
Code Commentary On The
Linux Virtual Memory Manager

Mel Gorman

13th January 2003

Contents

1 Physical Page Management 9
1.1 Allocating Pages . 9
1.2 Free Pages . 19
1.3 Page Allocate Helper Functions . 24
1.4 Page Free Helper Functions . 26

2 Non-Contiguous Memory Allocation 28
2.1 Allocating A Non-Contiguous Area 28
2.2 Freeing A Non-Contiguous Area . 36

3 Slab Allocator 43
3.0.1 Cache Creation . 43
3.0.2 Calculating the Number of Objects on a Slab 53
3.0.3 Cache Shrinking . 54
3.0.4 Cache Destroying . 57
3.0.5 Cache Reaping . 59

3.1 Slabs . 65
3.1.1 Storing the Slab Descriptor 65
3.1.2 Slab Structure . 67
3.1.3 Slab Creation . 67
3.1.4 Slab Destroying . 72

3.2 Objects . 73
3.2.1 Initialising Objects in a Slab 74
3.2.2 Object Allocation . 76
3.2.3 Object Freeing . 83

3.3 Sizes Cache . 88
3.3.1 kmalloc . 90
3.3.2 kfree . 91

3.4 Per-CPU Object Cache . 92
3.4.1 Describing the Per-CPU Object Cache 92
3.4.2 Adding/Removing Objects from the Per-CPU Cache 93
3.4.3 Enabling Per-CPU Caches . 93
3.4.4 Updating Per-CPU Information 97
3.4.5 Draining a Per-CPU Cache 99

3.5 Slab Allocator Initialisation . 100

2

3.6 Interfacing with the Buddy Allocator 101

4 Process Address Space 103
4.1 Managing the Address Space . 103
4.2 Process Memory Descriptors . 103

4.2.1 Allocating a Descriptor . 105
4.2.2 Initalising a Descriptor . 106
4.2.3 Destroying a Descriptor . 109

4.3 Memory Regions . 111
4.3.1 Creating A Memory Region 115
4.3.2 Finding a Mapped Memory Region 125
4.3.3 Finding a Free Memory Region 129
4.3.4 Inserting a memory region . 131
4.3.5 Merging contiguous region . 137
4.3.6 Remapping and moving a memory region 140
4.3.7 Deleting a memory region . 155
4.3.8 Deleting all memory regions 164

4.4 Page Fault Handler . 167
4.4.1 Handling the Page Fault . 176
4.4.2 Demand Allocation . 179
4.4.3 Demand Paging . 184
4.4.4 Copy On Write (COW) Pages 187

5 Page Frame Reclamation 190
5.1 Page Swap Daemon . 190
5.2 Page Cache . 194
5.3 Shrinking all caches . 199
5.4 Refilling inactive_list . 203
5.5 Reclaiming pages from the page cache 204
5.6 Swapping Out Process Pages . 211

List of Figures

1.1 alloc_pages Call Graph . 10
1.2 __free_pages Call Graph . 20

2.1 vmalloc . 29
2.2 vfree . 37

3.1 kmem_cache_create . 45
3.2 kmem_cache_shrink . 55
3.3 kmem_cache_destroy . 58
3.4 kmem_cache_reap . 60
3.5 kmem_cache_grow . 68
3.6 kmem_slab_destroy . 72
3.7 kmem_cache_alloc UP . 76
3.8 kmem_cache_free . 84
3.9 kmalloc . 90
3.10 kfree . 91

4.1 sys_mmap2 . 116
4.2 Call Graph: get_unmapped_area . 129
4.3 insert_vm_struct . 132
4.4 Call Graph: sys_mremap . 140
4.5 Call Graph: move_vma . 147
4.6 Call Graph: move_page_tables . 152
4.7 do_munmap . 156
4.8 do_page_fault . 166
4.9 do_no_page . 179
4.10 do_swap_page . 188
4.11 do_wp_page . 189

5.1 shrink_cache . 200
5.2 Call Graph: swap_out . 211

4

List of Tables

1.1 Physical Pages Allocation API . 9
1.2 Physical Pages Free API . 19

2.1 Non-Contiguous Memory Allocation API 28
2.2 Non-Contiguous Memory Free API 36

3.1 Slab Allocator API for caches . 44

5

Chapter 1

Physical Page Management

alloc_pages(unsigned int gfp_mask, unsigned int order)
Allocate 2order number of pages and returns a struct page

__get_dma_pages(unsigned int gfp_mask, unsigned int order)
Allocate 2order number of pages from the DMA zone and return a

struct page

__get_free_pages(unsigned int gfp_mask, unsigned int order)
Allocate 2order number of pages and return a virtual address

alloc_page(unsigned int gfp_mask)
Allocate a single page and return a struct address

__get_free_page(unsigned int gfp_mask)
Allocate a single page and return a virtual address

get_free_page(unsigned int gfp_mask)
Allocate a single page, zero it and return a virtual address

Table 1.1: Physical Pages Allocation API

1.1 Allocating Pages

Function: alloc_pages (include/linux/mm.h)
The toplevel alloc_pages() function is declared as

428 static inline struct page * alloc_pages(unsigned int gfp_mask,
unsigned int order)

429 {

6

1.1. Allocating Pages 7

alloc_pages

_alloc_pages

__alloc_pages

balance_classzone rmqueue

__free_pages_ok try_to_free_pages_zone expand

Figure 1.1: alloc_pages Call Graph

1.1. Allocating Pages 8

433 if (order >= MAX_ORDER)
434 return NULL;
435 return _alloc_pages(gfp_mask, order);
436 }

428 The gfp_mask (Get Free Pages) flags tells the allocator how it may behave.
For example GFP_WAIT is set, the allocator will not block and instead return
NULL if memory is tight. The order is the power of two number of pages to
allocate

433-434 A simple debugging check optimized away at compile time

435 This function is described next

Function: _alloc_pages (mm/page_alloc.c)
The function _alloc_pages() comes in two varieties. The first in mm/page_alloc.c

is designed to only work with UMA architectures such as the x86. It only refers to the
static node contig_page_data. The second in mm/numa.c and is a simple extension.
It uses a node-local allocation policy which means that memory will be allocated
from the bank closest to the processor. For the purposes of this document, only the
mm/page_alloc.c version will be examined but for completeness the reader should
glance at the functions _alloc_pages() and _alloc_pages_pgdat() in mm/numa.c

244 #ifndef CONFIG_DISCONTIGMEM
245 struct page *_alloc_pages(unsigned int gfp_mask, unsigned int order)
246 {
247 return __alloc_pages(gfp_mask, order,
248 contig_page_data.node_zonelists+(gfp_mask & GFP_ZONEMASK));
249 }
250 #endif

244 The ifndef is for UMA architectures like the x86. NUMA architectures used
the _alloc_pages() function in mm/numa.c which employs a node local policy
for allocations

245 The gfp_mask flags tell the allocator how it may behave. The order is the
power of two number of pages to allocate

247 node_zonelists is an array of preferred fallback zones to allocate from. It is
initialised in build_zonelists() The lower 16 bits of gfp_mask indicate what
zone is preferable to allocate from. gfp_mask & GFP_ZONEMASK will give
the index in node_zonelists we prefer to allocate from.

1.1. Allocating Pages 9

Function: __alloc_pages (mm/page_alloc.c)
At this stage, we’ve reached what is described as the "heart of the zoned buddy

allocator", the __alloc_pages() function. It is responsible for cycling through the
fallback zones and selecting one suitable for the allocation. If memory is tight, it
will take some steps to address the problem. It will wake kswapd and if necessary
it will do the work of kswapd manually.

