function takes the category index as an additional parameter.

Looking up exact records via unique record I1D

Sometimes you want to read records based on their unique record IDs. In such cases, use
SyncReadRecor dByl D.

Iterating through the records of a database from beginning to end

Use SyncReadRecor dByl ndex to get arecord based on the record number. Use this when you want to
read through a database from beginning to end. This function takes one parameter, r | nf o, which has the
record index as one of itsfields.

The CRawRecordInfo class

Each of these read routines takes as a parameter an object of the CRawRecor dI nf o class. The needed
fieldsin the class are:

m Fi | eHandl e

Thisis a handle to the open database.

m pByt es

A pointer that you allocate into which the record will be copied.
m Tot al Byt es

The size of them pByt es pointer. Thisisthe number of bytes that can be copied into m pByt es without
overflowing it.

m Byt esRead

Output field; the number of bytesread. If m Byt esRead is greater thanm _Tot al Byt es, therecord is
too large. Sync Manager 2.1 or later copiesthefirst m t ot al Byt es of record datato m pByt es.
Previous versions of the Sync Manager copy nothing.

mcatld

Input field for SyncReadNext Recl nCat egor y and SyncReadNext Modi fi edRecl nCat egory.
Output field for the other read routines. This contains the category, as a number between 0 and 14.

m_Recl ndex

Input field for SyncReadRecor dBy| ndex. Output field for other read routines for Sync Manager 2.1 or
later (earlier versions of Sync Manager don't write to thisfield).

mAttribs
The attributes of the record.
m dwReser ved

Reserved for the future. Set thisfield to 0.

NOTE:

Beware of modifying the records in a database while iterating with SyncReadNext Modi f i edRec or

SyncReadNext Modi fi edRecl nCat gegor y. In pre-2.0 versions of the Palm OS, the iteration
routines don't work right. In Palm OS 2.0, amodified record is read again by the iteration routines. In Palm
OS 3.0, the modified record isn't reread.

NOTE:
If the record you read is larger than you've allocated space for, the Sync read routines will not return an
error. Y ou need to explicitly check for this problem. If, after theread, m Byt esRead is greater than

m_Tot al Byt es, you haven't allocated enough space. For PaAlm OS 3.0 and earlier, no record can be
more than 65,505 bytes.

Reading the Applnfo Block

There are times when you need to read information from the Applnfo block. For example, if the Applnfo

block contains category names, you'll need to read it to get them. The Sync Manager call to useis
SyncReadDBAppl nf 0Bl ock.

This function takes two parameters, a handle to the open record or database on the handheld, and the object,
r I nf o, that contains information about the database header.

The parameter r | nf o isan object of type CdbGenl nf o with the following fields:

m _pByt es

A pointer to memory you've allocated into which you are going to copy the Applnfo block.

m Tot al Byt es

The number of bytes allocated for the m pByt es field.

m Byt esRead

Output field; the number of bytesread. If m Byt esRead isgreater thanm Tot al Byt es, the Applnfo
block istoo large. Sync Manager 2.1 or later copiesthefirst m t ot al Byt es of Applnfo block datato
m _pByt es. Previous versions of the Sync Manager copy nothing.

m dwReser ved

Reserved for the future. Set thisfield to O.

Deleted/Archived Records

For databases that will be two-way synced, the handheld application doesn't completely remove a deleted
record; it marksit as deleted, instead. When a sync occurs, those marked records need to be deleted from the
desktop database.

There are a couple of ways that you can delete marked records and a few pitfalls to avoid. First, note that
you have two different ways in which records might be removed from a database. They can be either
completely deleted or just archived. Figure 12-1 shows you the two possible dialog settings that a user can
select when given the option to delete arecord. Choosing " Save archive copy on PC" meansthe record is
marked as deleted until the next sync, at which point it is saved in an archive file and then deleted from the
database. Not choosing " Save archive copy on PC" means the record is marked as deleted until the next sync
and then completely deleted from the database. See "Deleting a Record" on page 152 for further details.

-Figure 12- 1. Saving or not saving an ar chive copy when deleting arecord

Archiving records

Y ou should create a separate archive file and append archived records there. Thisisfor situationsin which
the user doesn't want the records cluttering up the handheld or the normal desktop application, but does want
the record available if needed. It's customary to create a separate archive file for each category.

Deleting records

Once any archived records have been archived, and any deleted records have been removed from the
corresponding desktop file, those records should be completely deleted from the handheld.

SyncPur geDel et edRecs isthe call you should use:

err = SyncPurgeDel et edRecs(r Handl e) ;

When the HotSync Button Gets Pressed

We left off in the previous discussion at the point where we are ready to exchange information between the
conduit on the desktop and the handheld unit. Let's continue now walking through the chain of events (see

Table 12-1).

-Table 12- 1. When the HotSync Button Gets Pressed

Action (by the User or by the
System)

The HotSync Manager gets the conduit
name so that it can display information
in the status dial og.

The HotSync Manager prepares to sync
by passing the synchronization off to
the conduit.

The conduit registers with the HotSync
Manager.

The conduit notifies the log that
syncing is about to start.

The conduit opens the remote order
database on the handheld.

The user sees that the Sales orders are
being synced.

The conduit closes the remote
database.

What 1s Happening Programmatically

Get Condui t Nane iscaled and
returns.

OpenCondui t getscaled and the
conduit's DLL getsloaded into memory.
It istold whether to do afast sync, aslow
sync, a copy from handheld to desktop, a
copy from desktop to handheld, or to do
nothing. When QpenCondui t returns,
it will have completed the task.
SyncRegi st er Condui t returnsa
handle.

Conduit callsLogAddEnt ry (" ",

sl SyncStarted, false).

Conduit calls Sync QpenDB, which returns
a handle to the remote order database.

All the datais written from the handheld to the
desktop.

Conduit calls SyncCl oseDB to close the
Sales order database.

The user sees that the Sales application Conduit calls Sy nc QpenDB, which returns

product list is being synced. ahandle to the product database.

h duit closesth . Conduit calls SyncCl oseDB, which

daf;ggge_u' closeseremote destroys the handle opened earlier for
that database.

The user seesthat the Customer Listis
being synced.

The application calls SyncUnRegister Conduit to
dispose of the handle that was set in
SyncRegister Conduit.

Close up the conduit after syncing is
finished.

The HotSync Manager backs up other

Stuff. The Backup conduit gets called.

Portability | ssues B

There are two important portability issues that you need to take into account when moving data back and
forth from the handheld to the desktop. They are byte ordering and structure packing.

Byte Ordering

The Palm OS runs on a Motorola platform, which stores bytes differently from Windows running on an Intel
platform. This crucia difference can royally mess up data transfersif you are not careful.

On the handheld, the 16-bit number 0x0102 is stored with the high byte, 0x01, first, and the low byte, 0x02,
second. In the conduit on Windows, the same number is stored with the low byte, 0x02, first, and the high
byte, 0x01, second. As aresult, any two-byte values stored in your records or in your Applnfo block must be
swapped when transferred between the two systems. (If you fail to swap, a simple request for 3 boxes of toys
on the handheld would be processed on the desktop as a request for 768 boxes!) A similar problem occurs
with four-byte values; they are also stored in switched forms (see Table 12-2).

-Table 12- 2. Comparison of Byte Orderingsfor the Four-Byte Value 0x01020304

Palm Handheld Byte Wintel Byte Order

Order

0x01 0x04

0x02 0x03

0x03 0x02

0x04 0x01
NOTE:

Strings are not affected by this byte ordering. On both platforms, the string "abc" is stored in the order "a",
"b", "c", "\0".

The HotSync Manager provides routines for converting two- and four-byte values from the handheld to host
byte ordering:

Word SyncHHt oHost Wor d(Werd val ue)
DWord SyncHHToHost DWor d(DWord val ue)

and for the opposite conversion:

Word SyncHost ToHHWor d(Werd val ue)
DWord SyncHost ToHHDWor d(DWor d val ue)

Here are the return values;

e SyncHHt oHost Wor d(0x0102) returns0x0201

e SyncHost ToHHWr d(0x0201) returns0x0102

e SyncHHToHost DWor d(0x01020304) returns0x04030201
e SyncHost ToHHDWor d(0x04030201) returns0x012020304

Structure Packing

Sometimes the compiler leaves holes in structures between successive fields. Thisisdone in order for fields
to begin on specific byte/word/double-word boundaries. As aresult, you need to lay out the structures,
defining your records and/or Applnfo block in the same way for both the compiler you use for creating your
handheld application and the compiler you use to create your conduit.

For Visual C++, we've found that the pack pragma can be used to change the packing rules to match that of
CodeWarrior:

#pragma pack(2)
structure declarations for structures that will be read from the handheld

#pragma pack

The Sales Conduit .&

We extend the Sales conduit so that our shell from the previous chapter also supports "Desktop overwrites
handheld" and "Handheld overwrites desktop.” We postponing syncing until Chapter 13, Two-Way Syncing.

For our conduit, we've got to define what it means to do each of these types of overwriting. Here's the logic
that we think makes sense for the Sales application:

Desktop overwrites handheld

The products database and the customers database are completely overwritten from the desktop; nothing
happens to the orders database.

Handheld overwrites database

The products are ignored (since they can't have changed on the handheld). The customers and orders
databases are copied to the desktop. Any archived customers are appended to a separate file; deleted
customers are removed from the handheld.

Format Used to Store Data on the Desktop
We store data on the desktop as tab-delimited text files.

The customers will be stored in afile named Customers.txt in the user's directory within the Sales conduit
directory. Each linein thefileis of the form:

Customer |D<tab>Name<tab>Address<tab>City<tab>Phone
The orders will be stored in afile named Orders.txt in the same directory. Each order is stored as.

ORDER Customer 1D
quantity<tab>Product ID

quantity<tab>Product ID

.q.a(mti ty<tab>Product ID
Orders follow one another in thefile.

The products are stored in a Products.txt file and start with the categories, followed by the products:

Name of Category O
Name of Category 1

Name of last Category
<enpty line>
Product 1D<tab>Name<tab>Category Number<tab>Price in dollars and cents

i:’.rt.)duct ID<tab>Name<tab>Category Number<tab>Pricein dollars and cents
Modifying OpenConduit

Wemodify OpenCondui t to handle copying from handheld to desktop (eHHt oPC) and from desktop to
handheld (ePCt oHH):

__decl spec(dl I export) | ong OpenCondui t (PROGRESSFN progr ess,
CSyncProperties &sync)

{
AFX_MANAGE_STATE(Af xGet St ati cModul eState());
long err = 0;
if (sync.m SyncType == eDoNot hi ng) {
LogAddEntry("Sal es - sync configured to Do Nothing", sl Text,
fal se);
return O;
}
CONDHANDLE myCondui t Handl e;
if ((err = SyncRegi sterConduit(nmyConduitHandle)) '= 0) return err;
LogAddEntry("", sl SyncStarted, false);
if (sync.m SyncType == eHHt oPC) {
if ((err = CopyOrdersFromHH(sync)) !'= 0)
goto exit;
if ((err = CopyCustonersFromHH(sync)) != 0)
goto exit;
} else if (sync.mSyncType == ePCtoHH) {
if ((err = CopyProduct sAndCat egori esToHH(sync)) != 0)
goto exit;
if ((err = CopyCustonersToHH(sync)) != 0)
goto exit;
} else if (sync.mSyncType == eFast || sync.m SyncType == eS|l ow) {
}
exit:
LogAddEnt ry(kCondui t Narmre, err ? sl SyncAborted : sl SyncFini shed,
fal se);
SyncUnRegi st er Condui t (myCondui t Handl e) ;
return err;
}
General Code

We have some other code to add, as well. We need to define our databases, create a global variable, and add
some data structures.

Database defines

We've got defines for the databases (these can be copied directly from the code for the handheld
application):

#defi ne sal esCreator 'Sl es'

#defi ne sal esVersion 0

#define custoner DBType 'cust'’

#define custoner DBNane "Custoners_Sles"
#define order DBType "Ordr!

#def i ne or der DBNane "Orders_Sles"

#define product DBType ' Prod'
#def i ne product DBNane "Products_Sl es"

Globals

We read and write records using a global buffer. We size it to be bigger than any possible record (at least on
Palm OS 3.0 or earlier):

#defi ne kMaxRecordSi ze 66000
char gBi gBuf f er [kMaxRecor dSi ze] ;

Data structures

We have structures that need to correspond exactly to structures on the handheld (thus, we use the pack
pragma). We then use these structures to read and write data on the handheld:

/1 on the Pal mhandheld, the itens array in PackedOrder starts at offset 6
/1 Natural alignment on Wndows would start it at offset 8
#pragma pack(2)

struct Item{
unsi gned | ong product | D;
unsi gned | ong quantity;

b

struct PackedOrder {
| ong custoner| D,
unsi gned short numterns;
Item items[1];

}s

struct PackedCustoner {
| ong custonerl D;
char nane[1];

}s

struct PackedProduct {
unsi gned | ong product | D;
unsi gned | ong price; // in cents
char nane[1] ;

}s

#defi ne kCat egoryNaneLength 15
typedef char Cat egor yNane[kCat egor yNaneLength + 1];

struct PackedCategories {
unsi gned short nuntCat egori es;
Cat egor yNanme nanes|[1] ;

b

#pragma pack()

Next, we've got some structures that we use to store datain memory in the conduit. Since we're using C++,
we have constructors and destructors to make our lives easier:

struct Customer {
Customer() { nane = address = city = phone = 0;}
~Custoner() {delete [] nane; delete [] address; delete [] city;
delete [] phone; };
| ong custonerl D;
char *nane;
char *address;
char *city;

char *phone;

}s

struct Categories {
Categories(int num) { nunCategories = num
nanmes = new Cat egor yNane[nuni ;}
~Categories() {delete [] nanmes;};
unsi gned short nuntCat egori es;
Cat egor yNane *nanes;

}s

struct Order {
Order (unsigned short num) { numtenms = num
itens = new Iltenfnumtens];};
~Order() { delete [] itemns;};

| ong cust omer | D
unsi gned short nunltemns;
ltem *itens;

}s

struct Product {
Product () {nanme = 0;};
~Product () {delete [] nane;};

unsi gned | ong product | D;

unsi gned | ong price; // in cents
unsi gned char cat egory: 4;

char *name;

Downloading to the Handheld

To download data to the handheld, we have to take care of a number of things. First, we need to copy the
customers to the handheld. If the database doesn't exist, we need to create it. Once the database is open, we
need to read through the records. When we finish with customers, we need to do the same things for
products.

Downloading customers

WEe've got to copy the customersto the handheld. We do thisin CopyCust oner sToHH:

i nt CopyCust onmer sToHH(CSyncProperties &sync)
{

FILE *fp = NULL;

BYTE r Handl e;

int err;

bool dbOpen = fal se;

if ((err = SyncOpenDB(custoner DBNane, 0, rHandl e, eDobWite | eDbRead
| eDbShowSecret)) !'= 0) {
LogAddEnt ry(" SyncOpenDB fail ed", slWarning, false);
if (err == SYNCERR FI LE_NOT_FOUND)

{
CDbCr eat eDB dbl nf o;
menset (&bl nfo, 0, sizeof(dblnfo));
dbl nfo. m Creator = sal esCreator;
dbl nf o. m Fl ags = eRecord;
dbl nf 0. m_Car dNo = 0;
dbl nf o. m Type = cust ormer DBType;
strcpy(dbl nfo. m Name, cust omer DBNane) ;
if ((err = SyncCreateDB(dblnfo)) !'= 0)
{
LogAddEntry("SyncCreateDB fail ed", slWarning, false);
goto exit;
}
rHandl e = dbl nfo. m Fil eHandl e;
} else
goto exit;

}
dbOpen = true;

char buf f er[Bl G_PATH *2] ;
strcpy(buffer, sync. m Pat hNane);
strcat (buffer, "Customers.txt");

if ((fp = fopen(buffer, "r")) == NULL) {
err = 1;
LogAddFor mat t edEnt ry(sl Warni ng, false, "fopen(%) failed",
buffer);
goto exit;

}

if ((err = SyncPurgeAll Recs(rHandle)) != 0) {
LogAddEnt ry(" SyncPur geAl | Recs failed", slWrning, false);
goto exit;

}

Custonmer *c;
while (c = ReadCustomer(fp)) {
CRawRecor dl nfo recordl nfo;
recordl nfo. mFil eHandl e = rHandl €;
recordl nfo.mRecld = 0;
recordl nfo. m pBytes = (unsigned char *) gBi gBuffer;
recordlnfo.mAttribs = 0;
recordlnfo.mCatld = O;
recordl nfo. m RecSi ze = Cust ormer ToRawRecor d(gBi gBuf f er,
si zeof (gBi gBuffer), c);
recordl nfo. m dwReserved = 0;

if ((err = SyncWiteRec(recordlinfo)) !=0) {
delete c;
LogAddEntry("SyncWiteRec failed", slWarning, false);
goto exit;

}

del ete c;

}

exit:

}

We try to open the customers database on the handheld. If it doesn't exist, we create it. Next, we open
Customers.txt, the file with the customers. We delete al the existing records from the customers database on
the handheld and then start reading each customer (using ReadCust oner) and writing the customer to the

if (fp)
fclose(fp);
i f (dbOpen)
if ((err = SyncC oseDB(rHandle)) !'= 0)
LogAddEnt ry(" SyncDBC ose failed", slWrning, false);
return err;

database with SyncW i t eRec.

NOTE:

We added a couple of log entriesin this code, as well. These were not intended for users, but to help in our

debugging. We get notified viathe log if the code failed to properly open Customers.txt or if we failed to delete
all the existing records.