327 struct page * __alloc_pages(unsigned int gfp_mask, unsigned int order,
zonelist_t *zonelist)
328 {
329 unsigned long min;
330 zone_t **zone, * classzone;
331 struct page * page;
332 int freed;
333
334 zone = zonelist->zones;
335 classzone = *zone;
336 if (classzone == NULL)
337 return NULL;
338 min = 1UL << order;
339 for (;;) {
340 zone_t *z = *(zone++);
341 if (!z)
342 break;
343
344 min += z->pages_low;
345 if (z->free_pages > min) {
346 page = rmqueue(z, order);
347 if (page)
348 return page;
349 }
350 }
351
352 classzone->need_balance = 1;
353 mb();
354 if (waitqueue_active(&kswapd_wait))
355 wake_up_interruptible(&kswapd_wait);
356
357 zone = zonelist->zones;
358 min = 1UL << order;
359 for (;;) {
360 unsigned long local_min;
361 zone_t *z = *(zone++);
362 if (!z)
363 break;

1.1. Allocating Pages 10

364
365 local_min = z->pages_min;
366 if (!(gfp_mask & __GFP_WAIT))
367 local_min >>= 2;
368 min += local_min;
369 if (z->free_pages > min) {
370 page = rmqueue(z, order);
371 if (page)
372 return page;
373 }
374 }
375
376 /* here we’re in the low on memory slow path */
377
378 rebalance:
379 if (current->flags & (PF_MEMALLOC | PF_MEMDIE)) {
380 zone = zonelist->zones;
381 for (;;) {
382 zone_t *z = *(zone++);
383 if (!z)
384 break;
385
386 page = rmqueue(z, order);
387 if (page)
388 return page;
389 }
390 return NULL;
391 }
392
393 /* Atomic allocations - we can’t balance anything */
394 if (!(gfp_mask & __GFP_WAIT))
395 return NULL;
396
397 page = balance_classzone(classzone, gfp_mask, order, &freed);
398 if (page)
399 return page;
400
401 zone = zonelist->zones;
402 min = 1UL << order;
403 for (;;) {
404 zone_t *z = *(zone++);
405 if (!z)
406 break;
407
408 min += z->pages_min;

1.1. Allocating Pages 11

409 if (z->free_pages > min) {
410 page = rmqueue(z, order);
411 if (page)
412 return page;
413 }
414 }
415
416 /* Don’t let big-order allocations loop */
417 if (order > 3)
418 return NULL;
419
420 /* Yield for kswapd, and try again */
421 yield();
422 goto rebalance;
423 }

334 Set zone to be the preferred zone to allocate from

335 The preferred zone is recorded as the classzone. If one of the pages low
watermarks is reached later, the classzone is marked as needing balance

336-337 An unnecessary sanity check. build_zonelists() would need to be
seriously broken for this to happen

338-350 This style of block appears a number of times in this function. It reads
as "cycle through all zones in this fallback list and see can the allocation be
satisfied without violating watermarks. Note that the pages_low for each
fallback zone is added together. This is deliberate to reduce the probability a
fallback zone will be used.

340 z is the zone currently been examined. zone is moved to the next fallback zone

341-342 If this is the last zone in the fallback list, break

344 Increment the number of pages to be allocated by the watermark for easy
comparisons. This happens for each zone in the fallback zones. While it
would appear to be a bug, it is assumed that this behavior is intended to
reduce the probability a fallback zone is used.

345-349 Allocate the page block if it can be assigned without reaching the
pages_min watermark. rmqueue() is responsible from removing the block
of pages from the zone

347-348 If the pages could be allocated, return a pointer to them

352 Mark the preferred zone as needing balance. This flag will be read later by
kswapd

1.1. Allocating Pages 12

353 This is a memory barrier. It ensures that all CPU’s will see any changes made
to variables before this line of code. This is important because kswapd could
be running on a different processor to the memory allocator.

354-355 Wake up kswapd if it is asleep

357-358 Begin again with the first preferred zone and min value

360-374 Cycle through all the zones. This time, allocate the pages if they can be
allocated without hitting the pages_min watermark

365 local_min how low a number of free pages this zone can have

366-367 If the process can not wait or reschedule (__GFP_WAIT is set), then
allow the zone to be put in further memory pressure than the watermark
normally allows

378 This label is returned to after an attempt is made to synchronusly free pages.
From this line on, the low on memory path has been reached. It is likely the
process will sleep

379-391 These two flags are only set by the OOM killer. As the process is trying
to kill itself cleanly, allocate the pages if at all possible as it is known they will
be freed very soon

394-395 If the calling process can not sleep, return NULL as the only way to
allocate the pages from here involves sleeping

397 This function does the work of kswapd in a synchronous fashion. The principle
difference is that instead of freeing the memory into a global pool, it is kept
for the process using the current→local_pages field

398-399 If a page block of the right order has been freed, return it. Just because
this is NULL does not mean an allocation will fail as it could be a higher order
of pages that was released

403-414 This is identical to the block above. Allocate the page blocks if it can be
done without hitting the pages_min watermark

417-418 Satisifing a large allocation like 24 number of pages is difficult. If it has
not been satisfied by now, it is better to simply return NULL

421 Yield the processor to give kswapd a chance to work

422 Attempt to balance the zones again and allocate

1.1. Allocating Pages 13

Function: rmqueue (mm/page_alloc.c)
This function is called from __alloc_pages(). It is responsible for finding a

block of memory large enough to be used for the allocation. If a block of memory
of the requested size is not available, it will look for a larger order that may be split
into two buddies. The actual splitting is performed by the expand() function.

198 static FASTCALL(struct page * rmqueue(zone_t *zone, unsigned int order));
199 static struct page * rmqueue(zone_t *zone, unsigned int order)
200 {
201 free_area_t * area = zone->free_area + order;
202 unsigned int curr_order = order;
203 struct list_head *head, *curr;
204 unsigned long flags;
205 struct page *page;
206
207 spin_lock_irqsave(&zone->lock, flags);
208 do {
209 head = &area->free_list;
210 curr = head->next;
211
212 if (curr != head) {
213 unsigned int index;
214
215 page = list_entry(curr, struct page, list);
216 if (BAD_RANGE(zone,page))
217 BUG();
218 list_del(curr);
219 index = page - zone->zone_mem_map;
220 if (curr_order != MAX_ORDER-1)
221 MARK_USED(index, curr_order, area);
222 zone->free_pages -= 1UL << order;
223
224 page = expand(zone, page, index, order,
curr_order, area);
225 spin_unlock_irqrestore(&zone->lock, flags);
226
227 set_page_count(page, 1);
228 if (BAD_RANGE(zone,page))
229 BUG();
230 if (PageLRU(page))
231 BUG();
232 if (PageActive(page))
233 BUG();
234 return page;
235 }

1.1. Allocating Pages 14

236 curr_order++;
237 area++;
238 } while (curr_order < MAX_ORDER);
239 spin_unlock_irqrestore(&zone->lock, flags);
240
241 return NULL;
242 }

199 The parameters are the zone to allocate from and what order of pages are
required

201 Because the free_area is an array of linked lists, the order may be used an an
index within the array

207 Acquire the zone lock

208-238 This while block is responsible for finding what order of pages we will
need to allocate from. If there isn’t a free block at the order we are interested
in, check the higher blocks until a suitable one is found

209 head is the list of free page blocks for this order

210 curr is the first block of pages

212-235 If there is a free page block at this order, then allocate it

215 page is set to be a pointer to the first page in the free block

216-217 Sanity check that checks to make sure the page this page belongs to this
zone and is within the zone_mem_map. It is unclear how this could possibly
happen without severe bugs in the allocator itself that would place blocks in
the wrong zones

218 As the block is going to be allocated, remove it from the free list

219 index treats the zone_mem_map as an array of pages so that index will be the
offset within the array

220-221 Toggle the bit that represents this pair of buddies. MARK_USED() is a
macro which calculates which bit to toggle

222 Update the statistics for this zone. 1UL << order is the number of pages
been allocated

224 expand() is the function responsible for splitting page blocks of higher orders

225 No other updates to the zone need to take place so release the lock

227 Show that the page is in use

1.1. Allocating Pages 15

228-233 Sanity checks

234 Page block has been successfully allocated so return it

236-237 If a page block was not free of the correct order, move to a higher order
of page blocks and see what can be found there

239 No other updates to the zone need to take place so release the lock

241 No page blocks of the requested or higher order are available so return failure

Function: expand (mm/page_alloc.c)
This function splits page blocks of higher orders until a page block of the needed

order is available.