ReadCust oner reads acustomer from atext file, returning O if there are no more customers:

Cust omer *ReadCust oner (FI LE *fp)

{

const char *separator = "\t";
if (fgets(gBigBuffer, sizeof(gBigBuffer), fp) == NULL)
return O;

char *customer| D = strtok(gBi gBuffer, separator);
char *name = strtok(NULL, separator);

char *address = strtok(NULL, separator);

char *city = strtok(NULL, separator);

char *phone = strtok(NULL, separator);

if (!address)
address = ""

if (lcity)
city =""

if (!phone)
phone = ""

if (custonerlD && nane) {
Customer *c = new Custoner;
c->custoner| D = atol (custonerlD);
c->nanme = new char[strlen(name) + 1];
strcpy(c->name, nane);
c->address = new char[strlen(address) + 1];
strcpy(c->address, address);
c->city = new char[strlen(city) + 1];
strcpy(c->city, city);
c- >phone = new char[strlen(phone) + 1];
strcpy(c->phone, phone);
return c;

} else
return O;

Cust onmer ToRawRecor d writes a customer to the passed-in buffer in the format the handheld expects.
It returns the number of bytesit has written. Note that it must swap the four-byte cust oner | D to match
the byte ordering on the handheld:

i nt Custoner ToRawRecord(void *buf, int buflLength, Custoner *c)
{

PackedCust oner *cp = (PackedCustoner *) buf;

cp- >custonmer| D = SyncHost ToHHDWor d(¢c- >cust oner | D) ;

char *s = cp->nane;

strcpy(s, c->nane);

s += strlen(s) + 1;

strcpy(s, c->address);

s += strlen(s) + 1;

strcpy(s, c->city);

s += strlen(s) + 1;

strcpy(s, c->phone);

s += strlen(s) + 1;

return s - (char *) buf;

Downloading products

The CopyProduct sAndCat egor i es ToHH function updates the products database on the handheld
from the Products.txt file on the PC:

i nt CopyProduct sAndCat egori esToHH(CSyncProperties &sync)
{

FILE *fp = NULL;

BYTE r Handl e;

int err;

bool dbOpen = fal se;

char buf f er[Bl G_PATH *2] ;
strcpy(buffer, sync. m PathNane);
strcat (buffer, "Products.txt");

if ((fp = fopen(buffer, "r")) == NULL) {
err = 1;
LogAddFor mat t edEnt ry(sl Warni ng, false, "fopen(%) failed",
buffer);
goto exit;

}

if ((err = SyncOpenDB(product DBNane, 0, rHandl e,
eDbWite | eDbRead | eDbShowSecret)) != 0) {
if (err == SYNCERR FI LE_NOT_FOUND)

{
CDbCr eat eDB dbl nf o;
menset (&bl nfo, 0, sizeof(dblnfo));

dbl nfo. m Creator = sal esCreator;

dbl nf o. m Fl ags = eRecord;
dbl nf 0. m_Car dNo = 0;
dbl nf o. m Type = product DBType;

strcpy(dbl nfo. m Name, product DBNane) ;

if ((err = SyncCreateDB(dblnfo)) !'= 0)

{
LogAddEntry("SyncCreateDB fail ed", slWarning, false);
goto exit;
}
rHandl e = dbl nfo. mFil eHandl e;
} else
goto exit;

}
dbOpen = true;

if ((err = SyncPurgeAll Recs(rHandle)) != 0) {
LogAddEnt ry(" SyncPurgeAl | Recs failed", slWrning, false);
goto exit;

}

Cat egori es *c;
if (c = ReadCategories(fp)) {
CDbGenlnfo rlInfo;

rinfo.mpBytes = (unsigned char *) gBigBuffer;
rinfo.mTotal Bytes = Cat egori esToRawRecor d(gBi gBuf f er,
si zeof (gBi gBuffer), c);
rinfo.mBytesRead = rinfo.mTotal Bytes; // Because ol der versions
/1 of the sync manager |ooked in the wong field for
/1 the total size, the documented APl of
/1 SyncWiteDBAppl nfoBLock is that both m Total Bytes
/1 and m BytesRead should be filled in with the total
rinfo. mdwReserved = O;
if ((err = SyncWiteDBAppl nfoBl ock(rHandle, rinfo)) !=0) {

del ete c;
LogAddEnt ry(" SyncW i t eDBAppl nf 0Bl ock failed", slWarning,
fal se);
goto exit;
}
del ete c;
}
Product *p;

while (p = ReadProduct (fp)) {
CRawRecor dl nfo recordl nfo;
recordl nfo. mFil eHandl e = rHandl €;
recordl nfo.mRecld = 0;
recordl nfo. m pBytes = (unsigned char *) gBi gBuffer;
recordlnfo.mAttribs = 0;
recordlnfo.mCatld = p->category;
recordl nfo. m RecSi ze = Product ToRawRecor d(gBi gBuf f er,
si zeof (gBi gBuffer), p);
recordl nfo. m dwReserved = 0;

if ((err = SyncWiteRec(recordlinfo)) !=0) {
del ete p;
LogAddEntry("SyncWiteRec failed", slWarning, false);
goto exit;
}
del ete p;
}

exit:
if (fp)
fclose(fp);

i f (dbOpen)
if ((err = SyncC oseDB(rHandle)) !'= 0)
LogAddEnt ry(" SyncDBC ose failed", slWrning, false);
return err;

This routine has ailmost exactly the same structure as Copy Cust oner sToHH. The categories are written to

the Applnfo block using SyncW i t eDBAppl nf oBl ock instead. It uses ReadCat egori es toread
the categories from the Products.txt file. The function continues reading categories, one per line, until it
reaches an empty line:

#defi ne kMaxCategories 15
Cat egori es *ReadCat egori es(FILE *fp)

{
const char *separator = "\n";
int nuntCategories = 0;
Categories *c = new Categori es(kMaxCat egori es);
for (int i =0; i < kMaxCategories ; i++) {
if (fgets(gBigBuffer, sizeof(gBigBuffer), fp) == NULL)
br eak;
// strip newine
if (gBigBuffer[strlen(gBigBuffer) - 1] == '\n")
gBi gBuffer[strlen(gBigBuffer) - 1] = '\0";
if (gBigBuffer[0] == '\0")
br eak;
/1 copy it
strncpy(c->nanmes[i], gBigBuffer, kCategoryNanmeLength);
c->nanes[i][kCat egor yNameLength] = "\0';
}
c->nunCategories = i;
return c;
}

ReadPr oduct readsthe products that follow in thefile:

Product *ReadPr oduct (FILE *fp)
{
const char *separator = "\t";
if (fgets(gBigBuffer, sizeof(gBigBuffer), fp) == NULL)
return O;

char *product| D = strtok(gBi gBuffer, separator);
char *nane = strtok(NULL, separator);
char *categoryNunber = strtok(NULL, separator);
char *price = strtok(NULL, separator);

if (productlD && name && cat egoryNunber) {
Product *p = new Product;
p- >product I D = atol (productlID);
p- >nane = new char[strlen(nanme) + 1];
strcpy(p->nanme, nane);
p- >category = (unsigned char) atoi (categoryNunber);
p->price = (long) (atof(price) * 100); // convert to cents
return p;
} else
return O;

Cat egor i esToRawRecor d writesthe categoriesin the format expected by the handheld (therefore, the
nuntCat egor i es two-byte field must be swapped):

int CategoriesToRawRecord(void *buf, int buflLength, Categories *c)

{
PackedCat egori es *pc = (PackedCategories *) buf;
pc- >nuntat egori es = SyncHost ToHHWr d(c- >nuntat egori es) ;
char *s = (char *) pc->nanes;
for (int i =0; i < c->nunCategories; i++) {
mencpy(s, c->nanes[i], sizeof(CategoryNane));
s += si zeof (Cat egor yNan®e) ;
}
return s - (char *) buf;
}

Pr oduct ToRawRecor d issimilar, but must swap both the pr oduct | Dand thepri ce:

i nt Product ToRawRecord(void *buf, int buflLength, Product *p)
{

PackedPr oduct *pp = (PackedProduct *) buf;

pp- >product | D = SyncHost ToHHDWor d(p- >pr oduct | D) ;

pp->price = SyncHost ToHHDWor d(p- >pri ce);

strcpy(pp- >name, p->nane);

return of f set of (PackedProduct, nane) + strlen(pp->nane) + 1;

That completes the conduit code for downloading. Remember, however, that the order in which
SyncW i t eRec adds new records to the database isn't defined. As aresult, the handheld must re-sort the
databases (to be sorted by ID). Here'sthe code in our Pi | ot Mai n handheld function that does this:

} else if (cmd == sysAppLaunchCmdSyncNotify) {
DnOpenRef db;

/'l code for beam ng renpved

/'l After a sync, we aren't guaranteed the order of any changed dat abases.
/1 We'll just resort the products and customer which coul d have changed.
// we're going to do an insertion sort because the databases
/'l should be al nmost conpletel sorted (and an insertion sort is
/1 quicker on an al nost-sorted database than a quicksort).
/1 Since the current inplementation of the Sync Manager creates new
/'l records at the end of the database, our database are probably sorted.
db= DmOpenDat abaseByTypeCr eat or (cust omer DBType, sal esCreat or,
dmvbdeReadWi te);
if (db) {
Dm nsertionSort (db, (DnConparF *) Conparel DFunc, O0);
DnCl oseDat abase(db) ;
} else
error = DmGetLastErr();
db= DmOpenDat abaseByTypeCr eat or (pr oduct DBType, sal esCreat or,
dmvbdeReadWi te);
if (db) {
Dm nsertionSort (db, (DnConparF *) Conparel DFunc, 0);
DnCl oseDat abase(db) ;
} else
error = DmGetLastErr();

Uploading to the Desktop

We need to handle the same sorts of things when we are uploading instead of downloading data. First, we
copy orders from the handheld to the desktop by opening the database, reading the records, doing the proper
conversion, and sending them along their merry way to the desktop. Then we do the same for customers.

Uploading orders

WEe've got to copy the orders from the handheld to the desktop:

int CopyOrdersFronHH(CSyncProperties &sync)
{

FILE *fp = NULL;

BYTE r Handl e;

int err;
bool dbOpen = fal se;
int i;

if ((err = SyncOpenDB(order DBName, 0, rHandl e,
eDbRead | eDbShowSecret)) != 0) {
LogAddEnt ry (" SyncOpenDB fail ed", slWarning, false);
goto exit;

}

dbOpen = true;

char buf fer[Bl G_PATH *2];
strcpy(buffer, sync. m PathNane);
strcat (buffer, "Orders.txt");

if ((fp = fopen(buffer, "w')) == NULL) {
LogAddFor mat t edEnt ry(sl Warni ng, false, "fopen(%) failed",

buffer);
goto exit;

}

WORD r ecor dCount ;

if ((err = SyncGet DBRecordCount (rHandl e, recordCount)) !=0) {
LogAddEnt ry(" SyncGet DBRecor dCount fail ed", slWarning, false);
goto exit;

}

CRawRecor dl nfo recordl nfo;
recordl nfo. mFil eHandl e = rHandl €;

for (i = 0; i < recordCount; i++) {
recordl nfo. m Recl ndex = i;
recordl nfo. m Tot al Bytes = (unsigned short) sizeof (gBi gBuffer);
recordl nfo. m pBytes = (unsigned char *) gBi gBuffer;
recordl nfo. m dwReserved = 0;

if ((err = SyncReadRecordByl ndex(recordlnfo)) !=0) {
LogAddEnt ry(" SyncReadRecor dByl ndex fail ed", slWrning, false);
goto exit;

}

O der *o = RawRecordToOrder (recordl nfo. m pBytes);
if ((err = WiteOderToFile(fp, 0)) !'=0) {
LogAddEntry("WiteOrderToFile failed", slWrning, false);
del ete o;
goto exit;
}
del ete o;
}
exit:
if (fp)
fclose(fp);

i f (dbOpen)
if ((err = SyncC oseDB(rHandle)) !'= 0)
LogAddEnt ry(" SyncDBC ose failed", slWrning, false);
return err;

}

The code opens the orders database (read-only, since it won't change the database). Then it creates the
Orders.txt file. It finds the number of records in the database with Sync Get DBRecor dCount . Then it
reads record by record using SyncReadRecor dByl ndex. RawRecor dToOr der reads the raw record
and convertsit to an in-memory record. Finaly, the order iswritten to the filewith Wi t eOr der ToFi | e.

Here's the code that converts arecord to an order (again, byte-swapping is necessary):

O der * RawRecordToOrder (void *p)
{
PackedOrder *po = (PackedOrder *) p;
unsi gned short num tens = SyncHHToHost Wor d(po- >num t ens) ;
O der *o = new Order(numtens);
o- >custonmer| D = SyncHHToHost DWor d(po- >cust oner | D) ;
for (int i =0; i < o->numtens; i++) {
o->items[i].productl D = SyncHHToHost DWor d(po- >i tems[i]. product|D);
o->tenms[i].quantity = SyncHHToHost DWord(po->itens[i].quantity);
}

return o;

}
Last, here's the code that writes the order to thefile:

int WiteOderToFile(FILE *fp, const Order *o)
{

int result;

if ((result = fprintf(fp, "ORDER % d\n", o->custonerlD)) < 0)
return result;

for (int i =0; i < o->numtens; i++) {
if ((result = fprintf(fp, "%d %d\n", o->itens[i].quantity,

o->tems[i].productlD)) < 0)
return result;

}

return O;

Uploading customers

Here's the routine that uploads the customers database:

int CopyCustonersFromHH(CSyncProperties &sync)
{

FILE *fp = NULL;

FI LE *archivefp = NULL;

BYTE r Handl e;

int err;
bool dbOpen = fal se;
int i;

if ((err = SyncOpenDB(custoner DBNarme, 0, rHandl e,
eDbWite | eDbRead | eDbShowSecret)) != 0) {
LogAddEnt ry (" SyncOpenDB fail ed", slWarning, false);
goto exit;

}

dbOpen = true;

char buf fer[Bl G_PATH *2];
strcpy(buffer, sync. m PathNane);
strcat (buffer, "Custoners.txt");

if ((fp = fopen(buffer, "w')) == NULL) {
LogAddFor mat t edEnt ry(sl Warni ng, false, "fopen(%) failed",
buffer);
goto exit;

strcpy(buffer, sync. m PathNane);
strcat (buffer, "CustonersArchive.txt");

if ((archivefp = fopen(buffer, "a")) == NULL) {
LogAddFor mat t edEnt ry(sl Warni ng, false, "fopen(%) failed",
buffer);
goto exit;

WORD r ecor dCount ;

if ((err = SyncGet DBRecor dCount (rHandl e, recordCount)) !=0) {
LogAddEnt ry(" SyncGet DBRecor dCount fail ed", slWrning, false);
goto exit;

CRawRecor dl nfo recordl nfo;
recordlnfo.mFil eHandl e = rHandl e;

for (i =0; i < recordCount; i++) {
recordl nfo. m Recl ndex = i;
recordl nfo. m Total Bytes = (unsigned short) sizeof (gBigBuffer);
recordl nfo. m pBytes = (unsigned char *) gBi gBuffer;
recordl nfo. m dwReserved = 0;

if ((err = SyncReadRecor dByl ndex(recordlnfo)) !=0) {
LogAddEnt ry(" SyncReadRecor dByl ndex fail ed", slWrning, false);
goto exit;

FILE *fileToWiteTo;

if (recordinfo.mAttribs & eRecAttrArchived)
fileToWiteTo = archivefp;

else if (recordinfo.mAttribs & eRecAttrDel eted)
conti nue; /1 skip del eted records

el se
fileTowWiteTo = fp;

Customer *c = RawRecor dToCust oner (recordl nf o. m pBytes);

if ((err = WiteCustonerToFile(fileToWiteTo, c)) != 0) {
del ete c;
LogAddEntry("WiteCustomer ToFil e failed", slWarning, false);
goto exit;

}

del ete c;

}

if ((err = SyncPurgeDel et edRecs(rHandle)) !'= 0)
LogAddEnt ry(" SyncPur geDel et edRecs failed", slWarning, false);

exit:
if (fp)
fclose(fp);

i f (archivefp)
fcl ose(archivefp);

i f (dbOpen)
if ((err = SyncC oseDB(rHandle)) !'= 0)
LogAddEnt ry(" SyncDBC ose failed", slWrning, false);
return err;

}

Uploading customers is slightly more complicated than uploading orders, because the handheld supports
deleting and archiving customers (see "Editing Customers" on page 168).

After reading each record with SyncReadRecor dBy| ndex, we examine the record attributes
(m At tri bs). If thearchive bit is set, we write the record to a different file (appending to
Cust oner sAr chi ve. t xt). If the delete bit is set, we skip this record.

Once we're done iterating through the records, we remove the deleted and archived records from the
handheld (using SyncPur geDel et edRecs). In order to change the database in this way, we had to open
the database with write permission (eDbW i t e).

With this code in place, we have a conduit that can upload and download data as needed. Now we are ready
to tackle full two-way data syncing.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

T T L LR

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! &

PRt

In this chapter:

e TheLogic of Syncing
e The Conduit Classes
e Sales Conduit Sample Based
on the Classes
e Generic Conduit
e Sales Conduit Based on Generic Conduit

13. Two-Way Syncing

Y ou can implement two-way syncing using two different methods. While both methods rely on Palm sample
code, that is where the similarity ends. Thefirst is based on the conduit classes (commonly referred to as
basemon and basetabl) and the second on new code called Generic Conduit. Before delving into either
approach, however, we need to discuss the logic involved in two-way, mirror image syncing.

The Logic of Syncing 2

There are two forms of syncing that occur between the desktop and the handheld. The quicker method is
appropriately named "fast sync" and the other islikewise aptly named "slow sync." A fast sync occurs when
the handheld is being synced to the same desktop machine that it was synced to the previous time. Because
handhelds can be synced to multiple desktops, thisis not the only possibility. As aresult, there are quite a
few logic puzzles that need sorting out when records don't match. Let's start with the easier, fast scenario.

Fast Sync

A fast sync occurs when a handheld syncs to the same desktop asit last did, so you can be assured that the
delete/archive/modify bits from the handheld are accurate. In such cases, the conduit needs to do the
following:
Examine the desktop data
The conduit reads the current desktop datainto alocal database.
Examine the handheld data
For each changed record on the handheld, the conduit does the following:
o If therecord isarchived, it adds the record to an archived database on the desktop and marksit in the

local database as a pending delete. It deletes the archived record from the handheld.
o If deleted, it marksit in the local database as a pending delete and removes it from the handheld.

(Remember, user-deleted records aren't actually deleted until a sync occurs; the user may not see them,
but your application keeps them around for this very occasion.)

o If modified, it modifiesit in the local database.

o If new-if the record doesn't exist in the local database-the conduit addsiit.

Examine the local data
It is necessary to handle modified records in the local database by comparing them to the handheld records:

o If archived, it removes the record from the handheld, putsit in the archived database, and marksit asa
pending delete in the local database.

o If arecord is deleted, the conduit removes it from the handheld and marks it as a pending delete in the
local database.

e If modified, it copies the modifications to the handheld and clears the modification flag from the
record in the local database.

e If new, it copies the record to the handheld and clears the added flag from the record in the local
database.

Dispose of the old data

Now the conduit deletes all recordsin the local database that are marked for deletion. At this point, al the
records in the local database should match those on the handheld.

Wkite local database to desktop database

Finally, al the datais moved from the temporary local database back to permanent storage; the archive
database is written out first and then the local database. A copy of the local databaseis also saved asa
backup database-you will use thisfor slow sync.

Thorny Comparisons-Changes to the Same Records on Both Platforms

There are some very thorny cases of record conflicts we have to consider. When you give users the
capability of modifying arecord in more than one location, some twists result. The problem occurs when
you have arecord that can be changed simultaneously on the handheld and on the local database, but in
different ways. For example, a customer record in our Sales application has its address changed on the
handheld database and its name changed on the local database. Or arecord was deleted on one platform and
changed on another. The number of scenariosis so great that we require some formal rules to govern cases
of conflict.

The Palm philosophy concerning such problemsis that no data loss should occur, even at the price of a
possible proliferation of records with only minor differences. Thus, in the case of arecord with anamefield
of "Smith" on the handheld and " Smithy" on the local database, the end result is two records, each present in
both databases. Here are the various possibilities and how this philosophy plays out into rules for actual
conflicts.

Arecord is deleted on one database and modified on the other

The deleted version of the record is done away with, and the changed version is copied to the other platform.
A record is archived on one database and changed on the other

The archived version of the record is put in the archive database, and the changed version is copied to the
other platform. Exception: if the archived version has been changed in exactly the same way, we do the right

thing and end up with only one archived record.

Arecord is archived on one database and deleted on the other

The record is put in the archive database.
A record is changed on one database and changed differently on the other
Theresult istwo records. Thisis true for records with the same field change, such as our case of "Smith"

and "Smithy." It isalso true for arecord where the name field is changed on one record and the address field
on the other. In this case, you also end up with two records. Thus these initial records:

Handheld Database L ocal Database
Name: Smith Name: Smithy
Address: 120 Park Street Address 100 East Street
City: River City City: River City

yield the following records in fully synced mirror image databases:

Handheld Database Local Database

Name: Smith Name: Smith

Address: 120 Park Street Address: 120 Park Street
City: River City City: River City

Name: Smithy Name: Smithy

Address 100 East Street Address 100 East Street
City: River City City: River City

Arecord is changed on one database and changed identically
on the other

If arecord is changed in both placesin the same way (the same field contains the same new value in both
places), the result is one record in both places.

This can get tricky, however. While it may be clear that "Smith" is not "Smithy", it is not so obvious that
"Smith" is not "smith". Depending on the nature of your record fields, you may need to make case-by-case
decisions about the meaning of identical.

Sow Sync

A slow sync takes place when the last sync of the handheld was not with this desktop. Commonly, this
occurs when the user has more recently synced to another desktop machine. Less frequently, this happens
because thisis the first sync of ahandheld. If the last sync of the handheld was not with this desktop, the
modify/archive/del ete bits are not accurate with respect to this desktop. They may be accurate with the
desktop last synced to, but this doesn't help with the current sync scenario.

Since the modify/archive/delete bits aren't accurate, we've got to figure out how the handheld database has

changed from the desktop database since the last sync. In order to do this, we need an accurate copy of the

local database at the time of the last sync. Thisis complicated by the possibility that the local database may
have changed since the last sync. The solution to this problem is to use the backup copy that we made after
the last sync between these two machines-the last point at which these two matched.

Since this backup, both the handheld and the desktop database may have diverged. While it istrue that all
the changes to the desktop have been marked (changes, new, deleted, archived), it is not true for the
handheld. Some or all of the changes to the handheld data were lost when the intervening sync took place;
the deleted/archived records were removed, and the modified records were unmarked.

To deal with this problem, we need to use aslow sync. Asthe name implies, aslow sync looks at every
record from the handheld. It copies them to an in-memory database on the desktop called the remote

database and compares them to the backup database records. Here are the possibilities that need to be taken
into account:

o Theremote record matches arecord in the backup database-nothing has changed.

o Theremote record isn't present in the backup database-the record is new and is marked as modified.

o The backup record isn't present in the remote database-the remote record has been deleted (it could
have been archived, in which case it has been archived on a different desktop). The record is marked
as deleted.

e The backup record and the remote record are different-the remote record has been modified. The
record is marked as changed.

At this point, we've got a copy of the remote database where each record has been left alone, marked as
modified (due to being new or changed), or marked as deleted. Now the conduit can carry out the rest of the
sync. Thus, the difference between the two syncsistheinitial time required to mark records so that the two
databases agree. It is aslow sync because every record from the handheld had to be copied to the desktop.

Now that you know what to do with records during a sync, let's discuss how to do it.

The Conduit Classes .&

Y ou may be apprehensive about tackling two-way syncing using the conduit classes provided by Palm
(sometimes called basenon and baset abl because of the filenames in which they are located). The
implementation may seem murky and the examples quite complicated. If you looked over the samples, you
certainly noted that there is no simple example showing how to do what you want to do. Things get even
more formidable if you don't want to save your datain the format the base classes provide.

We had all these same apprehensions-many of them were well deserved. At the time this book was written,
the documentation wasn't clear concerning the definitions and tasks of each class, nor wasiit clear what you
specifically needed to do to write your own conduit (what methods you are required to override, for
instance). The good news is that a detailed examination shows that the architecture of the conduit classesis
sound; they do quite alot for you, and it's not hard to support other file formats once you know what you
have to change.

After diving in and working with the conduit classes, we figured out how to use them effectively. In a
moment, we will show you their architecture and describe each class and its responsibilities. After that, we

show you what is required on your part-what methods you must override and what data members you must
set. Next, we show you the code for a complete syncing conduit that supports its own file format.

The Classes and Their Responsibilities
The classes you use to create the conduit are:
CBaseConduit Monitor

Runs the entire sync

CBaseTable

Creates a table that holds all the records
CBaseSchema

Defines the structure of arecord in the table

CBaseRecord
Creates an object used to read and write each record to the table
CDTLinkConverter

Converts the Palm OS record format into a CBaseRecord and vice versa
CBaseConduitMonitor

The CBaseConduitMonitor classis responsible for directing syncing from the start to the end. It does the
logging, initializes and deinitializes the sync manager, creates tables, populates them, and decides what
records should go where. It is the administrator of the sync. It is aso within CBaseConduitMonitor that we
add all of the code from the previous chapters that handle the uploading and downloading of data.

CBaseConduitMonitor contains five functions that you need to override:

Creat eTabl e
Construct Record
Set Ar chi veFi | eExt
LogRecor dDat a
LogAppl i cati onNane

At thispoint, we give you a brief description of each function. Later, we'll look at actual code when
examining our conduit sample.

CreateTable
Y ou override thisto create your class derived from CBaseTable. Here's the function declaration:
| ong CreateTabl e(CBaseTabl e*& pBase);

ConstructRecord

This routine creates your own class derived from CBaseRecord. Here is the function:

| ong Construct Recor d(CBaseRecor d*& pBase,
CBaseTabl e& rtable, WORD wivbdAction);

If theincoming WWbdAct i on parameter is equal to MODFI LTER_STUPI D, the newly created
CBaseRecord object should check any attempted changesto itsfields. If the change attempts to set a new
value equal to the old value, the CBaseRecord object should just ignore the change, not marking the record
as having changed.

SetArchiveFileExt

This function simply sets the filename extension used for archive files. Here isthe override call:

voi d Set ArchiveFil eExt();

Y our override should set them Ar chFi | eExt data member of CBaseConduitMonitor to a string that will
be appended to the category name and used as the filename of the archive.

LogRecordData

This function writes a summary of arecord to the log. Here is the function you override:

voi d LogRecor dDat a(CBaseRecor d&r Rec, char *errBuf);

Here are the values of the parameters:

r Rec

The record to summarize

err Buf f

The buffer to write the summary to

Thisroutine is called when the monitor is going to add alog entry for a specific record (for example, when a
record has been changed on both the desktop and the handheld). It writes a succinct description of the
record, one that enables the user to identify the record.

LogApplicationName

Thisis the function that returns the name of the conduit:

voi d LogAppl i cati onNane(char* appNane, WORD |en):

The conduit nameis returned into appNane (the appNane buffer is| en byteslong).
CBaseConduitMonitor data member

This class contains one data member that you must initialize:

m wRawRecSi ze

Initialize this to the maximum size of arecord in your handheld database. It is used as the size of the
m pByt es field of the CRawRecordInfo (see "The CRawRecordInfo class' on page 337). It isused to read
and write handheld database records.

CBaseTable

Thisclassis used to create atable that contains field objects for each record. The whole thing is stored in a
large array. Every record contains the same number of fieldsin the same order. The number of rowsin the
array isthe number of records in the table. The number of columnsis the number of fields per record. Y ou
should imagine a structure similar to that shown in Figure 13-1.

-Figure 13- 1. Record structurein CBaseT able

CBaseTable

Record 1 | Field | Field 2 Field 3 Field 3 Field 4 Field...N

Record 2 | Field | Field 2 Field 3 Field 3 Field 4 Field...N

Record 3 | Field | Field 2 Field 3 Field 3 Field 4 Field...N

Record 4 | Field | Field 2 Field 3 Field 3 Field 4 Field...N

Record 5 | Field 1 Field 2 Field 3 Field 3 Field 4 Field ..N

Thisisnot an array of arrays, but asingle large one. The fields are stored in asingle-dimensional array,

where the fields for the first record are followed by those of the second record and so on. When it's necessary
to retrieve the valuesin arow, a CBaseRecord is positioned at the appropriate fields in the array. It can then
read from and write to the fields to effect a change to the row. The table is responsible for reading itself from
afile and writing itself out. The default format isan MFC archive format.

NOTE:

Thistype of programming is a bit startling after months of handheld programming, where every byte of
memory is precious. It's refreshing to be in an environment where memory isless limited. How profligate
to just alocate afield object for every field in every row-all we can say isthat its a good thing conduits
aren't required to run in 15K of dynamic memory.

A conduit actually has several CBaseTables: one for the records on the handheld, one for the records on the
desktop, one for the backup database during a slow sync, and one containing archived records.

Within atable, the datais handled in a straightforward manner and records are frequently copied from one
table to another during a sync. While records can be individually deleted, they are normally marked as
deleted and then all purged at once.

Functions you must override

This class has only one function to override:

virtual |ong AppendDupl i cat eRecord (
CBaseRecor d&r From CBaseRecord& To, BOOL bAll Flds = TRUE);

Here are the parameters and their values.
r From
The record that contains the fields that are copied from.

rTo

A record that contains the fields that get copied to.

bAl | FI ds

If thisistrue, the record ID and status should be copied with al the other fields.
This adds a new row of fields.

CBaseTable functions you can't override, but wish you could

There are two other functions that you will often wish to override. The problem isthat you can't, given the
flawed design of the class. These functions are:

| ong OpenFrom (CString& r Tabl eNane, | ong openFl ag);
long ExportTo (CString& rTabl eName, CString & csError);

These are the routines responsible for reading a table from and writing atable to disk. Thus, any time you
want to use adifferent file format, you should override these.

Unfortunately, these routines aren't declared virtual in the original Palm class and can't easily be overridden.
Since you can't accomplish what you need to in a standard way, you have to use afar less appealing method.
See "The problem-virtual reality beats nonvirtual reality” later in this chapter for a description of the

unpal atable measures we suggest.

CBaseSchema
This classis responsible for defining the number, the order, and the type of the fields of each record.
Functions you must override

This class contains only one function to override:

virtual |ong Di scover Schema(voi d);

This routine specifies each of the fields and marks which ones store the record 1D, attributes, category ID,
etc.

CBaseSchema data members

There are several data members that you need to initializein Di scover Schena:
m_Fi el dsPer Row

Initialize to the number of fields in each record.

m Fi el ds

Call thisobject's Set Si ze member function to specify the number of fieldsin each record. Call the object's
Set At member function for every field from O tom Fi el dsPer Row 1 to specify the type of the field.

m_Recor dl dPos

Initialize to the field number containing the record ID.
m_Recor dSt at usPos

Initialize to the field number containing the status byte.
m_Cat egor yl dPos

Initialize to the field number containing the category ID.
m Pl acenent Pos

Initialize to the field number containing the record number on the handheld. If you don't keep track of record
numbers, you'll initialize to an empty field.

Most conduits do not need the record numbers from the handheld and therefore have a dummy field that the
m_Pl acenent Pos refersto. Occasionally, a conduit needs to know the ordering of the records on the
handheld. For example, the Memo Pad conduit wants records on the desktop to be displayed in the same
order as on the handheld and has no key on which to determine the order. Its solution is to use the ordering
of the records in the database as the sort order (no other conduits for the built-in applications use record
numbers).

A conduit that needs record numbers would do the following:

1. Override ApplyRemotePositionMap (which does nothing by default) to read the record IDs in the order in
which they are stored on the handheld.

2. Store each record number in the field referenced by m Pl acenent Pos.

CBaseRecord

A CBaseRecord isatransitory object that you use to access arecord's fields. The fields are stored within the
table itsalf; use the CBaseRecord to read and write data from a specific row within the table. Y our derived
class should contain utility routines to read and write the data in the record.

Functions you must override

This class contains a couple of functions that you must override:

virtual BOOL operator==(const CBaseRecord&):

This function compares two records to determine whether they are the same. It should not just compare

record IDs or attributes, but should use all the relevant fields in the records. Note that the parameter r is
actually your subclass of CBaseRecord.

Whenever thisfunction is caled, the two records are in different tables:

virtual long Assign(const CBaseRecordé&r);

This routine copies the contents of r to thisrecord, including the record ID and attributes. Note that the
parameter r is actually a subclass of CBaseRecord. The two records are in different tables.

Useful functions

There are also several functions that you can use to set the record ID, get or set individual attributes of the
record, and so on. Here they are:

| ong Set Recordl d (int nRecld);
long GetRecordld (int& rRecld);
long Set Status (int nStatus);
long GetStatus (int& rStatus);

| ong Set Cat egoryl d (int nCatld);
long GetCategoryld (int& rCatld);
long SetArchiveBit (BOOL bOnOif);
BOOL | sDel et ed (void);
BOOL |sModified (void);

BOOL | sAdded (void);

BOOL |sArchived (void);

BOOL | sNone (void);

BOOL | sPending (void);

Thefirst set of routines returns information about the record ID, its status, the category 1D, and whether the
record should be archived. The second set of routines tells you the modified status of the record.

CBaseRecord data members
There are a couple of data members that are available for you to use:
m fiel ds

This data member is an array of fields for this specific record. It isinitialized by the table when the tableis
focused (so to speak) on the record. Only one record within atable can be focused at atime.

m_Posi ti oned

This specifies whether the table is positioned on this particular record. It starts out false, but when the table
focuses on arecord, it is set to true.

CDTLinkConverter

This classisresponsible for converting from Palm record format to your subclass of CBaseRecord and vice
versa,

Functions you must override

long Convert ToRenpt e(CBaseRecord & Rec, CRawRecordlnfo &rlnfo);

Y ou use this function to convert from your subclass of CBaseRecord to the CRawRecordInfo. The
r1 nf o. m pByt es pointer has aready been alocated for you. Y ou must write into the buffer and update
rinfo.mRecSi ze:

I ong Convert FronRenot e(CBaseRecord & Rec, CRawRecordlnfo &rlnfo);

Convert from the CRawRecordInfo to your subclass of CBaseRecord. The r Rec parameter is the subclass
of CBaseRecord created by your CBaseTable::CreateRecord. Y ou need to initialize r Rec based on the
valuesinr | nf o.

Sales Conduit Sample Based
on the Classes aa

Now that you have an idea what each of the classes does and which functions you override, it istimeto use
thisinformation to add syncing to the Sales application conduit. We use these new sync classes for syncing
the customer database. We continue to use our own routines that we created in Chapter 12 to upload the
orders database and download the products database.

There is aso a problem in the implementation of two of the classes: CBaseConduitMonitor and CBaseTable.
We use an unorthodox approach, which involves circumventing normal inheritance and copying the classes
by hand. We talk about this as part of our discussion of each of these classes in the sample conduit. Other
classes are used normally.

CSalesConduitMonitor-Copying the Class

Thisisthe classthat isbased on CBaseConduitMonitor. Let'slook at a problem we have before going any
further.

A virtual conundrum

Our customer database doesn't use categories, but CBaseConduitMonitor expects them to exist.
CBaseConduitMonitor's Obt ai nRenot eCat egor i es function reads the app info block of the
handheld database and causes an error if the Applnfo block doesn't exist. In the original class, there were
two functions that expected information about categories. Thefirst was Synchr oni zeCat egori es,
which isresponsible for syncing the categories. We overrode this routine to do nothing. Unfortunately, a
second function dealing with categories was not declared virtual in the original class and thus could not be
overridden. Here is the unseemly bit of code that caused our problem:

| ong Obtai nRenpt eCat egories (void); // acquire HH Categories

Because of this code, our function Qbt ai nRenot eCat egor i es never gets caled, and our conduit fails
with an error. After abit of nail biting, our solution was to re-sort to copy and paste-we copy the
basemon.cpp and basemon.h files to our conduit source directory and change the declaration of
CBaseConduitMonitor so that Cbt ai nRenot eCat egori es isvirtua.

NOTE:

In a perfect world, you would never have to concern yourself with the following code. It would remain
invisible to you. Doing this type of code copy is an action fraught with difficulty. If Palm Computing
changes this class, you'll have to reapply this change (unless one of the changes was to add the needed
vi r t ual , in which case you could throw away your changes).

Code we wish you never had to see

Here is the class that you need to copy into your conduit source directory (note that the line of code we
changeisin bold):

cl ass CBaseCondui t Moni t or
{
prot ect ed:
/'l code del eted that declares lots of data menbers

virtual long CreateTable (CBaseTabl e*& pBase) ;
virtual long ConstructRecord (CBaseRecord*& pBase,
CBaseTabl e& rtabl e,
WORD wibdAct i on);
virtual void SetArchiveFileExt();

/1 Moved to Base cl ass.
virtual long ObtainRenoteTables(void);// get HH real & archive tables
virtual long ObtainLocal Tables (void);// get PCreal & archive tables

virtual long AddRecord (CBaseRecor d& r FronRec,
CBaseTabl e& rTable);

virtual long AddRenoteRecord (CBaseRecor d& rRec);

virtual long ChangeRenoteRecord (CBaseRecor d& rRec);

virtual long CopyRecordsHH oPC (void); // copy records fromHH to PC
virtual long CopyRecordsPCtoHH (void); // copy records fromPC to HH
virtual long FastSyncRecords (void); // carries out 'Fast' sync

virtual long SlowSyncRecords (void); // carries out 'Slow sync

/1 deleted function
/1 virtual long CreatelLocArchTable (CBaseTabl e*& pBase) ;

virtual long SavelLocal Tables (const char*);

virtual long PurgeLocal Del etedRecs (void);

virtual long GetLocal RecordCount (void);

virtual long SendRenoteChanges (CBaseRecor d& rLocRecord);
virtual long ApplyRenotePositionMap(void);

virtual long SynchronizeCategories (void);

virtual long FlushPCRecordl Ds (void);

virtual long ArchiveRecords (void);

/Il file link related functions
virtual long ProcessSubscription (void);
virtual int GetFirstRecord (CStringArray*& pSubRecord);
virtual int GetNextRecord(CStringArray*&);
virtual int Del eteSubscTabl eRecs(CString& csCat Name,
CBaseTabl e* pTabl e, WORD wDel et eOpti on);
virtual int AddCategory(CString& csCat Name, CBaseTabl e* pTable);
virtual |ong LoghodifiedSubscRec(CBaseRecord* pRecord,
BOOL bl ocal Rec);
virtual |ong Synchroni zeSubscCat egori es(CCat egoryMgr* cat Myr) ;
virtual |ong CheckFil eName(CString& csFil eNane);
virtual int GetSubData (CString& csfilename, CString csFldOder);
virtual void AddSubDataToTable(int subCatld);

/1 Audit trail notifications (optional override)

virtual long AuditAddToPC (CBaseRecord& rRec, long rowOfset);
virtual long AuditUpdateToPC (CBaseRecord& rRec, long rowOfset);
virtual long AuditAddToHH (CBaseRecord& rRec, long rowOfset);

/1 Overload with care !!
virtual long EngageStandard (void);

virtual long Engagelnstall (void);

virtual long EngageBackup (void);
virtual long EngageDoNot hing (void);
Code changed here:

/] Obt ai nRenot eCat egori es changed to virtual Neil Rhodes 8/6/98
virtual long ObtainRenoteCategories (void); // acquire HH Categories

virtual long SaveRenoteCategories (CCat egoryMyr *cat Myr) ;
Il ong Savelocal Categories (CCat egoryMyr *cat Myr) ;
long C earStatusAddRecord (CBaseRecor d& r FronRec,
CBaseTabl e& rTable);
long Allocat eRawRecor dvenory (CRawRecor dl nf o0& rawRecord, WORD);
void SetDirtyCategoryFl ags (CCat egoryMyr* cat Myr) ;
void Updat ePCCat egori es (CUpdat eCat egoryl d *updCat | d);
BOOL | sRenot eMenError (long);
BOOL | sCommsError (long);

/1 Used by Fast Sync and Sl owSync.

virtual long SynchronizeRecord (CBaseRecord & rRenRecord,
CBaseRecord & rLocRecord,
CBaseRecord & rBackRecord);

/1 code deleted that declares lots of log functions
virtual BOOL |sFatal ConduitError(long | Error, CBaseRecord
*pr Rec=NULL) ;

publi c:
CBaseCondui t Moni t or (PROGRESSFN pFn,
CSyncPropertiesg&,
HI NSTANCE hl nst = NULL);
virtual ~CBaseConduit Monitor 0);
|l ong Engage (void);
void SetDIInstance (HI NSTANCE hl nst) ;

void SetFilelinkSupport (long Ivalue){ mlFilelinkSupported = Ivalue; }

/1 file link public functions
| ong Updat eTabl esOnSubsc(voi d);
int GetCategories(char categoryNames[][CAT_NAME LEN]);

There seems to be no rhyme or reason as to which functions are declared virtual and which aren'tin
CBaseConduitMonitor. These are not routines that get called hundreds of thousands of times a sync that
never need to be overridden. We can't see any optimization that would warrant making them virtual. There's
no excuse for this oversight.