177 static inline struct page * expand (zone_t *zone,
struct page *page,
unsigned long index,
int low,
int high,
free_area_t * area)

179 {
180 unsigned long size = 1 << high;
181
182 while (high > low) {
183 if (BAD_RANGE(zone,page))
184 BUG();
185 area--;
186 high--;
187 size >>= 1;
188 list_add(&(page)->list, &(area)->free_list);
189 MARK_USED(index, high, area);
190 index += size;
191 page += size;
192 }
193 if (BAD_RANGE(zone,page))
194 BUG();
195 return page;
196 }

177 Parameter zone is where the allocation is coming from

177 page is the first page of the block been split

177 index is the index of page within mem_map

177 low is the order of pages needed for the allocation

1.2. Free Pages 16

177 high is the order of pages that is been split for the allocation

177 area is the free_area_t representing the high order block of pages

180 size is the number of pages in the block that is to be split

182-192 Keep splitting until a block of the needed page order is found

183-184 Sanity check that checks to make sure the page this page belongs to this
zone and is within the zone_mem_map

185 area is now the next free_area_t representing the lower order of page blocks

186 high is the next order of page blocks to be split

187 The size of the block been split is now half as big

188 Of the pair of buddies, the one lower in the mem_map is added to the free
list for the lower order

189 Toggle the bit representing the pair of buddies

190 index now the index of the second buddy of the newly created pair

191 page now points to the second buddy of the newly created paid

193-194 Sanity check

195 The blocks have been successfully split so return the page

1.2 Free Pages

__free_pages(struct page *page, unsigned int order)
Free an order number of pages from the given page

__free_page(struct page *page)
Free a single page

free_page(void *addr)
Free a page from the given virtual address

Table 1.2: Physical Pages Free API

1.2. Free Pages 17

__free_pages

__free_pages_ok

lru_cache_del

__lru_cache_del

Figure 1.2: __free_pages Call Graph

Function: __free_pages (mm/page_alloc.c)
Confusingly, the opposite to alloc_pages() is not free_pages(), it is __free_pages().

free_pages() is a helper function which takes an address as a parameter, it will be
discussed in a later section.

451 void __free_pages(struct page *page, unsigned int order)
452 {
453 if (!PageReserved(page) && put_page_testzero(page))
454 __free_pages_ok(page, order);
455 }

451 The parameters are the page we wish to free and what order block it is

453 Sanity checked. PageReserved indicates that the page is reserved. This usually
indicates it is in use by the bootmem allocator which the buddy allocator
should not be touching. put_page_testzero() decrements the usage count
and makes sure it is zero

454 Call the function that does all the hard work

Function: __free_pages_ok (mm/page_alloc.c)
This function will do the actual freeing of the page and coalesce the buddies if

possible.

1.2. Free Pages 18

81 static void FASTCALL(__free_pages_ok (struct page *page,
unsigned int order));

82 static void __free_pages_ok (struct page *page, unsigned int order)
83 {
84 unsigned long index, page_idx, mask, flags;
85 free_area_t *area;
86 struct page *base;
87 zone_t *zone;
88
93 if (PageLRU(page)) {
94 if (unlikely(in_interrupt()))
95 BUG();
96 lru_cache_del(page);
97 }
98
99 if (page->buffers)

100 BUG();
101 if (page->mapping)
102 BUG();
103 if (!VALID_PAGE(page))
104 BUG();
105 if (PageLocked(page))
106 BUG();
107 if (PageActive(page))
108 BUG();
109 page->flags &= ~((1<<PG_referenced) | (1<<PG_dirty));
110
111 if (current->flags & PF_FREE_PAGES)
112 goto local_freelist;
113 back_local_freelist:
114
115 zone = page_zone(page);
116
117 mask = (~0UL) << order;
118 base = zone->zone_mem_map;
119 page_idx = page - base;
120 if (page_idx & ~mask)
121 BUG();
122 index = page_idx >> (1 + order);
123
124 area = zone->free_area + order;
125
126 spin_lock_irqsave(&zone->lock, flags);
127
128 zone->free_pages -= mask;

1.2. Free Pages 19

129
130 while (mask + (1 << (MAX_ORDER-1))) {
131 struct page *buddy1, *buddy2;
132
133 if (area >= zone->free_area + MAX_ORDER)
134 BUG();
135 if (!__test_and_change_bit(index, area->map))
136 /*
137 * the buddy page is still allocated.
138 */
139 break;
140 /*
141 * Move the buddy up one level.
142 * This code is taking advantage of the identity:
143 * -mask = 1+~mask
144 */
145 buddy1 = base + (page_idx ^ -mask);
146 buddy2 = base + page_idx;
147 if (BAD_RANGE(zone,buddy1))
148 BUG();
149 if (BAD_RANGE(zone,buddy2))
150 BUG();
151
152 list_del(&buddy1->list);
153 mask <<= 1;
154 area++;
155 index >>= 1;
156 page_idx &= mask;
157 }
158 list_add(&(base + page_idx)->list, &area->free_list);
159
160 spin_unlock_irqrestore(&zone->lock, flags);
161 return;
162
163 local_freelist:
164 if (current->nr_local_pages)
165 goto back_local_freelist;
166 if (in_interrupt())
167 goto back_local_freelist;
168
169 list_add(&page->list, ¤t->local_pages);
170 page->index = order;
171 current->nr_local_pages++;
172 }

1.2. Free Pages 20

82 The parameters are the beginning of the page block to free and what order
number of pages are to be freed.

32 A dirty page on the LRU will still have the LRU bit set when pinned for IO.
It is just freed directly when the IO is complete so it just has to be removed
from the LRU list

99-108 Sanity checks

109 The flags showing a page has being referenced and is dirty have to be cleared
because the page is now free and not in use

111-112 If this flag is set, the pages freed are to be kept for the process doing
the freeing. This is set during page allocation if the caller is freeing the pages
itself rather than waiting for kswapd to do the work

115 The zone the page belongs to is encoded within the page flags. The page_zone
macro returns the zone

117 The calculation of mask is discussed in companion document. It is basically
related to the address calculation of the buddy

118 base is the beginning of this zone_mem_map. For the buddy calculation to
work, it was to be relative to an address 0 so that the addresses will be a power
of two

119 page_idx treats the zone_mem_map as an array of pages. This is the index
page within the map

120-121 If the index is not the proper power of two, things are severely broken
and calculation of the buddy will not work

122 This index is the bit index within free_area→map

124 area is the area storing the free lists and map for the order block the pages
are been freed from.

126 The zone is about to be altered so take out the lock

128 Another side effect of the calculation of mask is that -mask is the number of
pages that are to be freed

130-157 The allocator will keep trying to coalesce blocks together until it either
cannot merge or reaches the highest order that can be merged. mask will be
adjusted for each order block that is merged. When the highest order that can
be merged is reached, this while loop will evaluate to 0 and exit.

133-134 If by some miracle, mask is corrupt, this check will make sure the
free_area array will not not be read beyond the end

1.3. Page Allocate Helper Functions 21

135 Toggle the bit representing this pair of buddies. If the bit was previously zero,
both buddies were in use. As this buddy is been freed, one is still in use and
cannot be merged

145-146 The calculation of the two addresses is discussed in the companion doc-
ument

147-150 Sanity check to make sure the pages are within the correct markvar-
zone_mem_map and actually belong to this zone

152 The buddy has been freed so remove it from any list it was part of

153-156 Prepare to examine the higher order buddy for merging

153 Move the mask one bit to the left for order 2k+1

154 area is a pointer within an array so area++ moves to the next index

155 The index in the bitmap of the higher order

156 The page index within the zone_mem_map for the buddy to merge

158 As much merging as possible as completed and a new page block is free so
add it to the free_list for this order

160-161 Changes to the zone is complete so free the lock and return

163 This is the code path taken when the pages are not freed to the main pool
but instaed are reserved for the process doing the freeing.

164-165 If the process already has reserved pages, it is not allowed to reserve any
more so return back

166-167 An interrupt does not have process context so it has to free in the normal
fashion. It is unclear how an interrupt could end up here at all. This check is
likely to be bogus and impossible to be true

169 Add the page block to the list for the processes local_pages

170 Record what order allocation it was for freeing later

171 Increase the use count for nr_local_pages

1.3 Page Allocate Helper Functions

This section will cover miscellaneous helper functions and macros the Buddy Alloc-
ator uses to allocate pages. Very few of them do "real" work and are available just
for the convenience of the programmer.

1.3. Page Allocate Helper Functions 22

Function: alloc_page (include/linux/mm.h)
This trivial macro just calls alloc_pages() with an order of 0 to return 1 page.

It is declared as follows

438 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)

Function: __get_free_page (include/linux/mm.h)
This trivial function calls __get_free_pages() with an order of 0 to return 1

page. It is declared as follows

443 #define __get_free_page(gfp_mask) \
444 __get_free_pages((gfp_mask),0)

Function: __get_free_pages (mm/page_alloc.c)
This function is for callers who do not want to worry about pages and only get

back an address it can use. It is declared as follows

428 unsigned long __get_free_pages(unsigned int gfp_mask,
unsigned int order)

428 {
430 struct page * page;
431
432 page = alloc_pages(gfp_mask, order);
433 if (!page)
434 return 0;
435 return (unsigned long) page_address(page);
436 }

428 gfp_mask are the flags which affect allocator behaviour. Order is the power
of 2 number of pages required.