Luckily, that's all that needs to be done; basemon.cpp will need to be recompiled, but that is uncomplicated.
CSalesConduitMonitor

Now we can move on to adiscussion of changes we would normally make to our code and standard
modifications we make to this class.

CSalesConduitMonitor Class Definition

Within this class, we do afew things. We override the category functions to do nothing. We aso override
EngageSt andar d. We insert the calls to our uploading and downloading databases. We a so need to
override the class functions that every conduit must override. Here is the class definition:

cl ass CSal esCondui t Monitor : public CBaseConduit Mnitor
{
pr ot ect ed:
/1 required

| ong CreateTabl e (CBaseTabl e*& pBase) ;

| ong Construct Recor d(CBaseRecor d*& pBase,

CBaseTabl e& rtable, WORD wivbdActi on);
voi d Set ArchiveFil eExt ();
voi d LogRecor dDat a (CBaseRecord&, char*);

voi d LogApplicationNanme (char* appName, WORD);
//overridden to do nothing because we don't have categories
virtual long SynchronizeCategories (void);
virtual long btainRenoteCategories(void);
/1 ovverriden so we can upload and downl oad our other databases
virtual long EngageStandard(void);
public:

CSal esCondui t Moni t or (PROGRESSFN pFn, CSyncPropertiesg&,
HI NSTANCE hl nst = NULL);

CSalesConduitMonitor constructor

Our constructor allocatesaDTLI nkConver t er and sets the maximum size of handheld records:

CSal esCondui t Moni t or: : CSal esCondui t Moni t or (
PROGRESSFN pFn,
CSyncProperties& rProps,
HI NSTANCE hl nst

) : CBaseConduit Monitor(pFn, rProps, hlnst)

m pDTConvert = new CSal esDTLi nkConverter (hlnst);
m wRawRecSi ze = 1000; /1 no record will exceed 1000 bytes

Functions that require overriding
There are five functions that we need to override:
CreateTable

This function ssimply creates a CSalesTable:

| ong CSal esCondui t Moni t or: : Creat eTabl e(CBaseTabl e*& pBase)

{
pBase = new CSal esTabl e();
return pBase ? 0 : -1,
}
ConstructRecord

This routine creates a new CSalesRecord:

| ong CSal esCondui t Moni tor:: Construct Recor d(CBaseRecor d*& pBase,
CBaseTabl e& rtable ,
WORD wibdAct i on)

pBase = new CSal esRecord((CSal esTable & rtable, wwdAction);

return pBase ? 0 : -1,

SetArchiveFileExt

Next, we set the suffix for our archive filesas ARC.TXT in Set Ar chi veFi | eExt . Our archivefileis
called UnfiledARC.TXT (all our records are category O, the Unfiled category):

void CSal esCondui t Moni tor:: Set Archi veFi | eExt ()

strcpy(m ArchFil eExt, "ARC. TXT"):

}

LogRecordData

Our LogRecor dDat a summarizes a CSalesRecord to alog:

voi d CSal esCondui t Moni tor:: LogRecor dDat a(CBaseRecor d& r Rec,
char * errBuff)
{
/!l return something of the form" city name, "
CSal esRecord & LocRec = (CSal esRecord&)r Rec;
CString csStr;
int len = 0;

rLocRec. GetCity(csStr);
len = csStr. GetLength() ;

if (len > 20)

|l en = 20;
strcpy(errBuff, " ")
strncat (errBuff, csStr, len);
strcat(errBuff, ", ");

rLocRec. Get Nanme(csStr);
len = csStr. GetLength() ;
if (len > 20)

|l en = 20;

strncat (errBuff, csStr, len);

strcat(errBuff, " ;
strncat (errBuff, csStr, len);

}

LogApplicationName

Last, but not least, we need to override the routine LogAppl i cat i onNane. It returns our conduit's name:

voi d CSal esCondui t Moni tor:: LogAppl i cati onNanme(char* appNane, WORD | en)

{
strncpy(appNane, "Sal es", len-1);

This ends the required routines. There are afew others we override.
The two category routines

We override the two category routines to do nothing. This prevents CBaseConduitMonitor from reading the
app info block from the handheld and from actually trying to synchronize categories between the handheld
and the desktop:

| ong CSal esCondui t Moni tor:: Obtai nRenpt eCat egori es()
{

return O;

}

| ong CSal esCondui t Moni tor:: Synchroni zeCat egori es()
{

return O;

}
Modifying EngageStandard

Next, we override EngageSt andar d so that we can call the routines we defined in Chapter 12 for
copying orders from the handheld and copying products from the desktop. We have physically copied the
inherited code, since we have to place our code in the middle of it. We place it after the conduit is registered
with the Sync Manager and the log is started, but before the log is finished and the Sync Manager is closed.

Example 13-1 shows the entire function in al its complexity. We wanted you to see the complexity you
avoid by using CBaseConduitMomitor for syncing instead of writing all of this from scratch.

-Example 13- 1. EngageStandard

| ong CSal esCondui t Moni t or: : EngageSt andar d(voi d)

{
CONDHANDLE condui t Handl e = (CONDHANDLE) 0;
| ong retval = 0;
char appNane[40] ;
| ong pcCount = O;
WORD hhCount = 0;

Activity syncFi ni shCode = sl SyncFi ni shed;

/] Register this conduit with SyncMgr.DLL for communication to HH
if (retval = SyncRegi sterConduit (conduitHandl e))
return(retval);

/1 Notify the log that a sync is about to begin
LogAddEntry("", sl SyncStarted, FALSE);

nmenset (&m DbGenl nfo, 0, sizeof (mDbGenlnfo));

/1 Loop through all possible 'rempte' db's
for (; mCurrRenpteDB < m Tot RenpteDBs && !retval ; m Curr Renot eDB++)
{

/1 Open the Renote Database

retval = Obtai nRenot eTabl es();

/1 Open PC tables and |l oad |ocal records & | ocal categories.
if (!retval & !(retval = ObtainLocal Tables()))
{
#i fdef _FI LELNK
/1 Process Subscriptions
/1 This needs to be done first before desktop records are affected
/1 by other calls.
/1 (e.g.) FlushPCRecordIDs()... which will set all recStatus to Added
// for a hard reset HH
/1 (mfirstDevice = eHH)
if (lretval)
if (mrSyncProperties. mSyncType != eHH oPC)
{
retval = ProcessSubscription();
}
#endi f
if(!(retval))
{
Fl ushPCRecor dl Ds() ;

if (!(retval = ObtainRenpteCategories()))
{
/1 Synchroni ze the ApplnfoBl ock Info excluding the categories
m pDTConvert - >Synchr oni zeAppl nf oBl ock(m DbGenl nf o,
*m _LocReal Tabl e,
m r SyncProperti es. m SyncType,
m r SyncProperties. mFirstDevice);

/1 Synchroni ze the categories
retval = Synchroni zeCat egories();

/1 Synchroni ze the records
if (lretval)
{
#ifdef _FI LELNK
/1 path for subsc info
CString csSubl nfoPat h(m rSyncProperties. m Pat hNane) ;
csSubl nf oPat h =csSubl nf oPat h + SUBSC_FI LENANME;

/
/
/
i

}

/
/
/
f

SubError subErr = SubLoadl nf o(csSubl nf oPat h) ;
#endi f

if (m.orSyncProperties.mSyncType == eHHt oPC)
retval = CopyRecor dsHHt oPC() ;

else if (mrSyncProperties. mSyncType == ePCt oHH)
retval = CopyRecor dsPCt oHH() ;

else if (mrSyncProperties. mSyncType == eFast)
retval = Fast SyncRecords();

else if (mrSyncProperties. mSyncType == eS| ow)
retval = Sl owSyncRecords();

#i fdef _FI LELNK
SubSavel nf o(csSubl nf oPat h) ;
#endi f

If the nunber of records are not equal after a FastSync or
SlowSync: If the PC has nore records, then do a PCtoHH Sync.
If the HH has nore records, then do a HHt oPC Sync.

('retval &% ((m.rSyncProperties. mSyncType == eFast) ||

(m_rSyncProperties. mSyncType == eSlow)))

/1 Get the record counts
pcCount = Get Local Recor dCount () ;
if (!(retval = SyncGet DBRecor dCount (m RenHandl e, hhCount)))
{
if (pcCount > (Il ong)hhCount)
retval = CopyRecor dsPCt oHH() ;

else if (pcCount < (long)hhCount)
{

m_LocReal Tabl e- >Pur geAl | Records();
retval = CopyRecor dsHHt oPC() ;

}

if ('retval || !IsComrsError(retval))

{

11

11

Re-check the record counts, only if we've obtained remtables
pcCount = Get Local Recor dCount () ;

hhCount = 0;

retval = SyncGet DBRecor dCount (m RenHandl e, hhCount);

If the record counts are not equal, send nessage to the |og.
if (pcCount < (Ilong)hhCount)
{
LogRecCount M smat ch(pcCount, (I ong)hhCount);
syncFi ni shCode = sl SyncAbort ed;
}
else if (pcCount > (Iong)hhCount)
{
LogPi | ot Ful | (pcCount, (I ong)hhCount);
syncFi ni shCode = sl SyncAbort ed;

/1 This allows exact display order matching with the renmote device.
if (!retval || !IsComrsError(retval))

i f (Appl yRenot ePositionMap())
LogBadXMap() ;

if (!retval || IsRenpteMenError(retval))

{

/1 Save all records to be archived to their appropriate files
if (ArchiveRecords())
LogBadAr chi veErr();

/'l Copy PCfile to Backup PC file

CString backFile(mrSyncProperties. mPathNane);
CString dataFil e(mrSyncProperties. mPat hNane);
backFile += mrSyncProperties. m Local Nang;
dataFil e += mrSyncProperties. mLocal Nane;

int nlndex = backFile.ReverseFind(_T('."));

if (nlndex != -1)
backFi | e = backFile. Left(nlndex);
backFi | e += BACK_EXT;

/'l Save synced records to PCfile
if (!SaveLocal Tabl es((const char*)dataFile))

{
/1 dear HH status flags

i f (SyncReset SyncFl ags(m RenHandl e))

{
LogBadReset SyncFl ags() ;
syncFi ni shCode = sl SyncAbort ed;

}
renove(backFil e);
CopyFi | e(dataFil e, backFile, FALSE);

}

el se
syncFi ni shCode = sl SyncAbort ed;

}

if (!lsComsError(retval))
SyncCl oseDB(m RenHandl e) ;

}

/1 added here for sales conduit
if (retval == 0 & mrSyncProperties. m SyncType == eHHt oPC | |
m r SyncProperties. m SyncType == eFast ||
m r SyncProperties. m SyncType == eS|l ow)
retval = CopyOrdersFromHH(m r SyncProperties);
if (retval == 0 & mrSyncProperties. m SyncType == ePCtoHH | |
m r SyncProperties. m SyncType == eFast ||
m r SyncProperties. m SyncType == eS| ow)
retval = CopyProduct sAndCat egori esToHH(m r SyncProperties);
/1 done added here for sales conduit

if (retval)
syncFi ni shCode = sl SyncAbort ed;

// Get the application nanme
nmenset (appNanme, 0, sizeof (appNane));
LogAppl i cat i onNanme(appNane, si zeof (appNane));

LogAddEnt ry(appNanme, syncFi ni shCode, FALSE) ;

if (!lsComsError(retval))
SyncUnRegi st er Condui t (condui t Handl e) ;

return(retval);

These are all the changes to the CSalesConduitMonitor class. Asyou can see, there was very little
complexity to the added code, especially when you realize that most of the difficulty occursin the last
routine, where we have to fold our code into afairly large routine.

Now that we have dealt with the administration portion of the code, it istime to create the tables that hold
the data.

CBaseTable-Copying the Class

We need to create the class that is based on CBaseTable. Before we can define our table structure, however,
we need to deal with another class problem. Once again, the solution is to resort to copying the classas a
whole, and it isfor just as unsatisfying a set of reasons.

The problem-virtual reality beats nonvirtual reality

We want to store our tablesin comma-delimited text files rather than in the default MFC archived file
format. Thisis certainly areasonable wish on our part. It is an even more attractive alternative when you
realize that MFC archived files are very hard to read from anything but MFC-based code. We have no desire
to create an MFC application just to read our datafiles, when atext-based system gives us such enormous

versatility. Good reasoning on our part is unfortunately difficult to act on.

For example, if we attempt to override CBaseTabl e: : SaveTo and CBaseTabl e: : OpenFr om we
don't get very far. Asyou might have guessed, those two member functions are not declared vi r t ual in
the original CBaseTable class. We are stuck then with seeking aworkaround. The solution to this problem is
to copy the basetabl.cpp and basetabl.h files to our conduit's source folder.

The CBaseTable code you have to copy

We need to modify the declaration of CBaseTableto add thevi r t ual keywords. Here is the code we copy
and the two changes we make:

cl ass TABLES DECL CBaseTable : public CObject

{
pr ot ect ed:

friend CBasel terator;

friend CRepeat eEvent I terator;

friend CBaseRecor d;

CString m Tabl eNarrg;

CString m Tabl eStri ng;

CBaseSchema* m_Schema;

CBaseFi el dArray* m Fi el ds;

CCat egor yMgr * m pCat Myr ;

DWORD m_dwVer si on;

BOOL m bOnTheMac;
/] CPtrArray m QOpenlts; /1 List of open CBaselterator(s)
/1 1long Addl t er at or (l ong& It Pos, CBaselterator *);
/1 1long Renovel t er at or (long ItPos, CBaselterator *);

BOOL Subst CRw t hNL (CString &;

BOOL Subst NLwi t hCR (CString &;

void Serialize (CArchive &;

Il ong W peCQut Row (l ong RecPos);

I ong Readl nFields (CArchive &ar);

long DestroyAllFields (void) ;

void DeleteContents (void) ;

virtual long ConstructProperField (eFieldTypes, CBaseField**);
publi c:

DECLARE_SERI AL(CBaseTabl e)

CBaseTabl e 0);
CBaseTabl e (DWORD dwMer si on) ;
virtual ~CBaseTable 0);

/1 change OpenFromto virtual
virtual long OpenFrom (CString& rTabl eNane, |ong openFl ag);
long ExportTo (CString& rTabl eName, CString & csError);

/1 change SaveTo to virtual

virtual long SaveTo (CString& rTabl eNane) ;

virtual long Save (void);

virtual long GetRecordCount (void);

virtual long GetFieldCount (void);

virtual BOOL At Eof (l ong nRecPos);

virtual long AlignFieldPointers (l ong RecPos, CBaseRecord&);
virtual long GetM/Schema (const CBaseSchema*& pSchenm) ;

virtual long PurgeDel etedRecords (void);
virtual long CearPlacenentField (void);

virtual long PurgeAl l Records (void);

virtual long AppendBl ankRecord (CBaseRecor d&) ;

virtual long AppendDuplicateRecord (CBaseRecordg&,
CBaseRecor d&,

BOOL bAl | Flds = TRUE);
virtual long GetTableString (CString& rTabl eString);
virtual long SetTableString (CString& rTabl eString);
virtual CCategoryMr* GetCategoryManager (void);

virtual void DunpRecords(LPCSTR | pPat hName, BOOL bAppend=TRUE) ;

Don't breathe asigh of relief just yet-we have a complication. Thisisn't like the straightforward copying we
did with basenon. cpp for CBaseConduitMonitor-copy, link, recompile, and everything works greats.
Thisisahorse of an entirely different color-unlike basemon.cpp, this isn't code that is normally added to
your project and linked with your remaining code. Therein lies the wrinkle. Thisis code that isfound in a
DLL in the folder with HotSync. Since the DLL is aready compiled without the virtual keyword, the DLL
won't cooperate by calling our derived classs OQpenFr omand SaveTo.

Our solution wasto statically link the baset abl . cpp code into our application and not use the table DLL
at all. Thisalso required adding the define of the symbol _ TABLES to our project-thereby ensuring that the
TABLES DECL define was no longer definedas__decl spec(i nport) . Thiscaused basenon. h to
no longer declare the class as being imported from a DLL. Note that the only other choice besides imported
for the TABLES DECL definewas _decl spec(export) . Wetook what was offered. Unfortunately,
the result is that our conduit DLL unnecessarily exports the functionsin the CBaseTable class. On the
positive side, by these various machinations, we avoid having to change the contents of basetabl.cpp at all.

That isall of the unusual stuff we need to do. Now we can move to more normal overriding.
CSalesTable

We need to handle a number of thingsin our CBaseTable class. In our definitions, we override the two
functions. We also add a couple of new routines to handle the read and write functions.

Class definition

Here's our actual class definition (with OpenFr omand SaveTo overridden). We also include
ReadCust onmer and Wi t eRecor d, which are utility functions used by OQpenFr omand SaveTo:

cl ass CSal esTable : public CBaseTabl e
{
publi c:

CSal esTable () ;

/1 required
virtual long AppendDuplicateRecord (
CBaseRecor d&,
CBaseRecor d&,
BOOL bAl | Flds = TRUE
)
/1 optional overridden
| ong OpenFron{CString& r Tabl eNanme, |ong openFl ag);
| ong SaveTo(CString& rTabl eNane);
/1 useful
CSal esRecord *ReadCustoner (CStdioFile &file);
Il ong WiteRecord(HANDLE hFile, CSal esRecord& rRec);
s

CSalesTable constructor

The constructor creates the schema and initializesit;

CSal esTabl e: : CSal esTabl e()
: CBaseTabl e()

{

m Schena = new CSal esSchens;
if (m.Schemn)
m Schema- >Di scover Schenma() ;

}

CSalesTable functions

AppendDupl i cat eRecor d creates anew row and copiesr Fr omtor To. Notethat r Fr omand r To

are actually CSalesRecord objects:

| ong CSal esTabl e: : AppendDupl i cat eRecor d(CBaseRecor d& r From
CBaseRecord& rTo, BOOL bAl I Fl ds)

{
i nt tenpl nt;
CString tenpStr;
| ong retval = -1;
CSal esRecord& r FronmRec = (CSal esRecord&)rFrom
CSal esRecor d& r ToRec = (Csal esRecord&)rTo;
/1 Source record nust be positioned at valid data.
if (!rFronmRec. m Positioned)
return -1;
if ((retval = CBaseTabl e:: AppendBl ankRecord(rToRec)) != 0)
return retval;
if (bAIIFlIds) {
retval = rFronRec. Get Recordl d(tenpint) ||
r ToRec. Set Recordl d(tenplnt);
if (retval '=0)
return retval;
if ((retval = rFronRec. Get Status(tenpint)) !'= 0)
if ((retval = rToRec. Set Status(tenplnt)) != 0)
return retval;
if ((retval = rToRec. Set ArchiveBit(rFronRec.|sArchived())) != 0)
return retval;
}
if ((retval = rToRec. SetPrivate(rFronRec.IsPrivate())) !'= 0)
return retval;
retval = rFronRec. GetI D(tenpint) || rToRec. SetlD(tenplnt);
if (retval !'=0)
return retval;
retval = rFronRec. Get Nane(tenpStr) || rToRec. Set Nane(tenpStr);
if (retval '= 0)
return retval;
retval = rFronRec. Get Address(tenpStr) || rToRec. Set Address(tenpStr);
if (retval !'= 0)
return retval;
retval = rFronRec. GetCity(tenpStr) || rToRec.SetCity(tenpStr);
if (retval !'= 0)
return retval;
retval = rFronRec. Get Phone(tenpStr) || rToRec. Set Phone(tenpStr);
if (retval !'= 0)
return retval;
return O;
}

Thisisthe only required function. There are also two other functions we override.
SaveTo

Here'sour versonof SaveTo. We useit to save in acomma-delimited format:

| ong CSal esTabl e: : SaveTo(CStri ng& r Tabl eNane)

{
CSal esRecord | ocRecord(*this, 0);
CBasel t er at or loclterator(*this);
| ong err;

CString tdvFil e(rTabl eNane);
HANDLE tdvFi |l eStream = CreateFil g(
tdvFile,

GENERI C_READ | GENERI C_WRI TE,

FI LE_SHARE_READ | FI LE_SHARE_WRI TE,

NULL,

CREATE_ALWAYS,

FI LE_ATTRI BUTE_NORMAL | FILE_FLAG SEQUENTI AL_SCAN,
NULL

)

/'l generate the file
if (tdvFileStream!= (HANDLE) ! NVALI D_HANDLE VALUE) {

Set Fi |l ePoi nter(tdvFileStream 0, NULL, FILE BEG N);
Set EndO Fi |l e(tdvFil eStrean);

err = loclterator. FindFirst(locRecord, FALSE);
while (lerr) {
WiteRecord(tdvFileStream | ocRecord);

err = loclterator. Fi ndNext (| ocRecord, FALSE);
}
if (err == -1) // we reached the |ast record
err = 0;

Cl oseHandl e(tdvFi | eStrean);
}

return err;

It createsthefile, opensit, callsW i t eRecor d to do the actua writing of one record, and then closes the
file.

WriteRecord

Notethat Wit eRecor d doesn't write the attributes (modified, deleted, etc.) to arecord, because it isn't
necessary. By the time we write atable to disk, al deleted records should be deleted, al modified records
will be synced, al archived records will be archived, and all added records will be synced. Thus, the
attribute information is not relevant:

| ong CSal esTabl e: : WiteRecord(HANDLE hFil e, CSal esRecord& rRec)

{
int cust omer | D
CString csName, csAddress, csCity, csPhone;
int recld;
DWORD dwPut ;
unsi gned | ong | en;
const int kMaxRecor dSi ze = 1000;
char buf [kMaxRecor dSi ze] ;

/1 Get the record ID
rRec. Get Recordl d(recld);

/1 Get the custoner |D, name, address, city & phone.
/'l Replace any tabs with spaces in all.
rRec. Get | D(cust oner | D);

r Rec. Get Nane(csNane) ;

r Rec. Get Addr ess(csAddress);

rRec. GetCity(csGty);

r Rec. Get Phone(csPhone) ;

Repl aceTabs(csNane) ;

Repl aceTabs(csAddress);

Repl aceTabs(csCity);

Repl aceTabs(csPhone) ;

/1 Wite the record to the file as (if private):
/1 <customer| D>\t <name>\t <address>\t<city>\t<phone>\tP\t<recl D>

11 or, if not private:
/| <customer| D>\t <name>\t <address>\t<city>\t<phone>\t\t<recl D>
sprintf(

buf ,

"\t 9B\t U\t s\t B\t U8\t Y\ r\n",

cust omer | D,

csName. Get Buf f er (csNane. Get Lengt h()),
csAddr ess. Cet Buf f er (csAddr ess. Get Lengt h()),

csCity. GetBuffer(csCity. GetLength()),
csPhone. Get Buf f er (csPhone. Get Lengt h()),
rRec.|sPrivate() ? "P": ""
recld
)
len = strlen(buf);
WiteFile(
hFi | e,
buf,
| en,
&dwPut ,
NULL
)
ASSERT(dwPut == |l en);

/'l Release the string buffers
csNane. Rel easeBuffer();

csAddr ess. Rel easeBuffer();
csCity. Rel easeBuffer();
csPhone. Rel easeBuffer();

return O;

}

For each of the strings that will be written (name, address, city, phone), W i t eRecor d replaces any tabs or
newlines with spaces by using Repl aceTabs. Thisis necessary because it would ruin our tab-delimited
format if atab or newline occurred within afield.

ReplaceTabs

Here'sthe codefor Repl aceTabs:

static long ReplaceTabs(CString& csStr)

{
char *p;
p = csStr. GetBuffer(csStr. GetLength());
/1 Scan and replace all tabs or newines wth blanks
while (*p) {
if (*p ==\t || *p==-\r || *p=="\n")
*p = .
++p;
}
csStr. Rel easeBuffer();
return O;
}

Thisisall that needs to be done to handle writing to thefile.
OpenFrom

We now need to take care of reading one of thesefiles. OpenFr omdoes that. It checks for the existence of
thefile, opens and closes it, and handles any exceptions that are thrown:

| ong CSal esTabl e: : OpenFron{ CString& r Tabl eNane, | ong openFl ag)
{

char *pszNane ;

CFileStatus fStat;

CStdioFile *file = 0;

pszNane = rTabl eNane. Get Buf f er (r Tabl eNane. Get Lengt h());

/'l Check for the presence of the disk file, if not here get out
/1 *without* invoking any of the reading code.
if (!CstdioFile::GetStatus(pszNane, fStat))

return DERR_FI LE_NOT_FOUND;

TRY

{
file = new CStdioFil e(pszName, CFile::nmdeReadWite |
CFil e::shareDenyWite);
r Tabl eNare. Rel easeBuffer(-1);
}
CATCH_ALL(e)
{
r Tabl eNare. Rel easeBuffer(-1);
if (file)
file->Abort();
delete file;
return ((CFil eException*)e)->m cause;
}

END_CATCH_ALL

/1 Get rid of current contents (if any)
DestroyAl | Fi el ds();

CSal esRecord *newRecord = 0;

TRY
{
while ((newRecord = ReadCustomer(*file)) !'=0) {
del et e newRecor d;
newRecord = O;
}
file->Cose();
}
CATCH_ALL(e)
{
file->Abort();
delete file;
del et e newRecor d;
return DERR_| NVALI D_FI LE_FORMAT;
}

END_CATCH_ALL
delete file;

return O;

ReadCustomer

ReadCust oner hasquite alot of work to do. It creates a new CSalesRecord for each linein thefile. It
returns O when there are no more lines:

CSal esRecord *CSal esTabl e: : ReadCust orrer (CSt di oFi l e &file)
{

static char gBi gBuffer[4096];

int retval;

if (file.ReadString(gBigBuffer, sizeof(gBigBuffer)) == NULL)

return fal se;

char *p = gBigBuffer;

char *customer!| D = Fi ndUpToNext Tab(&p) ;

char *name = Fi ndUpToNext Tab(&p);

char *address = Fi ndUpToNext Tab(&p);

char *city = FindUpToNext Tab(&p);

char *phone = Fi ndUpToNext Tab(&p) ;

char *priv = FindUpToNext Tab(&p);

char *uni quel D = Fi ndUpToNext Tab(&p) ;

char *attributes = Fi ndUpToNext Tab(&p);

if (!address)
address = ""

if (lcity)
city =""

if (!phone)
phone = ""

if ('priv)
priv =""

if (tattributes)
attributes = "c";

i f (!uniquel D
uni quel D = "0";
if (custonerlD && nane) {
CSal esRecord *rec = new CSal esRecord(*this, 0);

i f (AppendBl ankRecord(*rec)) {
/1 should throw an error here!
return O;
/1 return(CONDERR_BAD_ REMOTE_TABLES) ;

}

retval = rec->Set Recordld(atol (uniquelD));

retval = rec->Set Categoryl d(0);

retval = rec->Set|D(atol (custoneriD));

retval = rec->Set Nane(CString(nane));

retval = rec->Set Address(CString(address));

retval = rec->SetCity(CString(city));

retval = rec->Set Phone(CString(phone));

retval = rec->SetPrivate(*priv == "'P");

int attr = 0;

// *N -- new, 'M -- nodify, 'D-- delete, 'A -- archive

[/l if it's Add, it can't be nodify
if (strchr(attributes, "'N))
attr | = fldStatusADD,
else if (strchr(attributes, "M))
attr | = fldStat usUPDATE;
if (strchr(attributes, 'D))
attr | = fldStat usDELETE;
if (strchr(attributes, "A'))
attr | = fldStat usARCH VE;
rec->Set Status(attr);

return rec;
} else
return O;

}

Although Wi t eRecor d doesn't write any attributes, ReadCust onmer must handle the possibility of
reading them. Y ou might wonder how attributes could have gotten into the file. The answer is simple-the
user of the desktop application that edits our comma-delimited file may have changed this record. Since we
support desktop editing of records, we need to know if a modification has occurred (for the next sync).

In such instances, the routine appends a value to the end of the record. ReadCust oner adds an Mas afield
at the end. If the record has been deleted, it doesn't remove the record line from the file; instead, it addsa D
inthelast field. If the record is archived, it adds an A, and new records get marked with an N. On the next
sync, all these newly marked records are dealt with by the sync code. Note that the marking is almost
completely analogous to the marking done on the handheld side.

CSalesSchema

The schema class defines the number, ordering, and type of the fields. We also declare a number of
constants and create one function.

Constants

These constants define the field ordering within arow for the record information we save:

#define sl FLDRecordl D 0
#def i ne sl FLDSt at us

[N

#define sl FLDCust oner| D
#def i ne sl FLDName

#defi ne sl FLDAddr ess
#define sl FLDGi ty

#def i ne sl FLDPhone

o g wWN

#define sl FLDPrivate 7

#defi ne sl FLDPI acement 8
#defi ne sl FLDCat egoryl D 9

#define sl FLDLast s| FLDCat egoryl D

CSalesSchema class definition

Thisisvery straightforward, with only one function to define:

cl ass CSal esSchema : public CBaseSchena

{
publi c:
virtual long DiscoverSchema (void);
b
CSalesSchema functions

The Di scover Schena function must set the number of fields per record, set the type of each record, and
mark which fields contain the record ID, the attributes, and the category ID. Even though our Sales
application keeps its records sorted by customer number, we are still required to reserve afield for the record

number:

| ong CSal esSchemna: : Di scover Schema(voi d)

{

m Fi el dsPer Row = sl FLDLast + 1;

m Fi el dTypes
m _Fi el dTypes.
m _Fi el dTypes.

m _Fi el dTypes.
m _Fi el dTypes.
m _Fi el dTypes
m _Fi el dTypes.
m _Fi el dTypes.
m _Fi el dTypes
m _Fi el dTypes.
m _Fi el dTypes.

/] Be sure to set the 4 conmon fields'

m _Recor dl dPos
m RecordSt atu

m_Cat egor yl dPos
m_Pl acenment Pos

return O;

CSalesRecord

. Set Si ze(m_Fi el dsPer Row) ;

Set At (sl FLDRecor dI D,
Set At (sl FLDSt at us,

Set At (sl FLDCust oner | D,
Set At (sl FLDNarre,

. Set At (sl FLDAddr ess,

Set At (sl FLDCi ty,
Set At (sl FLDPhone,

. Set At (sl FLDPri vat e,

Set At (sl FLDPI acenent,
Set At (sl FLDCat egor yl D,

s| FLDRecor dI D,
s| FLDSt at us;

sl FLDCat egor yI D;
s| FLDPI acenent ;

sPos

(WORD) el nt eger) ;
(WORD) el nt eger) ;

(WORD) el nt eger) ;
(WORD) eString);
(WORD) eString);
(WORD) eString) ;
(WORD) eString) ;
(WORD) eBool) ;
(WORD) el nt eger) ;
(WORD) el nt eger) ;

posi tion

CSaesRecord is based on the CBaseRecord class. Thisisthe class that deals with records in the table. We
have routines that get and set appropriate fields in the record.

CSalesRecord class definition

The constructor takesawiVbdAct i on parameter, which it usesto initialize its base class. Other routines
just get and set the values of a customer record:

cl ass CSal esRecord :

{
pr ot ect ed:
friend

publ i c CBaseRecord

CSal esTabl €;

publi c:
CSal esRecord (CSal esTabl e & Tabl e,

WORD wibdAct i on) ;

| ong SetlD (int ID);

| ong Set Nane (CString &csNane);

| ong Set Address (CString &csAddress);
long SetCity (CsString &csCity);

| ong Set Phone (CString &csPhone);
long SetPrivate (BOOL bPrivate);

I ong Getl D (int & D);

| ong Get Nane (CString &csNane);

| ong Get Address (CString &csAddress);
long GetCity (CsString &csCity);

| ong Get Phone (CString &csPhone);
BOOL |sPrivate (void);

/'l required overrides
virtual BOOL operator==(const CBaseRecord&);
virtual |ong Assign(const CBaseRecord&r);

b
Class constructor

The constructor doesn't do much:

CSal esRecor d: : CSal esRecor d(
CSal esTabl e &rTabl e,
WORD wibdAct i on
) : CBaseRecord(rTabl e, w\wbdAction)

{
}

CSalesRecord functions

There are a number of functions, all of which involve getting or setting records fields. There are routines that
get or set the customer 1D, name, address, city, and ZIP Code. There are also routines that compare records
and assign the values of one record to another.

Getting the customer 1D

Here's the routine that gets the value of the customer ID. It gets the appropriately numbered field (checking
first to make sure the table is positioned at this record) and asks the field for the current value:

| ong CSal esRecord:: Getl D(int &custonerl D)

{
Cl nt eger Fi el d* pFl d;

if (mPositioned &k
(pFld = (CintegerField*) mFields. Get At (sl FLDCustoner| D)) &&
pFl d- >Get Val ue(custoner| D) == 0)
return O;
el se
return DERR_RECORD_NOT_PQSI Tl ONED;
}

Setting the customer 1D

Here's the routine that sets the customer ID. Note that if m wivbdAct i on isequal to
MODFI LTER_STUPI D, the code checks the value being set to see if it is equal to the current value-if it is,
the update (modified) attribute of the statusisn't set:

| ong CSal esRecord: : SetlD(int custonerlD)
{
BOOL aut oFlip
int currStatus 0;
| ong retval DERR_RECORD_NOT_POSI Tl ONED;
Cl nteger Fiel d* pFld = NULL;

FALSE;

if (mPositioned &k
(pFld = (CintegerField*) mFields. GetAt (sl FLDCustonerlD)))
{
if (mwwdAction == MODFI LTER_STUPI D)
{
Get Status(currStatus);
if (currStatus != fldStatusADD)
{
ClntegerField tnmpFld(customerlD);
i f (pFld->Conpare(&tnpFld))
aut oFl i p = TRUE;
}
}
if (!pFld->SetVal ue(custonerlD))
{
if (autoFlip)
Set St at us(f 1 dSt at usUPDATE) ;
retval = 0;
}
}

return retval;

}

Because the routines to get and set the name, address, city, and ZIP, and private value are so similar to those
for the customer 1D, we are not bothering to show them.

Assigning one record to another

We need an assign function that assigns one CSalesRecord to another. It copies all fields, including the
record ID and attributes:

| ong CSal esRecord: : Assi gn(const CBaseRecor d& r Subj)

{
if (! mPositioned)
return -1,
for (int x=sl FLDRecordl D; x <= sl FLDLast; x++)
{
CBaseFi el d* pWFld = (CBaseField*) mFields.GetAt(x);
CBaseFi el d* pSubj Fld =
(CBaseFi el d*) ((CSal esRecord&)rSubj).mFields. Get At (x);
if (pMyFld & pSubj Fl d)
pM/FI d- >Assi gn(*pSubj FI d) ;
}
return O;
}

Comparing one record to another

The comparison routine (== operator) checks to see whether one CSalesRecord is equal to another (ignoring
record ID and attributes):

BOOL CSal esRecord:: operator==(const CBaseRecord& r Subj)
{
if (!m_Positioned)
return FALSE;
for (int x=slFLDCustoner|D; x <= sl FLDLast; x++)
{
CBaseFi el d* pMFI d = (CBaseFiel d*) mFields. Get At (x);
CBaseFi el d* pSubj Fld =
(CBaseFi el d*) ((CsSal esRecord&)rSubj).mFields. GetAt(x);
if (!pMyFId || !pSubjFld)
return FALSE;
if (pMyFl d->Conpare(pSubj Fld) !'= 0)
return FALSE;
}
return TRUE;

CSalesDTLinkConverter

Thisisthe last class that we have in our conduit. It is the one responsible for converting a record from one
format to another and vice versa. We have one function that converts a Padlm OS handheld record into a
CBaseRecord format, and another does the opposite.

CSalesDTLinkConverter class definition

The definition is simple with just two functions:

cl ass CSal esDTLi nkConverter : public CBaseDTLi nkConverter

{
public:

CSal esDTLi nkConvert er (H NSTANCE hl nst);

| ong Convert ToRenpt e(CBaseRecord & Rec, CRawRecordlnfo &rlnfo);

| ong Convert FronRenot e(CBaseRecord & Rec, CRawRecordlnfo &rlnfo);
}s

The HI NSTANCE parameter in the constructor is there so that the converter can obtain strings from the DLL
resource file, if it needsto.