431 alloc_pages() does the work of allocating the page block. See Section 1.1

433-434 Make sure the page is valid

435 page_address() returns the physical address of the page

Function: __get_dma_pages (include/linux/mm.h)
This is of principle interest to device drivers. It will return memory from

ZONE_DMA suitable for use with DMA devices. It is declared as follows

446 #define __get_dma_pages(gfp_mask, order) \
447 __get_free_pages((gfp_mask) | GFP_DMA,(order))

447 The gfp_mask is or-ed with GFP_DMA to tell the allocator to allocate from
ZONE_DMA

1.4. Page Free Helper Functions 23

Function: get_zeroed_page (mm/page_alloc.c)
This function will allocate one page and then zero out the contents of it. It is

declared as follows

438 unsigned long get_zeroed_page(unsigned int gfp_mask)
439 {
440 struct page * page;
441
442 page = alloc_pages(gfp_mask, 0);
443 if (page) {
444 void *address = page_address(page);
445 clear_page(address);
446 return (unsigned long) address;
447 }
448 return 0;
449 }

438 gfp_mask are the flags which affect allocator behaviour.

442 alloc_pages() does the work of allocating the page block. See Section 1.1

444 page_address() returns the physical address of the page

445 clear_page() will fill the contents of a page with zero

446 Return the address of the zeroed page

1.4 Page Free Helper Functions

This section will cover miscellaneous helper functions and macros the Buddy Alloc-
ator uses to free pages. Very few of them do "real" work and are available just for
the convenience of the programmer. There is only one core function for the freeing
of pages and it is discussed in Section 1.2.

The only functions then for freeing are ones that supply an address and for
freeing a single page.

Function: free_pages (mm/page_alloc.c)
This function takes an address instead of a page as a parameter to free. It is

declared as follows

457 void free_pages(unsigned long addr, unsigned int order)
458 {
459 if (addr != 0)
460 __free_pages(virt_to_page(addr), order);
461 }

460 The function is discussed in Section 1.2. The macro virt_to_page() returns
the struct page for the addr

1.4. Page Free Helper Functions 24

Function: __free_page (include/linux/mm.h)
This trivial macro just calls the function __free_pages() (See Section 1.2 with

an order 0 for 1 page. It is declared as follows

460 #define __free_page(page) __free_pages((page), 0)

Chapter 2

Non-Contiguous Memory Allocation

2.1 Allocating A Non-Contiguous Area

vmalloc(unsigned long size)
Allocate a number of pages in vmalloc space that satisfy the requested

size

vmalloc_dma(unsigned long size)
Allocate a number of pages from ZONE_DMA

vmalloc_32(unsigned long size)
Allocate memory that is suitable for 32 bit addressing. This ensures

it is in ZONE_NORMAL at least which some PCI devices require

Table 2.1: Non-Contiguous Memory Allocation API

Function: vmalloc (include/linux/vmalloc.h)
They only difference between these macros is the GFP_ flags (See the companion

document for an explanation of GFP flags). The size parameter is page aligned by
__vmalloc()

33 static inline void * vmalloc (unsigned long size)
34 {
35 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
36 }
37
41
42 static inline void * vmalloc_dma (unsigned long size)
43 {
44 return __vmalloc(size, GFP_KERNEL|GFP_DMA, PAGE_KERNEL);

25

2.1. Allocating A Non-Contiguous Area 26

vmalloc

__vmalloc

get_vm_area vmalloc_area_pages

pmd_alloc alloc_area_pmd

pte_alloc alloc_area_pte

Figure 2.1: vmalloc

2.1. Allocating A Non-Contiguous Area 27

45 }
46
50
51 static inline void * vmalloc_32(unsigned long size)
52 {
53 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
54 }

33 The flags indicate that to use either ZONE_NORMAL or ZONE_HIGHMEM
as necessary

42 The flag indicates to only allocate from ZONE_DMA

51 Only physical pages from ZONE_NORMAL will be allocated

Function: __vmalloc (mm/vmalloc.c)
This function has three tasks. It page aligns the size request, asks get_vm_area()

to find an area for the request and uses vmalloc_area_pages() to allocate the
PTE’s for the pages.

231 void * __vmalloc (unsigned long size, int gfp_mask, pgprot_t prot)
232 {
233 void * addr;
234 struct vm_struct *area;
235
236 size = PAGE_ALIGN(size);
237 if (!size || (size >> PAGE_SHIFT) > num_physpages) {
238 BUG();
239 return NULL;
240 }
241 area = get_vm_area(size, VM_ALLOC);
242 if (!area)
243 return NULL;
245 addr = area->addr;
246 if (vmalloc_area_pages(VMALLOC_VMADDR(addr), size, gfp_mask, prot)) {
247 vfree(addr);
248 return NULL;
249 }
250 return addr;
251 }

231 The parameters are the size to allocate, the GFP_ flags to use for allocation
and what protection to give the PTE

236 Align the size to a page size

2.1. Allocating A Non-Contiguous Area 28

237 Sanity check. Make sure the size is not 0 and that the size requested is not
larger than the number of physical pages has been requested

241 Find an area of virtual address space to store the allocation (See Section 2.1)

245 The addr field has been filled by get_vm_area()

246Allocate the PTE entries needed for the allocation with vmalloc_area_pages().
If it fails, a non-zero value -ENOMEM is returned

247-248 If the allocation fails, free any PTE’s, pages and descriptions of the area

250 Return the address of the allocated area

Function: get_vm_area (mm/vmalloc.c)
To allocate an area for the vm_struct, the slab allocator is asked to provide

the necessary memory via kmalloc(). It then searches the vm_struct list lineraly
looking for a region large enough to satisfy a request, including a page pad at the
end of the area.

171 struct vm_struct * get_vm_area(unsigned long size, unsigned long flags)
172 {
173 unsigned long addr;
174 struct vm_struct **p, *tmp, *area;
175
176 area = (struct vm_struct *) kmalloc(sizeof(*area), GFP_KERNEL);
177 if (!area)
178 return NULL;
179 size += PAGE_SIZE;
180 if(!size)
181 return NULL;
182 addr = VMALLOC_START;
183 write_lock(&vmlist_lock);
184 for (p = &vmlist; (tmp = *p) ; p = &tmp->next) {
185 if ((size + addr) < addr)
186 goto out;
187 if (size + addr <= (unsigned long) tmp->addr)
188 break;
189 addr = tmp->size + (unsigned long) tmp->addr;
190 if (addr > VMALLOC_END-size)
191 goto out;
192 }
193 area->flags = flags;
194 area->addr = (void *)addr;
195 area->size = size;
196 area->next = *p;
197 *p = area;

2.1. Allocating A Non-Contiguous Area 29

198 write_unlock(&vmlist_lock);
199 return area;
200
201 out:
202 write_unlock(&vmlist_lock);
203 kfree(area);
204 return NULL;
205 }

171 The parameters is the size of the requested region which should be a multiple
of the page size and the area flags, either VM_ALLOC or VM_IOREMAP

176-178 Allocate space for the vm_struct description struct

179 Pad the request so there is a page gap between areas. This is to help against
overwrites

180-181 This is to ensure the size is not 0 after the padding

182 Start the search at the beginning of the vmalloc address space

183 Lock the list

184-192 Walk through the list searching for an area large enough for the request

185-186 Check to make sure the end of the addressable range has not been reached

187-188 If the requested area would fit between the current address and the next
area, the search is complete

189 Make sure the address would not go over the end of the vmalloc address space

193-195 Copy in the area information

196-197 Link the new area into the list

198-199 Unlock the list and return

201 This label is reached if the request could not be satisfied

202 Unlock the list

203-204 Free the memory used for the area descriptor and return

2.1. Allocating A Non-Contiguous Area 30

Function: vmalloc_area_pages (mm/vmalloc.c)
This is the beginning of a standard page table walk function. This top level

function will step through all PGD’s within an address range. For each PGD, it will
call pmd_alloc() to allocate a PMD directory and call alloc_area_pmd() for the
directory.

140 inline int vmalloc_area_pages (unsigned long address, unsigned long size,
141 int gfp_mask, pgprot_t prot)
142 {
143 pgd_t * dir;
144 unsigned long end = address + size;
145 int ret;
146
147 dir = pgd_offset_k(address);
148 spin_lock(&init_mm.page_table_lock);
149 do {
150 pmd_t *pmd;
151
152 pmd = pmd_alloc(&init_mm, dir, address);
153 ret = -ENOMEM;
154 if (!pmd)
155 break;
156
157 ret = -ENOMEM;
158 if (alloc_area_pmd(pmd, address, end - address, gfp_mask, prot))
159 break;
160
161 address = (address + PGDIR_SIZE) & PGDIR_MASK;
162 dir++;
163
164 ret = 0;
165 } while (address && (address < end));
166 spin_unlock(&init_mm.page_table_lock);
167 flush_cache_all();
168 return ret;
169 }

140 address is the starting address to allocate pmd’s for. size is the size of the
region, gfp_mask is the GFP_ flags for alloc_pages() and prot is the pro-
tection to give the PTE entry

144 The end address is the starting address plus the size

147 Get the PGD entry for the starting address

148 Lock the kernel page table

2.1. Allocating A Non-Contiguous Area 31

149-165 For every PGD within this address range, allocate a PMD directory and
call alloc_area_pmd()

152 Allocate a PMD directory

158 Call alloc_area_pmd() which will allocate a PTE for each PTE slot in the
PMD

161 address becomes the base address of the next PGD entry

162 Move dir to the next PGD entry

166 Release the lock to the kernel page table

167 flush_cache_all() will flush all CPU caches. This is necessary because the
kernel page tables have changed

168 Return success

Function: alloc_area_pmd (mm/vmalloc.c)
This is the second stage of the standard page table walk to allocate PTE entries

for an address range. For every PMD within a given address range on a PGD,
pte_alloc() will creates a PTE directory and then alloc_area_pte() will be
called to allocate the physical pages

120 static inline int alloc_area_pmd(pmd_t * pmd, unsigned long address,
unsigned long size, int gfp_mask, pgprot_t prot)
121 {
122 unsigned long end;
123
124 address &= ~PGDIR_MASK;
125 end = address + size;
126 if (end > PGDIR_SIZE)
127 end = PGDIR_SIZE;
128 do {
129 pte_t * pte = pte_alloc(&init_mm, pmd, address);
130 if (!pte)
131 return -ENOMEM;
132 if (alloc_area_pte(pte, address, end - address, gfp_mask, prot))
133 return -ENOMEM;
134 address = (address + PMD_SIZE) & PMD_MASK;
135 pmd++;
136 } while (address < end);
137 return 0;
138 }

120 address is the starting address to allocate pmd’s for. size is the size of the
region, gfp_mask is the GFP_ flags for alloc_pages() and prot is the pro-
tection to give the PTE entry

2.1. Allocating A Non-Contiguous Area 32

124 Align the starting address to the PGD

125-127 Calculate end to be the end of the allocation or the end of the PGD,
whichever occurs first

128-136 For every PMD within the given address range, allocate a PTE directory
and call alloc_area_pte()

129 Allocate the PTE directory

132 Call alloc_area_pte() which will allocate the physical pages

134 address becomes the base address of the next PMD entry

135 Move pmd to the next PMD entry

137 Return success

Function: alloc_area_pte (mm/vmalloc.c)
This is the last stage of the page table walk. For every PTE in the given PTE

directory and address range, a page will be allocated and associated with the PTE.

95 static inline int alloc_area_pte (pte_t * pte, unsigned long address,
96 unsigned long size, int gfp_mask, pgprot_t prot)
97 {
98 unsigned long end;
99

100 address &= ~PMD_MASK;
101 end = address + size;
102 if (end > PMD_SIZE)
103 end = PMD_SIZE;
104 do {
105 struct page * page;
106 spin_unlock(&init_mm.page_table_lock);
107 page = alloc_page(gfp_mask);
108 spin_lock(&init_mm.page_table_lock);
109 if (!pte_none(*pte))
110 printk(KERN_ERR "alloc_area_pte: page already
exists\n");
111 if (!page)
112 return -ENOMEM;
113 set_pte(pte, mk_pte(page, prot));
114 address += PAGE_SIZE;
115 pte++;
116 } while (address < end);
117 return 0;
118 }

2.2. Freeing A Non-Contiguous Area 33

100 Align the address to a PMD directory

101-103 The end address is the end of the request or the end of the directory,
whichever occurs first

104-116 For every PTE in the range, allocate a physical page and set it to the
PTE

106 Unlock the kernel page table before calling alloc_page(). alloc_page() may
sleep and a spinlock must not be held

108 Re-acquire the page table lock

109-110 If the page already exists it means that areas must be overlapping somehow

112-113 Return failure if physical pages are not available

113 Assign the struct page to the PTE

114 address becomes the address of the next PTE

115 Move to the next PTE

117 Return success

2.2 Freeing A Non-Contiguous Area

vfree(void *addr)
Free a region of memory allocated with vmalloc, vmalloc_dma or

vmalloc_32

Table 2.2: Non-Contiguous Memory Free API

Function: vfree (mm/vmalloc.c)
This is the top level function responsible for freeing a non-contiguous area of

memory. It performs basic sanity checks before finding the vm_struct for the re-
quested addr. Once found, it calls vmfree_area_pages()

207 void vfree(void * addr)
208 {
209 struct vm_struct **p, *tmp;
210
211 if (!addr)
212 return;
213 if ((PAGE_SIZE-1) & (unsigned long) addr) {

2.2. Freeing A Non-Contiguous Area 34

vfree

vmfree_area_pages

flush_tlb_all free_area_pmd

free_area_pte

__free_pages

Figure 2.2: vfree

2.2. Freeing A Non-Contiguous Area 35

214 printk(KERN_ERR "Trying to vfree() bad address
(%p)\n", addr);

215 return;
216 }
217 write_lock(&vmlist_lock);
218 for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
219 if (tmp->addr == addr) {
220 *p = tmp->next;
221 vmfree_area_pages(VMALLOC_VMADDR(tmp->addr),

tmp->size);
222 write_unlock(&vmlist_lock);
223 kfree(tmp);
224 return;
225 }
226 }
227 write_unlock(&vmlist_lock);
228 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
addr);
229 }

207 The parameter is the address returned by get_vm_area() returns for ioremaps
and vmalloc returns for allocations

211-213 Ignore NULL addresses

213-216 This checks the address is page aligned and is a reasonable quick guess to
see if the area is valid or not

217 Acquire a write lock to the vmlist

218 Cycle through the vmlist looking for the correct vm_struct for addr

219 If this it the correct address then ...

220 Remove this area from the vmlist linked list

221 Free all pages associated with the address range

222 Release the vmlist lock

223 Free the memory used for the vm_struct and return

227-228 The vm_struct() was not found. Release the lock and print a message
about the failed free

2.2. Freeing A Non-Contiguous Area 36

Function: vmfree_area_pages (mm/vmalloc.c)
This is the first stage of the page table walk to free all pages and PTE’s associated

with an address range. It is responsible for stepping through the relevant PGD’s
and for flushing the TLB.

80 void vmfree_area_pages(unsigned long address, unsigned long size)
81 {
82 pgd_t * dir;
83 unsigned long end = address + size;
84
85 dir = pgd_offset_k(address);
86 flush_cache_all();
87 do {
88 free_area_pmd(dir, address, end - address);
89 address = (address + PGDIR_SIZE) & PGDIR_MASK;
90 dir++;
91 } while (address && (address < end));
92 flush_tlb_all();
93 }

80 The parameters are the starting address and the size of the region

82 The address space end is the starting address plus its size

85 Get the first PGD for the address range

86 Flush the cache CPU so cache hits will not occur on pages that are to be deleted.
This is a null operation on many architectures including the x86

87 Call free_area_pmd() to perform the second stage of the page table walk

89 address becomes the starting address of the next PGD

90 Move to the next PGD

92 Flush the TLB as the page tables have now changed

Function: free_area_pmd (mm/vmalloc.c)
This is the second stage of the page table walk. For every PMD in this directory,

call free_area_pte to free up the pages and PTE’s.