CSalesDTLinkConverter constructor

Here's the constructor:

CSal esDTLi nkConverter: : CSal esDTLi nkConverter (H NSTANCE hl nst)
: CBaseDTLi nkConverter (hlnst)

{
}

Converting to Palmrecord format

Here's the code that converts to a handheld record. Note that it must set the record 1D, the category 1D, and
the attributes as well as write the record contents. We use a utility routine, SwapDWbr dToMot or , to
swap the customer ID:

| ong CSal esDTLi nkConverter:: Convert ToRenot e(CBaseRecor d& r Rec,
CRawRecor dl nf o& r nf o)

{
| ong retval = 0;
char *pBuf f ;
CString tenpStr;
i nt dest Len, tenplnt;
char *pSrc;
i nt cust oner | D;

CSal esRecord& r ExpRec = (CSal esRecord &)rRec;
rinfo.mRecSi ze = 0;

/1 Convert the record ID and Category ID
retval = r ExpRec. Get Recordl d(tenplnt);
rinfo.mRecld = (long)tenplnt;

retval = r ExpRec. Get Categoryld(tenplnt);
rinfo.mCatld = tenplnt;

/1 Convert the attributes
rinfo.mAttribs = 0;
if (rExpRec.lsPrivate())
rinfo.mAttribs | = PRI VATE_BIT;
if (rExpRec.|sArchived())
rinfo.mAttribs | = ARCH VE_BIT;
if (rExpRec.|sDeleted())
rinfo.mAttribs | = DELETE_BIT,;
if (rExpRec.|sMdified() || rExpRec.|sAdded())
rinfo.mAttribs |= DIRTY_BIT;

pBuff = (char*)rlnfo. mpBytes;

/1 customer |ID

retval = rExpRec. Get| D(custonerlD);

*((DWORD *) pBuff) = SwapDWér dToMot or (cust omrer | D) ;
pBuf f += si zeof (DWORD) ;

rinfo.mRecSize += si zeof (DWORD) ;

/'l name
retval = rExpRec. Get Nane(tenpStr);
/'l Strip the CRs (if present) places result directly into pBuff
pSrc = tenpStr. CGetBuffer(tenpStr. GetLength());
destLen = StripCRs(pBuff, pSrc, tenpStr.GetLength());
tenpStr. Rel easeBuffer(-1);
pBuff += destLen;
rinfo.mRecSize += destLen;

/| address
retval = r ExpRec. Get Address(tenpStr);
// Strip the CRs (if present) places result directly into pBuff
pSrc = tenpStr. CGetBuffer(tenpStr. GetLength());
destLen = StripCRs(pBuff, pSrc, tenpStr.GetLength());
tenpStr. Rel easeBuffer(-1);
pBuff += destLen;
rinfo.mRecSize += destLen;

Il city
retval = rExpRec. GetCity(tenpStr);
/'l Strip the CRs (if present) places result directly into pBuff
pSrc = tenpStr. CGetBuffer(tenpStr. GetLength());
destLen = StripCRs(pBuff, pSrc, tenpStr.GetLength());
tenpStr. Rel easeBuffer(-1);
pBuff += destLen;
rinfo.mRecSize += destLen;

/1 phone
retval = rExpRec. Get Phone(tenpStr);
/'l Strip the CRs (if present) places result directly into pBuff
pSrc = tenpStr. CGetBuffer(tenpStr. GetLength());
destLen = StripCRs(pBuff, pSrc, tenpStr.GetLength());
tenpStr. Rel easeBuffer(-1);
pBuff += destLen;
rinfo.mRecSize += destLen;

return retval;

Converting to CBaseRecord format

Here's the code that converts from a handheld record to a CBaseRecord format. Note that it must read the
record ID, the category ID, the attributes, and the record contents. We use a utility routine,

SwapDWor dTol nt el , to swap the customer ID. If the record is deleted, there are no record contents. We
don't try to read the record contents in such cases.

| ong CSal esDTLi nkConverter:: Convert FronRenot e(
CBaseRecor d& r Rec,
CRawRecor dl nf o& r nf o)

{
| ong retval = 0;
char *pBuf f ;
CString asString;

CSal esRecord& r ExpRec = (CSal esRecord &)rRec;

retval = r ExpRec. Set Recordl d(rlnfo. mRecld);
retval = rExpRec. Set Categoryld(rlnfo.mCatld);
if (rinfo.mAttribs & ARCH VE_BIT)

retval = r ExpRec. Set Archi veBi t (TRUE) ;
el se

retval = r ExpRec. Set Archi veBi t (FALSE);

if (rinfo.mAttribs & PRI VATE BIT)
retval = rExpRec. Set Privat e(TRUE);
el se

retval = rExpRec. Set Pri vat e(FALSE) ;

retval = rExpRec. Set St at us(fl dSt at usNONE) ;

if (rinfo.mAttribs & DELETE_BIT) // Delete flag
retval = rExpRec. Set St at us(fl dSt at usDELETE) ;

else if (rinfo.mAttribs & DIRTY_BIT) // Dirty flag
retval = rExpRec. Set St at us(f| dSt at usUPDATE) ;

/1 Only convert body if remote record is *not* del eted..
if (!(rinfo.mAttribs & DELETE BIT))

{
pBuff = (char*)rlnfo.mpBytes;

/1 Custoner ID

| ong customner| D = SwapDWor dTol nt el (*((DWORD*) pBuff));
retval = rExpRec. Set| D(custoner|D);

pBuf f += si zeof (DWORD) ;

/'l Nane

AddCRs(pBuff, strlen(pBuff));
aString = m TransBuff;

retval = rExpRec. Set Narme(aString);
pBuff += strlen(pBuff) + 1;

/1 Address

AddCRs(pBuff, strlen(pBuff));
aString = m TransBuff;

retval = rExpRec. Set Address(aString);
pBuff += strlen(pBuff) + 1;

Il Gty

AddCRs(pBuff, strlen(pBuff));
aString = m TransBuff;

retval = rExpRec.SetCity(aString);
pBuff += strlen(pBuff) + 1;

/1 Phone
AddCRs(pBuff, strlen(pBuff));
aString = m TransBuff;
retval = rExpRec. Set Phone(aString);
pBuff += strlen(pBuff) + 1;

}

return retval

The DLL
The one remaining piece in our puzzle isthe DLL where the CSalesConduitMonitor actually gets created.
DLL OpenConduit

DLL's OpenCondui t iswherewe put the conduit creation code:

__decl spec(dl I export) |ong OpenCondui t (PROGRESSFN pFn,
CSyncProperties& rProps)

{
AFX_MANAGE_STATE(Af xGet St ati cModul eState());
long retval = -1;
rProps. m DbType = "Cust';// in case it needs to be created
if (pFn) {

CSal esCondui t Moni tor* pMoni tor;

pMoni tor = new CSal esCondui t Moni t or (pFn, rProps, nylnst);
if (pMnitor)
{

retval = pMonitor->Engage();

del ete pMonitor;

return retval;

}

Note that we set them DbType field of r Pr ops. We do this so that CBaseCondui t Moni t or will
create the customer database on the handheld if it doesn't exist; it uses the type found in
r Props. m DoType to dothejob.

We aso passour DLL'sinstance, nyl nst , asthethird parameter. It is used to retrieve resource strings. The
instance is stored as a global variable, along with three others:

static int CientCount = O;
static H NSTANCE hRscl nst ance

stati c H NSTANCE hDLLI nstance
HI NSTANCE nyl nst =0;

These globals areinitialized when the DLL is opened.
DLL class definition

Here'sour DLL's class declaration (as created automatically by Visual C++):

class CSal esCondDl | : public CW nApp

{

public:
/1 CSal esCondDl | ();
virtual BOCOL Initlnstance(); // Initialization
virtual int Exitlnstance(); // Term nation

/'l CQverrides
/1 O assWzard generated virtual function overrides
/1 {{ AFX_VI RTUAL(CSal esCondDl |)
/1}} AFX_VI RTUAL

/1 {{ AFX_MSG CSal esCondDl |)
/1 NOTE - the dassWzard will add/renmove menber functions here.
I DO NOT EDI T what you see in these blocks of generated code !
/1}} AFX_MSG
DECLARE_NESSAGE_MAP()
}s

Initializing function

I ni t1nstance mustinitiaizethetablesDLL. This contains some field functions beyond those in the
basetable.cpp file. It must also initialize the PDCmn DLL, which contains some resources for the dialog
shown in Conf i gur eCondui t :

BOOL CSal esCondDI | :: I nitlnstance()
{
/] DLL initialization
TRACEO(" SALESCOND. DLL initializing\n");

if (!dientCount) {
hDLLI nst ance = Af xGet | nst anceHandl e() ;

hRscl nst ance = hDLLI nst ance;

/1 add any extension DLLs into CDynLi nkLi brary chain
I nitTabl es5DLL();
I ni t Pdcrm5DLL();

}

nyl nst = hRscl nstance;

Cl i ent Count ++;

return TRUE;
}

Exit function

Weaso need an Exi t | nst ance:

int CSal esCondDl|:: Exitlnstance()

{
TRACEO(" SALESCOND. DLL Termi nating!\n");

/] Check for last client and clean up potential nenory | eak.
if (--CientCount <= 0)
{

Pal nFr eeLanguage(hRscl nst ance, hDLLI nst ance);

hRscl nst ance = hDLLI nst ance;

}

/1 DLL clean up, if required
return CW nApp: : Exitlnstance();
}

DLL resources
There are avariety of strings that the Conduit Manager loads from resources (including all the logging

strings). These strings have to be stored within our DLL. In our resource file, SalesCond.rc, we don't have
any explicit resources. Instead, in the Resource Includes panel, we add a compile-time directive:

#include "..\include\ Res\ R_Engl i sh\ Basenon. rc"

This makes all the standard basemon resource strings part of our DLL.
Testing the Conduit

Before testing, make sure you use CondCfg.exe to register the Remote Database name for the Sales conduit
as "Customers-Sles". Thisiswhat tells your conduit what database to sync.

There are some good tests you can perform to ensure that your conduit is working properly:
Sync having never run your application

Y our database(s) won't yet exist. This simulates a user syncing after installing your software but before using
it. If your conduit performs correctly, any data from the desktop should be copied to the handheld.

Sync having run your application once

Do thistest after first deleting your databases. This simulates a user syncing after installing your software
and using it. If everything works as expected, data from the handheld should be copied to the desktop.

Add a record on the handheld and sync

Make sure the new record gets added to the desktop.
Add a record on the desktop and sync

Make sure the new record gets added to the handheld.
Delete a record on the handheld and sync

Make sure the record gets deleted from the desktop.
Delete a record on the desktop and sync

Make sure the record gets deleted from the handheld.

Archive a record on the handheld
Make sure the record gets deleted from the main desktop file and gets added to the archive.

There are other tests you can make, but these provide the place to begin.

Generic Conduit .&

Generic Conduit is the other approach to creating a conduit that handles two-way syncing. It isbased on a
new set of classes (currently unsupported) that Palm Computing has recently started distributing. Having
seen dl that isinvolved in creating a conduit based on the basemon and basetabl classes, you can understand
why Palm Computing wanted to offer a simpler solution to developers. Generic Conduit is one of Palm's
solutions to this problem-these classes are intended to make it easier to get a conduit up and running.

Advantages of Using Generic Conduit

There are some powerfully persuasive advantages to basing a conduit on these new classes:

In some cases, you don't need to write any code

Generic Conduit contains everything, including Conf i gur eCondui t , Get Condui t Nane, etc. If you
compile and register it, it'll be happy to two-way sync your Palm database to a file on the desktop. This
approach requires the use of its own file format, however. If you don't like that format, you need to
customize the Generic Conduit classes to some extent.

If you do have to write code, it might not be much

The number of classes and the number of methods are much less daunting than those found in the basemon
and basetabl classes.

All the source code is available

The entire source code is provided; you don't have to rely on any DLLs (basemon uses Tables.DLL for the
CBaseTable class and MFC for serialization). Further, if you so desire, you can change any or all of the
source code.

There'slesswork involved in handling records

Generic Conduit is unlike basemon, which has a schema and attempts to represent your record as fieldsin
memory. Generic Conduit treats your record as just a sequence of bytes. Thus, records are copied from the
handheld to the desktop and left untouched; the default file format stores them asis. Record comparison is
accomplished by comparing all the bytesin each record to seeif they areidentical. Thisisafar cry from
basemon'’s approach, which represents records in memory as fields and does field-by-field comparison.
The approach to conduit creation makes more sense

This Generic Conduit approach makes a great deal of sense. All that's needed for synchronization to work
correctly isto compare two records to see whether they are the same or different. There's no need to know
what fields exist or anything else; you just compare the bytes.

Disadvantages of Using Generic Conduit

There are also disadvantages to this approach. The good news is that they may possibly fade over time:

Generic Conduit is not supported by Palm

Palm Computing provides the Generic Conduit code as an unsupported sample. The supported way to do
two-way syncing is with the basemon classes. It is certainly worth checking for the latest version of Generic
Conduit and Palm's current support position before making a decision regarding its use (see
http://www.Palm.convdevzone for information).

It's new

The basemon classes are used for Palm's shipping conduits and by numerous third parties. That means they
work very well, and, presumably, most of the bugs have already been found and fixed. If you're an early user
of Generic Conduit, you are at risk for as yet unfound bugs of who knows what nature. Once again, it is
worth checking on the most recent version of Generic Conduit-as time passes this will become less of a
problem.

The suggested way to create conduits is duplicate/modify

Palm Computing's suggested way to use the Generic Conduit is to duplicate the Generic Conduit source
folder and then go to work making changes to their source. This approach flies in the face of good C++
inheritance programming practices, which should be to derive classes from the Generic Conduit classes and
override only those routines that require modification.

Here iswhy this approach has two major problems:

- If and when changes are made to the Generic Conduit classes (for example, bug fixes or added
features), the source code to every single Generic Conduit-based conduit will need to incorporate
those changes. Y ou, the devel oper, need to apply any changes that were made in the Generic Conduit
code to your own modified version of the code.

On the other hand, in our subclassing model, the conduits just need to be recompiled to take advantage
of the newly changed code.

- Sample conduits are massive. The Generic Conduit comes with two samples: one for the address
book and one for the date book. Unfortunately, these two samples have as much additional code as the
Generic Conduit itself (actually, they have more, since they've got al the code from the Generic
Conduit plus their own specific code). This intermingled code in the samples means they are very bad
guides to creating a conduit. It iswretchedly difficult to figure out which codeisfor the conduit and
which is specifically for the address book. Until you do, you won't know what needs to be done to
write a new conduit.

Solution to the Disadvantages

We can't do anything about the first two problems (only time and Palm Computing have control of these
issues), but we can address the third problem. Our sample that uses the Generic Conduit doesn't duplicate
the original code; instead, it makes use of derived classes and virtual functions-our code consists only of the
differences from the original. By doing this, we can easily use new versions of the Generic Conduit classes,
and it should be very easy for you to use our code as a sample for creating a conduit.

Generic Conduit Classes

There are eight classes that affect your use of Generic Conduit. As might be expected, each has a different
responsibility. Figure 13-2 shows you the inheritance relationship.

Figure 13- 2. Inheritance relationship of Generic Conduit classes

(CPolmRecord) (CDbMamoger) (CPlogging)
I
I

(cumgr) cPamgr)

(_ CBackupMgr j] i_thuﬁvebutnbuse) (" CSynchronizer p

Now let'slook at what each class does.
CPalmRecord

This represents a Palm record; it stores attributes, a unique ID, a category number, arecord length, and a
pointer to the raw record data.

CDbManager

Thisisthe classthat isresponsible for a database. It defines methods for iterating through the records,
adding and deleting records, etc. Asyou can see from Figure 13-2, it is also an abstract class; there are four
derived classes that implement these methods.

CHHMgr

This classis derived from CDbManager and implements the CDbManager member functions by using the
Sync Manager. This concrete subclass uses the interface of the abstract class. It can be used just like any
other database, but itsimplementation is different. For example, its method to add arecord is implemented
using SyncWi t eRec.

CPcMgr

This class implements the CDbManager member functions for afile on the desktop. When afileis opened,
it reads all the records into memory and stores them in alist. Changes to the database are reflected in
memory until the database is closed; at that point, the records are rewritten to the database.

Y ou often create your own derived class of CPcMgr and override the functions Ret r i eveDB and
St or eDB to read and write your own file formats.

CArchiveDatabase

This classis derived from CPcMgr. It is responsible for handling the archive files on the desktop.
CBackupMgr

This classis aso derived from CPcMgr. It isresponsible for the backup file on the desktop.
CPLogging

This classis responsible for logging when any type of failure occurs during syncing.
CSynchronizer

This classis responsible for handling the actual synchronization. It creates the database classes and manages
the entire process (it has many of the same duties as CBaseConduitMonitor). Y ou often override one of its

member functions, Cr eat eDBManager , to create your own class derived from CPcMgr.

Amazing as it may seem, that is al there is worth noting about the Generic Conduit classes. Now let's turn to
the code based on Generic Conduit that we create for the Sales application conduit.

Sales Conduit Based on Generic Conduit .&

NOTE:

This sample was based on an early beta version of the Generic Conduit and may not compile with the

version available to you. For amore current version of the sample, see http://mww.oreilly.com/
catal og/palmprog/.