56 static inline void free_area_pmd(pgd_t * dir, unsigned long address,
unsigned long size)
57 {
58 pmd_t * pmd;
59 unsigned long end;
60

2.2. Freeing A Non-Contiguous Area 37

61 if (pgd_none(*dir))
62 return;
63 if (pgd_bad(*dir)) {
64 pgd_ERROR(*dir);
65 pgd_clear(dir);
66 return;
67 }
68 pmd = pmd_offset(dir, address);
69 address &= ~PGDIR_MASK;
70 end = address + size;
71 if (end > PGDIR_SIZE)
72 end = PGDIR_SIZE;
73 do {
74 free_area_pte(pmd, address, end - address);
75 address = (address + PMD_SIZE) & PMD_MASK;
76 pmd++;
77 } while (address < end);
78 }

56 The parameters are the PGD been stepped through, the starting address and
the length of the region

61-62 If there is no PGD, return. This can occur after vfree is called during a
failed allocation

63-67 A PGD can be bad if the entry is not present, it is marked read-only or it
is marked accessed or dirty

68 Get the first PMD for the address range

69 Make the address PGD aligned

70-72 end is either the end of the space to free or the end of this PGD, whichever
is first

73-77 For every PMD, call free_area_pte() to free the PTE entries

75 address is the base address of the next PMD

76 Move to the next PMD

Function: free_area_pte (mm/vmalloc.c)
This is the final stage of the page table walk. For every PTE in the given PMD

within the address range, it will free the PTE and the associated page

22 static inline void free_area_pte(pmd_t * pmd, unsigned long address,
unsigned long size)
23 {

2.2. Freeing A Non-Contiguous Area 38

24 pte_t * pte;
25 unsigned long end;
26
27 if (pmd_none(*pmd))
28 return;
29 if (pmd_bad(*pmd)) {
30 pmd_ERROR(*pmd);
31 pmd_clear(pmd);
32 return;
33 }
34 pte = pte_offset(pmd, address);
35 address &= ~PMD_MASK;
36 end = address + size;
37 if (end > PMD_SIZE)
38 end = PMD_SIZE;
39 do {
40 pte_t page;
41 page = ptep_get_and_clear(pte);
42 address += PAGE_SIZE;
43 pte++;
44 if (pte_none(page))
45 continue;
46 if (pte_present(page)) {
47 struct page *ptpage = pte_page(page);
48 if (VALID_PAGE(ptpage) && (!PageReserved(ptpage)))
49 __free_page(ptpage);
50 continue;
51 }
52 printk(KERN_CRIT "Whee.. Swapped out page in kernel page

table\n");
53 } while (address < end);
54 }

22 The parameters are the PMD that PTE’s are been freed from, the starting
address and the size of the region to free

27-28 The PMD could be absent if this region is from a failed vmalloc

29-33 A PMD can be bad if it’s not in main memory, it’s read only or it’s marked
dirty or accessed

34 pte is the first PTE in the address range

35 Align the address to the PMD

36-38 The end is either the end of the requested region or the end of the PMD,
whichever occurs first

2.2. Freeing A Non-Contiguous Area 39

38-53 Step through all PTE’s, perform checks and free the PTE with its associated
page

41 ptep_get_and_clear() will remove a PTE from a page table and return it to
the caller

42 address will be the base address of the next PTE

43 Move to the next PTE

44 If there was no PTE, simply continue

46-51 If the page is present, perform basic checks and then free it

47 pte_page uses the global mem_map to find the struct page for the PTE

48-49 Make sure the page is a valid page and it is not reserved before calling
__free_page() to free the physical page

50 Continue to the next PTE

52 If this line is reached, a PTE within the kernel address space was somehow
swapped out. Kernel memory is not swappable and so is a critical error

Chapter 3

Slab Allocator

3.0.1 Cache Creation

This section covers the creation of a cache. The tasks that are taken to create a
cache are

• Perform basic sanity checks for bad usage

• Perform debugging checks if CONFIG_SLAB_DEBUG is set

• Allocate a kmem_cache_t from the cache_cache slab cache

• Align the object size to the word size

• Calculate how many objects will fit on a slab

• Align the slab size to the hardware cache

• Calculate colour offsets

• Initialise remaining fields in cache descriptor

• Add the new cache to the cache chain

See Figure 3.1 to see the call graph relevant to the creation of a cache. The
depth of it is shallow as the depths will be discussed in other sections.

Function: kmem_cache_create (mm/slab.c)
Because of the size of this function, it will be dealt with in chunks. Each chunk

is one of the items described in the previous section

621 kmem_cache_t *
622 kmem_cache_create (const char *name, size_t size,
623 size_t offset, unsigned long flags,

void (*ctor)(void*, kmem_cache_t *, unsigned long),
624 void (*dtor)(void*, kmem_cache_t *, unsigned long))

40

3.0.1. Cache Creation 41

kmem_cache_create(const char *name, size_t size, size_t offset, un-
signed long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
void (*dtor)(void*, kmem_cache_t *, unsigned long))

Creates a new cache and adds it to the cache chain

kmem_cache_reap(int gfp_mask)
Scans at mostREAP_SCANLEN caches and selects one for reaping

all per-cpu objects and free slabs from. Called when memory is tight

kmem_cache_shrink(kmem_cache_t *cachep)
This function will delete all per-cpu objects associated with a cache

and delete all slabs in the slabs_free list. It returns the number of
pages freed.

kmem_cache_alloc(kmem_cache_t *cachep, int flags)
Allocate a single object from the cache and return it to the caller

kmem_cache_free(kmem_cache_t *cachep, void *objp)
Free an object and return it to the cache

kmalloc(size_t size, int flags)
Allocate a block of memory from one of the sizes cache

kfree(const void *objp)
Free a block of memory allocated with kmalloc

kmem_cache_destroy(kmem_cache_t * cachep)
Destroys all objects in all slabs and frees up all associated memory

before removing the cache from the chain

Table 3.1: Slab Allocator API for caches

3.0.1. Cache Creation 42

kmem_cache_create

enable_cpucache kmem_find_general_cachep kmem_cache_alloc kmem_cache_estimate

kmem_tune_cpucache __kmem_cache_alloc

Figure 3.1: kmem_cache_create

625 {
626 const char *func_nm = KERN_ERR "kmem_create: ";
627 size_t left_over, align, slab_size;
628 kmem_cache_t *cachep = NULL;
629
633 if ((!name) ||
634 ((strlen(name) >= CACHE_NAMELEN - 1)) ||
635 in_interrupt() ||
636 (size < BYTES_PER_WORD) ||
637 (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
638 (dtor && !ctor) ||
639 (offset < 0 || offset > size))
640 BUG();
641

Perform basic sanity checks for bad usage

622 The parameters of the function are

name The human readable name of the cache

size The size of an object

offset This is used to specify a specific alignment for objects in the cache
but it usually left as 0

flags Static cache flags

ctor A constructor function to call for each object during slab creation

dtor The corresponding destructor function. It is expected the destructor
function leaves an object in an initialised state

633-640 These are all serious usage bugs that prevent the cache even attempting
to create

634 If the human readable name is greater than the maximum size for a cache
name (CACHE_NAMELEN)

3.0.1. Cache Creation 43

635 An interrupt handler cannot create a cache as access to spinlocks and sema-
phores is needed

636 The object size must be at least a word in size. Slab is not suitable for objects
that are measured in bits

637 The largest possible slab that can be created is 2MAX_OBJ_ORDER number
of pages which provides 32 pages.

638 A destructor cannot be used if no constructor is available

639 The offset cannot be before the slab or beyond the boundary of the first page

640 Call BUG() to exit

642 #if DEBUG
643 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
645 printk("%sNo con, but init state check

requested - %s\n", func_nm, name);
646 flags &= ~SLAB_DEBUG_INITIAL;
647 }
648
649 if ((flags & SLAB_POISON) && ctor) {
651 printk("%sPoisoning requested, but con given - %s\n",
func_nm, name);
652 flags &= ~SLAB_POISON;
653 }
654 #if FORCED_DEBUG
655 if ((size < (PAGE_SIZE>>3)) && !(flags & SLAB_MUST_HWCACHE_ALIGN))
660 flags |= SLAB_RED_ZONE;
661 if (!ctor)
662 flags |= SLAB_POISON;
663 #endif
664 #endif
670 BUG_ON(flags & ~CREATE_MASK);

This block performs debugging checks if CONFIG_SLAB_DEBUG is set

643-646 The flag SLAB_DEBUG_INITIAL requests that the constructor check
the objects to make sure they are in an initialised state. For this, a constructor
must obviously exist. If it doesn’t, the flag is cleared

649-653 A slab can be poisoned with a known pattern to make sure an object
wasn’t used before it was allocated but a constructor would ruin this pattern
falsely reporting a bug. If a constructor exists, remove the SLAB_POISON
flag if set

3.0.1. Cache Creation 44

655-660 Only small objects will be red zoned for debugging. Red zoning large
objects would cause severe fragmentation

661-662 If there is no constructor, set the poison bit

670 The CREATE_MASK is set with all the allowable flags kmem_cache_create()
can be called with. This prevents callers using debugging flags when they are
not available and BUG’s it instead

673 cachep =
(kmem_cache_t *) kmem_cache_alloc(&cache_cache,

SLAB_KERNEL);
674 if (!cachep)
675 goto opps;
676 memset(cachep, 0, sizeof(kmem_cache_t));

Allocate a kmem_cache_t from the cache_cache slab cache.

673 Allocate a cache descriptor object from the cache_cache(See Section 3.2.2)

674-675 If out of memory goto opps which handles the oom situation

676 Zero fill the object to prevent surprises with uninitialised data

682 if (size & (BYTES_PER_WORD-1)) {
683 size += (BYTES_PER_WORD-1);
684 size &= ~(BYTES_PER_WORD-1);
685 printk("%sForcing size word alignment

- %s\n", func_nm, name);
686 }
687
688 #if DEBUG
689 if (flags & SLAB_RED_ZONE) {
694 flags &= ~SLAB_HWCACHE_ALIGN;
695 size += 2*BYTES_PER_WORD;
696 }
697 #endif
698 align = BYTES_PER_WORD;
699 if (flags & SLAB_HWCACHE_ALIGN)
700 align = L1_CACHE_BYTES;
701
703 if (size >= (PAGE_SIZE>>3))
708 flags |= CFLGS_OFF_SLAB;
709
710 if (flags & SLAB_HWCACHE_ALIGN) {
714 while (size < align/2)
715 align /= 2;

3.0.1. Cache Creation 45

716 size = (size+align-1)&(~(align-1));
717 }

Align the object size to the word size

682 If the size is not aligned to the size of a word then...

683 Increase the object by the size of a word

684 Mask out the lower bits, this will effectively round the object size up to the
next word boundary

685 Print out an informational message for debugging purposes

688-697 If debugging is enabled then the alignments have to change slightly

694 Don’t bother trying to align things to the hardware cache. The red zoning of
the object is going to offset it by moving the object one word away from the
cache boundary

695 The size of the object increases by two BYTES_PER_WORD to store the red zone
mark at either end of the object

698 Align the object on a word size

699-700 If requested, align the objects to the L1 CPU cache

703 If the objects are large, store the slab descriptors off-slab. This will allow
better packing of objects into the slab

710 If hardware cache alignment is requested, the size of the objects must be
adjusted to align themselves to the hardware cache

714-715 This is important to arches (e.g. Alpha or Pentium 4) with large L1
cache bytes. align will be adjusted to be the smallest that will give hardware
cache alignment. For machines with large L1 cache lines, two or more small
objects may fit into each line. For example, two objects from the size-32 cache
will fit on one cache line from a Pentium 4

716 Round the cache size up to the hardware cache alignment

724 do {
725 unsigned int break_flag = 0;
726 cal_wastage:
727 kmem_cache_estimate(cachep->gfporder,

size, flags,
728 &left_over,

&cachep->num);
729 if (break_flag)

3.0.1. Cache Creation 46

730 break;
731 if (cachep->gfporder >= MAX_GFP_ORDER)
732 break;
733 if (!cachep->num)
734 goto next;
735 if (flags & CFLGS_OFF_SLAB &&

cachep->num > offslab_limit) {
737 cachep->gfporder--;
738 break_flag++;
739 goto cal_wastage;
740 }
741
746 if (cachep->gfporder >= slab_break_gfp_order)
747 break;
748
749 if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
750 break;
751 next:
752 cachep->gfporder++;
753 } while (1);
754
755 if (!cachep->num) {
756 printk("kmem_cache_create: couldn’t

create cache %s.\n", name);
757 kmem_cache_free(&cache_cache, cachep);
758 cachep = NULL;
759 goto opps;
760 }

Calculate how many objects will fit on a slab and adjust the slab size as necessary

727-728 kmem_cache_estimate() (See Section 3.0.2) calculates the number of
objects that can fit on a slab at the current gfp order and what the amount of
leftover bytes will be

729-730 The break_flag is set if the number of objects fitting on the slab exceeds
the number that can be kept when offslab slab descriptors are used

731-732 The order number of pages used must not exceed MAX_GFP_ORDER (5)

733-734 If even one object didn’t fill, goto next: which will increase the gfporder
used for the cache

735 If the slab descriptor is kept off-cache but the number of objects exceeds the
number that can be tracked with bufctl’s off-slab then

737 Reduce the order number of pages used

3.0.1. Cache Creation 47

738 Set the break_flag so the loop will exit

739 Calculate the new wastage figures

746-747 The slab_break_gfp_order is the order to not exceed unless 0 objects
fit on the slab. This check ensures the order is not exceeded

749-759 This is a rough check for internal fragmentation. If the wastage as a
fraction of the total size of the cache is less than one eight, it is acceptable

752 If the fragmentation is too high, increase the gfp order and recalculate the
number of objects that can be stored and the wastage

755 If after adjustments, objects still do not fit in the cache, it cannot be created

757-758 Free the cache descriptor and set the pointer to NULL

758 Goto opps which simply returns the NULL pointer

761 slab_size =
L1_CACHE_ALIGN(cachep->num*sizeof(kmem_bufctl_t)+sizeof(slab_t));

762
767 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
768 flags &= ~CFLGS_OFF_SLAB;
769 left_over -= slab_size;
770 }

Align the slab size to the hardware cache

761 slab_size is the total size of the slab descriptor not the size of the slab itself.
It is the size slab_t struct and the number of objects * size of the bufctl

767-769 If there is enough left over space for the slab descriptor and it was specified
to place the descriptor off-slab, remove the flag and update the amount of
left_over bytes there is. This will impact the cache colouring but with the
large objects associated with off-slab descriptors, this is not a problem

773 offset += (align-1);
774 offset &= ~(align-1);
775 if (!offset)
776 offset = L1_CACHE_BYTES;
777 cachep->colour_off = offset;
778 cachep->colour = left_over/offset;

Calculate colour offsets.

773-774 offset is the offset within the page the caller requested. This will make
sure the offset requested is at the correct alignment for cache usage

3.0.1. Cache Creation 48

775-776 If somehow the offset is 0, then set it to be aligned for the CPU cache

777 This is the offset to use to keep objects on different cache lines. Each slab
created will be given a different colour offset

778 This is the number of different offsets that can be used

781 if (!cachep->gfporder && !(flags & CFLGS_OFF_SLAB))
782 flags |= CFLGS_OPTIMIZE;
783
784 cachep->flags = flags;
785 cachep->gfpflags = 0;
786 if (flags & SLAB_CACHE_DMA)
787 cachep->gfpflags |= GFP_DMA;
788 spin_lock_init(&cachep->spinlock);
789 cachep->objsize = size;
790 INIT_LIST_HEAD(&cachep->slabs_full);
791 INIT_LIST_HEAD(&cachep->slabs_partial);
792 INIT_LIST_HEAD(&cachep->slabs_free);
793
794 if (flags & CFLGS_OFF_SLAB)
795 cachep->slabp_cache =

kmem_find_general_cachep(slab_size,0);
796 cachep->ctor = ctor;
797 cachep->dtor = dtor;
799 strcpy(cachep->name, name);
800
801 #ifdef CONFIG_SMP
802 if (g_cpucache_up)
803 enable_cpucache(cachep);
804 #endif

Initialise remaining fields in cache descriptor

781-782 For caches with slabs of only 1 page, the CFLGS_OPTIMIZE flag is set.
In reality it makes no difference as the flag is unused

784 Set the cache static flags

785 Zero out the gfpflags. Defunct operation as memset after the cache descriptor
was allocated would do this

786-787 If the slab is for DMA use, set the GFP_DMA flag so the buddy allocator
will use ZONE_DMA

788 Initialise the spinlock for access the cache

789 Copy in the object size, which now takes hardware cache alignment if necessary

3.0.1. Cache Creation 49

790-792 Initialise the slab lists

794-795 If the descriptor is kept off-slab, allocate a slab manager and place it for
use in slabp_cache. See Section 3.1.1