CSalesPCMgr

We have derived anew class from CPcMgr, because we want to support the same a tab-delimited text
format we used with the alternative conduit classes. Hereis our new class:

cl ass CSal esPcMgr: public CPcMyr

{
publi c:

CSal esPcMgr (CPLoggi ng *pLoggi ng, char *szDbNane,
TCHAR *pFi |l eName = NULL, TCHAR *pDirName = NULL,
DWORD dwGener i cFl ags,
eSyncTypes syncType = eDoNot hi ng);

pr ot ect ed:

virtual |ong StoreDB(void);

virtual long RetrieveDB(void);
b

CSalesPCMgr constructor

Our constructor just initializes the base class:

CSal esPcMyr: : CSal esPcMyr (CPLoggi ng *plLoggi ng, char *szDbNane,
TCHAR *pFi | eName, TCHAR *pDi r Nane,
DWORD dwGeneri cFl ags, eSyncTypes syncType)
: CPcMyr (pLoggi ng, szDbNane, pFileNane, pDirNanme, dwCenericFl ags,
syncType)

{
}

SoreDB function

Our St or eDB routinewrites the list of records in text-delimited format:

| ong CSal esPcMyr: : St or eDB(voi d)
{
if (!'mbNeedToSave) { // if no changes, don't waste tine saving
return O;

}

I ong retval = OpenDB();
if (retval)
return GEN_ERR_UNABLE_TO SAVE;

for (DWORD dwl ndex = 0; (dw ndex < m dwMaxRecordCount) && (!retval);
dwi ndex++) {
if (!mpRecordList[dwi ndex]) // if there is no record, skip ahead
conti nue;

retval = WiteRecord(mhFile, mpRecordList[dw ndex]);

if (retval !'= 0){
Cl oseDB() ;
return GEN_ERR_UNABLE_TO SAVE;

}

Cl oseDB() ;
m bNeedToSave = FALSE;
return O;

ItcallsW i t eRecor d, which writesline by line.
WriteRecord

This writes the record:

long WiteRecord(HANDLE hFile, CPal nRecord *pPal nRec)
{

DWORD dwPut ;

unsi gned | ong | en;

const int kMaxRecor dSi ze = 1000;

char buf [kMaxRecor dSi ze] ;

char rawRecor d[kMaxRecor dSi ze] ;
DWORD recordSi ze = kMaxRecor dSi ze;
| ong retval ;

retval = pPal nRec->Get RawDat a((unsi gned char *) rawRecord,
& ecor dSi ze) ;

if (retval) {
return retval;

Cust omer *aCustoner = RawRecor dToCust orer (r awRecord) ;

/Il Wite the record to the file as (if private):
/1 <customer| D>\t <nane>\t<address>\t<city>\t<phone>\tP\t<recl D>
/1 or, if not private:
/] <customer| D>\t <nane>\t<address>\t<city>\t<phone>\t\t<recl D>
sprintf(

buf ,

"\t s\t W\t W\t W8\t U8\t %@\ r\ n",

aCust oner - >cust oner | D,

aCust oner - >nane,

aCust oner - >addr ess,

aCustoner->city,

aCust oner - >phone,

pPal nRec- >l sPrivate() ? "P": "",

pPal nRec- >CGet | D()
)
len = strlen(buf);
WiteFile(

hFi I e,

buf ,

| en,

&dwPut ,

NULL

)
del et e aCustoner;

return dwPut == len ? 0 : GEN_ERR UNABLE TO SAVE;

It calls RawRecor dToCust oner , which converts the bytesin arecord to a customer:

Cust omer *RawRecor dToCust onmer (void *rec)

{

Customer *c = new Custoner;

PackedCust oner *pc = (PackedCustoner *) rec;
c->custonmer| D = SyncHHToHost DWor d(pc- >cust omer | D) ;
char * p = (char *) pc->nane;

c->name = new char[strlen(p)+1];
strcpy(c->name, p);

p += strlen(p) + 1;

c->address = new char[strlen(p)+1];
strcpy(c->address, p);

p += strlen(p) + 1;

c->city = new char[strlen(p)+1];
strcpy(c->city, p);

p += strlen(p) + 1;

c- >phone = new char[strlen(p)+1];
strcpy(c->phone, p);

return c;

}

Retrieving a database

We dso haveafunction, Retri eveDB, that reads atext file and creates records from it. Even though

m _HFi | e isalready an open HFI LE that we could read, it's easier to do it another way. We read text from a
CSdioFile (it provides aroutine to read aline at atime), so we open the file read-only with CSdioFile and
close it once we're done:

| ong CSal esPcMyr: : RetrieveDB(voi d)
{
m bNeedToSave = FALSE;
if (!_tcslen(mszDataFile))
return GEN_ERR | NVALI D_DB_NAME;

CStdioFile *file = 0;
TRY
{

file = new CStdioFil e(mszDat aFile, CFile::npdeRead);
}
CATCH_ALL(e)
{

if (file)

file->Abort();
delete file;

return GEN_ERR_READI NG_RECORD;

}
END_CATCH ALL

TRY
{
CPal mRecord newRecord;
whi |l e (ReadCustomer(*file, newRecord)) {
AddRec(newRecord) ;
}
file->O ose();
}
CATCH ALL(e)
{
file->Abort();
delete file;
return GEN_ERR_READI NG_RECORD;

}
END_CATCH_ALL
delete file;

return O;

Reading customer information

The previous routine relies on a utility routine that we need to write. This routine simply reads in the tab-
delimited text file and turnsit into a Palm record:

bool ReadCust orer (CSt di oFil e &file, CPal mRecord &rec)
{

static char gBi gBuffer[4096];

if (file.ReadString(gBigBuffer, sizeof(gBigBuffer)) == NULL)

return fal se;

char *p = gBi gBuffer;

char *customer|I D = Fi ndUpToNext Tab(&p) ;

char *nanme = Fi ndUpToNext Tab(&p) ;

char *address = Fi ndUpToNext Tab(&p) ;

char *city = Fi ndUpToNext Tab(&p) ;

char *phone = Fi ndUpToNext Tab(&p);

char *priv = Fi ndUpToNext Tab(&p) ;

char *uni quel D = Fi ndUpToNext Tab(&p) ;

char *attributes = Fi ndUpToNext Tab(&p) ;

if (!address)
address =
if (lcity)
city ="";
if (!phone)
phone =
if (lpriv)
priv =
if (lattributes)
attributes =
if (!uniquel D)
uni quel D = "0";
if (customerl D && nane) {
rec. Setl D(atol (custonerID));
rec. Set I ndex(-1);
rec. Set Cat egory(0);

rec.SetPrivate(*priv == "'P");

/I "N -- new, 'M -- nodify, 'D-- delete, 'A" -- archive

/] if it's Add, it can't be nodify

rec. Reset Attribs();

if (strchr(attributes, 'N))
rec. Set New() ;

else if (strchr(attributes, 'M))
rec. Set Updat e() ;

if (strchr(attributes, 'D))
rec. Set Del eted();

if (strchr(attributes, "A"))
rec. Set Archi ved();

static char buf[4096];

PackedCust oner *pc = (PackedCustomer *) buf;
pc->cust ormer | D = SyncHost ToHHDWOr d(at ol (custoneri D)) ;
char *p = (char *) pc->nang;

strcpy(p, nanme);

p += strlen(p) + 1;

strcpy(p, address);

p += strlen(p) + 1;

strcpy(p, city);

p += strlen(p) + 1;

strcpy(p, phone);

p += strlen(p) + 1;

rec. Set RawbDat a(p - buf, (unsigned char *) buf);
return true;

} else
return fal se;

CSalesSynchronizer

We aso have a derived a class from CSynchronizer, because we want to do three things:

o Create our derived class of CPcMgr.
o Set abit field specifying that we don't use the Applnfo block (for sort info or categories).

o Copy our orders database from the handheld and our products database to the handheld.

Unlike the previous occasion, we don't have to perform a bunch of copying tricks to handle asimple
override. Everything works as expected.

Class definition

Here's our class declaration of CSalesSynchronizer:

cl ass CSal esSynchroni zer: public CSynchronizer {
public:
CSal esSynchroni zer (CSyncProperties& rProps);

prot ect ed:
virtual long Performvoid);

virtual |ong CreatePCManager(void);
}s

Creating a CSalesPcMgr class

Here's the routine that creates a CSalesPcMgr:

| ong CSal esSynchroni zer:: Creat ePCManager (voi d)

{
Del et ePCVanager () ;

m dbPC = new CSal esPcMyr (m pLog,
m r enot eDB- >m_Narne,
m r SyncProperties. m Local Nare,
m r SyncProperti es. m Pat hNane,
m dwDat abaseF| ags
m r SyncProperties. m SyncType);

if (!m.dbPC

return GEN_ERR_LOW MEMCRY;
return m dbPC- >Cpen();

The constructor

Our constructor sets the bit field, specifying that we don't support categories, or the Applnfo block or the
sort info block:

CSal esSynchroni zer:: CSal esSynchroni zer (CSyncProperties& rProps) :
CSynchr oni zer (r Props)

{
/1 m dwDat abaseFlags is a bit-field with
I GENERI C_FLAG_CATEGORY_SUPPORTED
/1 GENERI C_FLAG_APPI NFO_SUPPORTED
/1 GENERI C_FLAG SORTI NFO_SUPPORTED

// we don't want any of the flags set, so we just use O
m _dwDat abaseFl ags = 0;
}

Modifying perform to add uploading and downloading products
and orders

Aswe found in the basemon case, there's afairly large routine that opens the conduit, does the appropriate
kind of syncing, and closes the conduit. We need to insert our code to copy the Products database and Orders
database in there. We've copied that routine and inserted our code (our added code is bold):

| ong CSal esSynchroni zer:: Performvoid)

{
long retval = 0;
long retval 2 = 0;

if (mrSyncProperties. mSyncType > eProfilelnstall)

return GEN_ERR BAD SYNC TYPE;

if (mrSyncProperties.mSyncType == eDoNot hi ng) {
return O;
}
/1 Obtain System Information
m Syst eml nf o. m_Product | dText = (BYTE*) new char [MAX_PROD | D TEXT];
if (!'mSystem nfo.mProductldText)
return GEN_ERR _LOW MEMORY;
m System nf o. m Al | ocedLen = (BYTE) MAX_PRCD_| D TEXT;
retval = SyncReadSystem nfo(m System nfo);
if (retval)
return retval;

retval = Regi sterConduit();
if (retval)
return retval;

for (int iCount=0; iCount < mTotRenmoteDBs && !retval; iCount++) {
retval = Get Renot eDBI nf o(i Count);
if (retval) {
retval = 0;
br eak;

}

switch (mrSyncProperties. mSyncType) {
case eFast:
retval = Perfornfast Sync();
if ((retval) && (retval == GEN_ERR _CHANGE_SYNC_MODE)) {
if (GetSynchMbde() == eHHt oPC)
retval = CopyHHt oPC();
else if (GetSyncMode() == ePCtoHH)
retval = CopyPCt oHH();
}
break;
case eS| ow
retval = Perforntl owSync();
if ((retval) && (retval == GEN_ERR_CHANGE_SYNC_MODE)) {
if (GetSynchMbde() == eHHt oPC)
retval = CopyHHt oPC();
else if (GetSyncMode() == ePCtoHH)
retval = CopyPCt oHH();
}
br eak;
case eHHt oPC:
case eBackup:
retval = CopyHHt oPC();
br eak;
case elnstall:
case ePCt oHH:
case eProfilelnstall:
retval = CopyPCt oHH();
br eak;
case eDoNot hi ng:
br eak;
defaul t:
retval = GEN_ERR_SYNC TYPE_NOT_SUPPORTED,
br eak;

}

Del et eHHManager () ;

Del et ePCManager () ;

Del et eBackupManager () ;
Cl oseArchives();

}
/1 added here for sales conduit
if (retval == 0 & mrSyncProperties. m SyncType == eHHt oPC | |
m r SyncProperties. m SyncType == eFast ||

m r SyncProperties. m SyncType == eS| ow)
retval = CopyOrdersFromHH(m r SyncProperties);
if (retval == 0 & mrSyncProperties. m SyncType == ePCtoHH | |

m r SyncProperties. m SyncType == eFast ||
m r SyncProperties. m SyncType == eS| ow)
retval = CopyProduct sAndCat egori esToHH(m r SyncProperties);
/1 done added here for sales conduit
/1 Unregister the conduit
retval 2 = Unregi sterConduit((BOOL)(retval '= 0));

if (!retval)
return retval 2;
return retval;

}

Creating the Conduit

In our QpenCondui t DLL entry point, we create our CSalesSynchronizer and call it's Per f or mfunction
to do the work of synchronization:

Export Func | ong OpenCondui t (PROGRESSFN pFn, CSyncProperties& rProps)
{

long retval = -1;
if (pFn)
{

CSal esSynchroni zer* pCeneric;

pGeneric = new CSal esSynchroni zer (rProps);
if (pGeneric){
retval = pGeneric->Perform);

del ete pGeneri c;

}
return(retval);

}

At this point, we can test the code. It works just as the basemon version did, so we will use the same tests.

Asyou can see, Generic Conduit makes the task of supporting two-way mirror image syncing much easier. It
issimpler to derive classes, since there are no real problems with functions that should be virtual that are
not. In either case, we hope that it is clearer how to add support for two-way syncing after this description of
each method.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

PaaPaaac

Palm Programming: The Developer’s Guide ~=

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY! &

PRt

In this chapter:

HotSync Flags
Source-Level Debugaing

Avoiding Timeouts While Debugging
Conduit Problems Y ou Might Have
Test with POSE

Turn Off Other Conduits During Testing
Usethe Log, Luke

14. Debugging Conduits

Two of the most important tools you have in your debugging arsenal are a number of flags you can set
during a sync and source-level debugging in CodeWarrior. After we discuss these, we give some advice on
specific problems you might encounter.

Last but not least, we will look at how to clean things up. Mucking about in your conduit code is a good way
to mess things up; we show you how to tidy up the registry when you are through.

HotSync Flags 2

Y ou can launch a sync with several different flags that give you information on what is occurring. These
useful flags are:

Verbose mode
-L1
Different verbose mode
-L2
Different verbose mode with packet information
Besides these flags there is another flag, - ¢, that you can use to verify your connection.
Running HotSync in Verbose Mode with -v

If you want to run HotSync in verbose mode, you set the - v flag by hand from the Run dialog:

c¢: \ PalmDesktopDir\hotsync.exe -v

If you are already running HotSync, you need to exit before you can launch it by hand. Just choose Exit from
the menu (see Figure 14-1).

-Figure 14- 1. Exiting the running version of HotSync

v Local
Modem
Sefup...

Cuztom...
Eile Lirik.,
Wiew Log...

Aboed,.
Help...

Once you are in HotSync verbose mode, the log contains a great deal of additional information regarding its
activities. Here's an example verbose log (abridged for space):

---Initializing User Manager---
---Di scovering Comruni cation State---
---ldentifying Viewer user---
Found user nane
---Establishing Sync Local e---
---Perform ng Hot Sync---
Val i dating User.
User match exists.
Hot Sync started 07/31/98 11:52:13
Setting up I ocal HotSync environment.
User is Fen Rhodes

ROM Li sting
System 0001 70737973 02/20/1998 02/20/1998 0003
AMX 0001 70737973 02/20/1998 02/20/1998 0003
Ul AppShel | 0001 70737973 02/20/1998 02/20/1998 0003
Mai | 0002 6D61696C 02/ 20/ 1998 02/20/1998 0003
Expense 0001 65787073 02/20/1998 02/20/1998 0003

RAM Li sting
Unsaved Preferences 0000 70737973 04/ 14/1998 07/30/1998 0001
Net Prefs 0000 6E65746C 04/ 14/1998 06/29/1998 0001
Sal es 0001 536C6573 07/30/1998 07/30/1998 0001
Sl es_Cust oners 0000 536C6573 07/30/1998 07/30/1998 0000
Sles_Orders 0000 536C6573 07/30/1998 07/30/1998 0000
Sl es_Products 0000 536C6573 07/30/1998 07/30/1998 0000

Attenpting to Sync with Conduit: datcn20.dllI
Key is Software\U S. Robotics\Pil ot Desktop\ Conmponent0
Sync type is Fast

Local path is C \Pilot\RhodesF\dat ebook\
Renpte nane 0 is Dat ebookDB
Loadi ng dat cn20.dl | condui t

OK Dat e Book
Conduit successful

Attenpting to Sync with Conduit: addcn20.dlI
Key is Software\U S. Robotics\Pil ot Desktop\Conponent1
Sync type is Fast

Local path is C: \Pilot\RhodesF\ address\
Renpte nane 0 is AddressDB
Loadi ng addcn20.dl | condui t

OK Addr ess Book
Conduit successful

Attenpting to Sync with Conduit: d:\poscond\todcnd21\ debug\todcn20d.dl|
Key is Software\U S. Robotics\Pil ot Desktop\Conponent 2
Sync type is Fast

Attenpting to Sync with Conduit: mencn20.dll
Key is Software\U S. Robotics\Pil ot Desktop\Conponent3

Sync type is Fast

Local path is C\Pilot\RhodesF\ nenopad\
Renote nane 0 is MenoDB
Loadi ng mencn20. dl | condui t

OK Meno Pad
Condui t successful

Attenpting to Sync with Conduit: bakcn20.dl|I
No Regi stry Key
Sync type i s Backup

Local path is C:\Pilot\RhodesF\ Backup\
Renpte nane 0 is System M DI Sounds
Renpte nane 1 is Saved Preferences
Renpte nane 2 is Graffiti ShortCuts
Renpte nane 3 is Networ kDB
Renote nane 4 is Launcher DB
Loadi ng bakcn20. dl | condui t

OK System

Set PC ID and | ast sync time on Pal morganizer
Cl eaning up | ocal HotSync environnent

The log has two very useful pieces of information:

o Alist of al the databases
¢ An entry whenever a conduit is about to be synced to

A Different Verbose Mode with -L1

HotSync 3.0 and later versions have two additional verbose modeflags: - L1 and - L2. Although some of
the messages printed when using the - v flag are printed when using either of these new flags, not al are.
Therefore, you may wanttouse- L1 or- L2 inaddition to the- v flag.

NOTE:

When you usethe- L1 or - L2 flags, the HotSync.log file is located in the top-level directory. It islocated
with HotSync.exe (as opposed to its normal location within the user's directory).

Here's an example output from using the - L1 flag:

A Direct serial connection is pending 08/01/98 14:40: 49
Est abl i shi ng Connection with the Pal morgani zer
Direct Serial Connection: Baud rate = 57600

Port speed is 57600 bps
Initialized Sync Manager Successfully

---Initializing User Manager---

---Di scovering Comruni cation State---

---ldentifying Viewer user---

An account is found for Pal morgani zer user: Fen Rhodes

The primary Hotsync PC for this user is unknown

--Establishing Sync Local e---
- - Performng Hot Sync---
Val i dating User.
User match exists.
Hot Sync started 08/ 01/98 14:40:52
Setting up I ocal HotSync environment.
User is Fen Rhodes
Attenpting to Sync with Conduit: datcn20.dll
Key is Software\U S. Robotics\Pil ot Desktop\ Conponent0
Sync type is Fast
Local path is C \Pilot\RhodesF\dat ebook\
Renpte nane 0 i s Dat ebookDB
Loadi ng dat cn20.dl | condui t
Conduit failed
Attenpting to Sync with Conduit: addcn20.dlI
Key is Software\U S. Robotics\Pil ot Desktop\Conponent1

Sync type is Fast
Local path is C\Pilot\RhodesF\ address\
Rermpte name 0 is AddressDB
Loading addcn20.dl | condui t
Conduit failed
Attenpting to Sync with Conduit: d:\poscond\todcnd21\ debug\todcn20d. dl |
Key is Software\U.S. Robotics\Pilot Desktop\Conponent2
Sync type is Fast
Local path is C\Pilot\RhodesF\todo\
Rermpte name 0 is ToDoDB
Loadi ng d: \ poscond\ t odcnd21\ debug\ t odcn20d. dl | condui t

Trying to open database: ToDoDB
08/01/98 14:41:08
OK To Do List
Conduit successful
Attenpting to Sync with Conduit: mencn20.dl|
Key is Software\U.S. Robotics\Pilot Desktop\Conponent3
Sync type is Fast
Local path is C:\Pilot\RhodesF\ nenopad\
Renote nane 0 is MenoDB
Loadi ng mencn20. dl | condui t
Conduit failed
Attenpting to Sync with Conduit: C:\Sal esCond\ Debug\ Sal esCond. DLL
Key is Software\U.S. Robotics\Pilot Desktop\Conponent4
Sync type is Do Nothing
Local path is C:\Pilot\RhodesF\ Sal es\
Renote nane 0 is Custoner DB
Invalid conduit version
Loading C:\Sal esCond\ Debug\ Sal esCond. DLL condui t
Sal es - sync configured to Do Nothing
Conduit successful
Attenpting to Sync with Conduit: bakcn20.dl|I
No Regi stry Key
Sync type i s Backup
Local path is C:\Pilot\RhodesF\ Backup\
Renot e nane is System M DI Sounds
Renot e nane is Saved Preferences
Renot e nane is Gaffiti ShortCuts
Renot e nane i s NetworkDB

Renote nane 4 is Launcher DB
Loadi ng bakcn20. dl | condui t

w N P O

The - L1 flag includes, among other things, the baud rate at which the connection was made.