796-797 Set the pointers to the constructor and destructor functions

799 Copy in the human readable name

802-803 If per-cpu caches are enabled, create a set for this cache. See Section 3.4

806 down(&cache_chain_sem);
807 {
808 struct list_head *p;
809
810 list_for_each(p, &cache_chain) {
811 kmem_cache_t *pc = list_entry(p,

kmem_cache_t, next);
812
814 if (!strcmp(pc->name, name))
815 BUG();
816 }
817 }
818
822 list_add(&cachep->next, &cache_chain);
823 up(&cache_chain_sem);
824 opps:
825 return cachep;
826 }

Add the new cache to teh cache chain

806 Acquire the semaphore used to synchronize access to the cache chain

810-816 Check every cache on the cache chain and make sure there isn’t a cache
there with the same name. If there is, it means two caches of the same type
are been created which is a serious bug

811 Get the cache from the list

814-815 Compare the names and if they match bug. It’s worth noting that the
new cache is not deleted, but this error is the result of sloppy programming
during development and not a normal scenario

822 Link the cache into the chain.

823 Release the cache chain semaphore.

825 Return the new cache pointer

3.0.2. Calculating the Number of Objects on a Slab 50

3.0.2 Calculating the Number of Objects on a Slab

Function: kmem_cache_estimate (mm/slab.c)
During cache creation, it is determined how many objects can be stored in a slab

and how much waste-age there will be. The following function calculates how many
objects may be stored, taking into account if the slab and bufctl’s must be stored
on-slab.

388 static void kmem_cache_estimate (unsigned long gfporder, size_t size,
389 int flags, size_t *left_over, unsigned int *num)
390 {
391 int i;
392 size_t wastage = PAGE_SIZE<<gfporder;
393 size_t extra = 0;
394 size_t base = 0;
395
396 if (!(flags & CFLGS_OFF_SLAB)) {
397 base = sizeof(slab_t);
398 extra = sizeof(kmem_bufctl_t);
399 }
400 i = 0;
401 while (i*size + L1_CACHE_ALIGN(base+i*extra) <= wastage)
402 i++;
403 if (i > 0)
404 i--;
405
406 if (i > SLAB_LIMIT)
407 i = SLAB_LIMIT;
408
409 *num = i;
410 wastage -= i*size;
411 wastage -= L1_CACHE_ALIGN(base+i*extra);
412 *left_over = wastage;
413 }

388 The parameters of the function are as follows

gfporder The 2gfporder number of pages to allocate for each slab

size The size of each object

flags The cache flags

left_over The number of bytes left over in the slab. Returned to caller

num The number of objects that will fit in a slab. Returned to caller

392 wastage is decremented through the function. It starts with the maximum
possible amount of wast-age.

3.0.3. Cache Shrinking 51

393 extra is the number of bytes needed to store kmem_bufctl_t

394 base is where usable memory in the slab starts

396 If the slab descriptor is kept on cache, the base begins at the end of the
slab_t struct and the number of bytes needed to store the bufctl is the size
of kmem_bufctl_t

400 i becomes the number of objects the slab can hold

401-402 This counts up the number of objects that the cache can store. i*size is
the amount of memory needed to store the object itself. L1_CACHE_ALIGN(base+i*extra)
is slightly trickier. This is calculating the amount of memory needed to store
the kmem_bufctl_t of which one exists for every object in the slab. As it is
at the beginning of the slab, it is L1 cache aligned so that the first object in
the slab will be aligned to hardware cache. i*extra will calculate the amount
of space needed to hold a kmem_bufctl_t for this object. As wast-age starts
out as the size of the slab, its use is overloaded here.

403-404 Because the previous loop counts until the slab overflows, the number of
objects that can be stored is i-1.

406-407 SLAB_LIMIT is the absolute largest number of objects a slab can store.
Is is defined as 0xffffFFFE as this the largest number kmem_bufctl_t(), which
is an unsigned int, can hold

409 num is now the number of objects a slab can hold

410 Take away the space taken up by all the objects from wast-age

411 Take away the space taken up by the kmem_bufctl_t

412 Wast-age has now been calculated as the left over space in the slab

3.0.3 Cache Shrinking

Two varieties of shrink functions are provided. kmem_cache_shrink() removes
all slabs from slabs_free and returns the number of pages freed as a result.
__kmem_cache_shrink() frees all slabs from slabs_free and then verifies that
slabs_partial and slabs_full are empty. This is important during cache destruc-
tion when it doesn’t matter how many pages are freed, just that the cache is empty.

Function: kmem_cache_shrink (mm/slab.c)
This function performs basic debugging checks and then acquires the cache

descriptor lock before freeing slabs. At one time, it also used to call drain_cpu_caches()
to free up objects on the per-cpu cache. It is curious that this was removed as it
is possible slabs could not be freed due to an object been allocation on a per-cpu
cache but not in use.

3.0.3. Cache Shrinking 52

kmem_cache_shrink

drain_cpu_caches __kmem_cache_shrink_locked

free_block smp_call_function_all_cpus kmem_slab_destroy

Figure 3.2: kmem_cache_shrink

966 int kmem_cache_shrink(kmem_cache_t *cachep)
967 {
968 int ret;
969
970 if (!cachep || in_interrupt() || !is_chained_kmem_cache(cachep))
971 BUG();
972
973 spin_lock_irq(&cachep->spinlock);
974 ret = __kmem_cache_shrink_locked(cachep);
975 spin_unlock_irq(&cachep->spinlock);
976
977 return ret << cachep->gfporder;
978 }

966 The parameter is the cache been shrunk

970 Check that

• The cache pointer is not null

• That an interrupt isn’t trying to do this

• That the cache is on the cache chain and not a bad pointer

973 Acquire the cache descriptor lock and disable interrupts

974 Shrink the cache

975 Release the cache lock and enable interrupts

976 This returns the number of pages freed but does not take into account the
objects freed by draining the CPU.

3.0.3. Cache Shrinking 53

Function: __kmem_cache_shrink (mm/slab.c)
This function is identical to kmem_cache_shrink() except it returns if the cache

is empty or not. This is important during cache destruction when it is not important
how much memory was freed, just that it is safe to delete the cache and not leak
memory.

945 static int __kmem_cache_shrink(kmem_cache_t *cachep)
946 {
947 int ret;
948
949 drain_cpu_caches(cachep);
950
951 spin_lock_irq(&cachep->spinlock);
952 __kmem_cache_shrink_locked(cachep);
953 ret = !list_empty(&cachep->slabs_full) ||
954 !list_empty(&cachep->slabs_partial);
955 spin_unlock_irq(&cachep->spinlock);
956 return ret;
957 }

949 Remove all objects from the per-CPU objects cache

951 Acquire the cache descriptor lock and disable interrupts

952 Free all slabs in the slabs_free list

954-954 Check the slabs_partial and slabs_full lists are empty

955 Release the cache descriptor lock and re-enable interrupts

956 Return if the cache has all its slabs free or not

Function: __kmem_cache_shrink_locked (mm/slab.c)
This does the dirty work of freeing slabs. It will keep destroying them until the

growing flag gets set, indicating the cache is in use or until there is no more slabs
in slabs_free.

917 static int __kmem_cache_shrink_locked(kmem_cache_t *cachep)
918 {
919 slab_t *slabp;
920 int ret = 0;
921
923 while (!cachep->growing) {
924 struct list_head *p;
925
926 p = cachep->slabs_free.prev;
927 if (p == &cachep->slabs_free)

3.0.4. Cache Destroying 54

928 break;
929
930 slabp = list_entry(cachep->slabs_free.prev, slab_t, list);
931 #if DEBUG
932 if (slabp->inuse)
933 BUG();
934 #endif
935 list_del(&slabp->list);
936
937 spin_unlock_irq(&cachep->spinlock);
938 kmem_slab_destroy(cachep, slabp);
939 ret++;
940 spin_lock_irq(&cachep->spinlock);
941 }
942 return ret;
943 }

923 While the cache is not growing, free slabs

926-930 Get the last slab on the slabs_free list

932-933 If debugging is available, make sure it is not in use. If it’s not in use, it
should not be on the slabs_free list in the first place

935 Remove the slab from the list

937 Re-enable interrupts. This function is called with interrupts disabled and this
is to free the interrupt as quickly as possible.

938 Delete the slab (See Section 3.1.4)

939 