A Different Verbose Mode with Packets Using -L.2

The- L2 flag includes all the output from - L1 plus atrace of al the packets sent to and received from the
handheld. Please note that the log becomes quite large. Here's a small excerpt of some outpuit:

A Direct serial connection is pending 08/ 01/98 14:47:38
Est abl i shing Connection with the Pal morgani zer
Direct Serial Connection: Baud rate = 57600

Port speed is 57600 bps

Sendi ng Command ReadSyslnfo . Packet size = 8

Packet Trace:

12 01 20 04 00 01 00 02 e e

Response Received. Packet size = 34

Packet Trace:

92 02 00 00 20 OE 03 00 30 00 00 01 00 00 00 04 P ¢ FPE
00 01 00 00 21 OC 00 01 00 02 00 03 00 00 00 00 |

Initialized Sync Manager Successfully

---Initializing User Manager---

---Discovering Communication State---

Sendi ng Command (null) . Packet size = 14

Packet Trace:

39 01 22 OA 00 80 68 74 61 6C 68 74 63 70 | 9."...htal htcp

Response Received. Packet size = 4

Packet Trace:
B9 00 00 05

Sendi ng Command ReadFeature . Packet size = 10
Packet Trace:

38 01 20 06 6E 65 74 6C 00 00 | 8. .netl.

Response Recei ved. Packet size = 10

Packet Trace:
B8 01 00 00 20 04 02 00 30 00 |0.

We can't think of areason you'd need to see the packets going back and forth between HotSync and the
handheld, but we've provided this option for completeness.

Quick-Connect Mode

HotSync 3.0 and later versions have a - ¢ flag that immediately disconnects from the Palm OS handheld
after connecting and obtaining the user name. Thisis a handy way to verify your connection to the handheld.

Rebuilding the Registry

Occasionally, you may find that your Conduit Registry istotally fouled or that you've unregistered (or
changed) one or more of the default conduits.

To repopulate the Conduit Registry with the default settings for each of the default conduits, first use
CondCf g to delete the entries for the default conduits and then use the - r flag of HotSync, which adds
back entries for each of the default conduits:

hot sync. exe -r

Y ou can accomplish the same thing while using the debug version of things. Simply usethe - r flag with the
debug version of HotSync:

hot syncd. exe -r

This repopulates the registry with entries for the debug versions of each of the built-in conduits rather than
entries for the release versions.

Source-Level Debugging B

Source-level debugging can be an invaluable aid to finding problems in your code. It does require careful
setup and building, however. First, you need to build and run a debug version (which requires special
libraries). Next, you need to set your breakpoints. In the following sections, we describe how to do this.

Building a Debug Version

To build adebug version of your conduit, select Set Active Configuration in the Build menu. This specifies
the debug rather than the release version of the conduit. To complete the build of a debug version, you also
need to link with debug versions of the libraries. These libraries end in d.lib (for example, hotsyncd.lib is the
debugging version of hotsync.lib). Y ou can specify the debug versions of your librariesin the Link panel of
the Project Settings dialog.

Running a Debug Version

To run adebug version of your conduit, you need to do a number of things:

1. Run adebug version of HotSync (hot syncd. exe).

2. Debug versions of the DLLs need to be in the HotSync directory. A release version of HotSync won't load
aconduit built to run with debug. The 3.0 Conduit SDK ships with debug versions of HotSync and the
DLLs. Copy them to the directory, where they can reside with the nondebug versions.

3. Run CondCf g, so that the entry for your conduit points to the debug directory rather than the release
directory. Use path\debug\MyConduit.DLL rather than path\release\MyConduit.DLL.

4. In the Debug panel of the Project Settings dialog, specify the full pathname to hotsyncd.exe as the
executable (see Figure 14-2).

Figure 14- 2. Specifying the application to run when debugging the conduit

Propect Seltings EHE

Settings For |'|,.-..n'..-.3;' Diebug ﬂ Gereral | Debug | CAC+s | Link: | Fiazouic: EE

- —

Execulable for debug sexsion

[hpilotbotepricd exe ﬂ
\Working discton:

Program anguments:

Aemote executable path and fle name:

I

0K I Cancel

Setting Breakpoints

To set breakpoints in your code, you right-click on aline and choose I nsert/Remove Breakpoint, as shown in
Figure 14-3.

Figure 14- 3. Setting a breakpoint in your code at a particular line

declzspec{dllexport) long OpenConduit (PROGRESSFH progress.
CSyncProperties &sync)

AFT_HAWAGE_STATE{AfxGetStaticHoduleState())
loang err = 0
2w Synclype == elaol:
LogaddEntry{ "Sales — svy1 & Cul
false)
raturn 0 (5= Copy
} (22 Paste

CONDHANDLE myConduitHandle:

i ({=rr = SyncRegisterCond DOpen Documert " # [al:lnl\lnlhhg]["
relurn arr)

' == I
LogaddEntryi“* . slSyncStarte ™ Go ToDefrbon OF # [syrc.m_SyrcT ype == eDoblathing] |

B Go ToRefersnce Ta § [syncm_SyncT ype == aDiokothing] |
i (=yne. m_SyncType == =HHtc
1f ({err = CopylrdersFrc {I Inpait/Aemove Bragkpoinl
goto exit;
if ({err = CopyCustomer:
goto exit: :)
T =ls= 1f (synec. m SyncTyp= ¢ "#"' Clselyfizard...
if ((err = CopyPreductsi[i Papetie:
jobo eRit;

Once you have gotten this far, you are amost ready to roll. Y ou have just two more steps:

1. Exit the HotSync Manager if it's currently running.

2. Choose Go from the Start Debug submenu of the Build menu. Y ou can also use the F5 function key as a
shortcut.

Avoiding Timeouts While Debugging 2

When you are debugging a conduit, there are two timeouts that you need to avoid. The first is an automatic-
off timeout, the second a HotSync one.

Auto-off Timeout

Thereisatimeout that causes the handheld to go to sleep after a certain time (a power-saving feature). If
you're in the middle of single-stepping through your conduit and the handheld goes to sleep, you'll have one

thoroughly ruined debugging session. To avoid this problem, use the A .3 shortcut (see "Device Reset" on
page 284 for afull discussion). It stops the Palm OS handheld from going to sleep.

NOTE:
Until you do areset, the Palm OS handheld won't go to sleep again automatically. Try not to wander away

from your debugging to other things. If you do, when you come back to your debugging after a good
night's sleep, your batteries will quite likely have expired.

HotSync Timeout

The other timeout you need to worry about is the timeout of the HotSync protocol. If you are stopped at a
breakpoint while in the middle of a synchronization, the HotSync application is not sending information to
the handheld. The handheld then thinks that the connection has been lost and ends the HotSync session.
Opening the secret handheld option

To convince the handheld not to give up, you need to use a secret option that lies hidden within the handheld
HotSync application. To get to it, you open the HotSync application on the device. Next, carefully place the
handheld in a brown paper bag and wave it over your head while screaming like a chicken-okay, just
kidding. What you really do is:

1. Hold down the scroll-up button on a Palm OS 3.0 device or both the scroll-up and scroll-down keyson a
pre-3.0 device.

NOTE:

In POSE (on Windows only), you can simulate pressing the scroll-up and scroll-down keys by holding
down the keyboard Page Up and Page Down keys.

2. While holding the key(s), tap in the top-right corner of the screen.

The secret alert

Y ou should see an alert, as shown in Figure 14-4. Now HotSync is your dutiful servant, waiting forever and
never timing out. If you quit the HotSync application and reopen it, this option is reset; the HotSync

application can again timeout.

Figure 14- 4. HotSync secret alert

DEVELOPER'S BRCED-OOR

@ DLServer Wait Forever
is ON

(o)

Conduit Problems You Might Have B

The following are two of the most common problems you may come across when debugging a conduit.
When an Installed Conduit Doesn't Run

A problem that you might encounter is having a conduit that appears to be installed but doesn't get called
during async session. First, check the presyncing setup by choosing the Custom menu of HotSync. If your
conduit doesn't show up in the list, check the itemsin the following sections.

A mismatched HotSync and conduit

If you use arelease version of one with adebug version of the other, the conduit is not called. Make sure that
adebug version of your conduit is linked with debug versions of the DLL and that release versions are
linked with release versions.

The DLL isn't where it's supposed to be

If you provide afull pathname for your conduit, make sureit's there. If you specify only the conduit name
(MyConduit.DLL), the conduit must be in the DLL path (a common place to put it isin the same directory as
HotSync.exe).

Select the conduit and press the Change... button to have your Conf i gur eCondui t routine caled. If it
doesn't work-you know because your Conf i gur eCondui t dialog doesn't appear-here are some possible
reasons:

Required functions not present

Check that your Conf i gur eCondui t (or, for HotSync 3.0, Cf gCondui t) routineisin your conduit
anddeclared as__decl spec(dl | export).

Also, make sure that the following are present and exported:
- Cet Condui t Nane
- Cet Condui t Ver si on
-OQpenCondui t

HotSync hasn't been restarted

After you make changesto the registry using Cf gCond. exe, you should restart HotSync to make sure it
rereads the registry.

Once you've got your configuration dialog up, you know that HotSync has found your DLL and called your
code successfully. Now if you try to Sync and your conduit doesn't run, it's almost certainly because of one

of the two following reasons:
Your conduit requires a matching creator I1D

Run HotSync in verbose mode to check the Creator ID of your application. Check that 1D against the creator
registered for the conduit (in CondCf g. exe). They must match.

Conduit configured to do nothing

Y our conduit may be configured to do nothing (check the Custom/Change dialog from the HotSync menu).
Even if your conduit is configured to do nothing, the OpenCondui t entry point should still be called. You
can set a breakpoint and see whether it isbeing called or aternatively check the verbose HotSync log.

When the Handheld Crashes After Syncing

Each application with an associated conduit that ran during async is sent the
sysAppLaunchCndSyncNot i fy launch code. When this launch code is sent, the application does not
have any global variables available to it and therefore must not try to access them. If it does, it will most
certainly crash in alarge flaming wreck.

To ensure this doesn't happen to you, have your Pi | ot Mai n check theincoming launch code, and verify
that it doesn't access global variables directly or indirectly.

NOTE:

We had a problem when building the conduit: it kept crashing. Here is the story. Earlier in our code we
had added the ability to keep track of what ROM version the application is running on. We did this by
modifying RomVer si onConpat i bl e to savethe ROM version in aglobal. Now, much later on when
we are trying to get our conduit up and working, we are crashing. It turns out that our Pi | ot Mai n was
caling the Rom\Ver si onConpat i bl e first, before checking the launch code. The result: our application
kept crashing. Don't make the same mistake.

Test with POSE .&

A good way to catch problems in your conduit code is by using POSE. It's possible to sync with POSE
running on a different machine (in which case the cable is on the machine running your conduit) or on the
same machine (in which case the cable is going out one serial port and in another). For example, thisis how
we debugged our handheld application that was crashing after a sync. We set a breakpoint in Pi | ot Mai n
and waited for it to get called at the end of the sync process; single-stepping through the code finally showed
the problem. If that wasn't enough to convince you, remember that it saves batteries and doesn't require a
cradle, either.

NOTE:

Some | aptops have only one serial port. Consider augmenting the built-in serial card with aserial PC card
(we use a Socket serial card that costs about $125-see hitp: //www.socketcom.com.

NOTE:

If you're using the Mac OS version of POSE, make sure that the POSE window is frontmost while you are
syncing. This gives the emulator more CPU time during the sync. Trust us, it needsit.

Turn Off Other Conduits During Testing B

Itisalso avery good ideato turn other conduits off during your test cycle. This gives you a much faster sync
cycle. To do this, have the other conduits "Do Nothing" astheir default sync action. That will make them
very sleepy, and they won't wake up during the sync.

Usethe Log, Luke B

The HotSync log is your friend. During your development, have your code log everything that's going on
during the sync. It's one of the easiest ways to see what's happening and hence find out where problems are.

That'sit. Y ou should now have afully debugged conduit to go with your fully debugged Palm application.
Thisisthe end of the book, so that means you know everything you need to know. Have fun, and good Palm
programming to you.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

T T L LR

Palm Programming: The Developer’s Guide

O REILLY" CLICK HERE TO ORDER YOUR COPY TODAY!

Pauar

In this chapter:

Palm Programming Book Web Site

The Official Palm Developer Site

Palm Programming Mailing Lists
Third-Party Palm Programming Resources
Third-Party Palm Programming FAQ
RoadCoders, Handheld Devel opers
PalmCentral

Journals and Magazines

Appendix: Whereto Go From Here

We have put all the Palm devel oper resources that we could think of into this location as a handy reference
guide.

Palm Programming Book Web Site 2

Any updates to the source code in this book are at:

http: //www.calliopei nc.comyPalmProgramming

Y ou will aso find helpful links to other Palm programming locations.

The Official Palm Developer Site 2

3Com's official PAlm developer pageis:

http: //mwww.palm.com/devzone

It is the place you should go to check for the most recent versions of the SDK, CDK, and information on
updates to the operating system. There are also alot of other resources at this site-everything from white
papers on various topics to Palm's FAQ for developers.

Getting Your Application Creator 1D

Palm's devel oper siteis also where you go to register your application and obtain your application’'s unique
creator I1D. A creator 1D isafour-ASCII-character 1D that each application needs to distinguish itself from
all other applications. Thisisan essential part of application development and you shouldn't leave it until the

last minute. For registration instructions, check:

http: //www.palm.com./devzone/crid

Developer Technical Support

If you have developer support questions or require further technical information, the best place to find that is
at Palm Computing's official developer support site. Submit questions at:

http: //mwww. pal m.com/devzone/questi ons.html

Currently, there is no charge for this support, though you should check Palm's web site for current
information.

NOTE:

Future plans include allowing devel opers the ability to submit web-based questions through Palm
Computing's Developer Support web site.

Other Developer Support

General developer information, marketing, business administration, and questions should be directed to
another address:

devinfo@pal m.com

Platinum Certification

Y ou can have your application tested to receive Platinum certification-Palm's way of guaranteeing to a
consumer that an application meets its compatibility, quality, and usability standards. Applications that pass
Platinum compatibility testing receive the Palm Computing Platform Platinum logo and some marketing and
developer support from Palm.

This testing is administered by athird-party provider, Quality Partners, which has aweb site where you can
get information about testing standards and a free devel oper's testing kit. Access this site primarily through
Palm's own developer site (http://www.palm.com/devzone). The testing kit contains detailed descriptions of
their entire test suite.

Quality Partners currently offers two price plans for application testing: a Base Plan ($500 for a handheld
application, $1,200 for a conduit) and a Premium Plan, which offers support and better turnaround ($700 for
a handheld application, $1,600 for a conduit). (Note: there are additional charges for retesting and
variations.) Check the Quality Partners web site often, as this type of information frequently changes.

No matter what, you should look over the testing cycle that Quality Partners uses on an application and do
what is necessary to ensure that your application meets those guidelines. Their tests include important
checks like:

o Proper Graffiti and shortcut support

¢ Design consistency with Palm Ul guidelines

¢ Proper handling of errors and use of alerts

o Successful handling of one million Gremlin events

Palm Programming Mailing Lists 2

The following mailing lists are hosted by Palm Computing, and it's common to see Palm employees
answering questions. While these lists are not officially supported, they serve as a good self-support
mechanism and are constantly used by devel opers to answer each other's questions.

Palm Computing's devel oper web site has forms to subscribe to any of theselists:
e Palm Developer Forum

o Emulator Developer Forum
e Conduit Developer Forum

Third-Party Palm Programming Resources

=8

Currently, there are no Palm programming newsgroups distributed on Usenet. However, Darrin Massena

hosts a newsgroup server with some different newsgroups.

news://news.massena.convpil ot.programmer

General Palm programming questions

news://news.massena.convpil ot.programmer.gcc

Discussion about using the Gnu PalmPilot SDK

news: //news.massena.conypilot/programmer.codewarrior

Discussion about using CodeWarrior

news://news.massena.convpilot.programmer.pila

Discussion about programming in Motorola 68000 assembly language

news://news.massena.convpil ot.programmer.jump

Discussion about programming in Java

Note that http://www.dejanews.com, a newsgroup search engine, does catalog Massena's newsgroups, so

from Dejanews you can do keyword searches.

NOTE:

In the future, these sites may be moved to a Palm site. If you attempt to read these newsgroups and find

they are no longer where you expected them to be, check Palm's web site for further information.

Third-Party Palm Programming FAQ

This site:

http: //www.wademan.com

=8

contains numerous helpful resources. Oneis afairly comprehensive FAQ. There are also code examples and
some links to other PalmPilot sites.

RoadCoders, Handheld Developers 2

This site:

http: //www.roadcoders.com

contains resources on both the Palm OS and Windows CE devices. Among its useful sections are:

Palm OS SDKs

A nicelisting of the currently available SDKs for the Palm OS and what platforms they run on.

Tools

A list of tools and utilities.

Articles

Some very nice articles on various aspects of Palm programming or on using various programming tools.
Source code

Example code, some good, some not.

Developer listings

Thisisalisting of developers who do Palm programing. Y ou can also add your name to the collection.

PalmCentral .&

Thisisalarge collection of software listed by categories, located at:

http: //vwww.palmcentral .com

It includes a Developer category and source code.

Journals and Magazines B

There are two good magazines that offer a wide range of both user and programming articles. They are
PalmPower and Handheld Systems Journal. Check our web site for information on new electronic resources,
asthisareais growing rapidly.

PalmPower Online Magazine

This magazine is devoted exclusively to the Palm Computing platform. Itsweb siteis:

http: //mwww.pal mpower .com

This monthly online magazine contains many interesting articles as well a monthly programmer's column,
which often contains useful coding techniques and tips.

Handheld Systems Journal
Thisjournal has been around for a number of years. Itsweb siteis:

http: //wwww.cdpubs.conyhhs

Thisjournal covers the whole gamut of handhelds, including Palm OS devices. The focusis on code-level,
in-depth discussions of hardware and software. Thisis abimonthly printed magazine that is also availablein
electronic Adobe Acrobat form. Free samples and past archived issues of the journal are available at the web
site. The current price of a subscription is around $50.

Palm Programming: The Developer's Guide
Copyright © 1999, O'Rielly and Associates, Inc.
Published on the web by permission of O'Rielly and Associates, Inc. Contents modified for web display.

T T L Y

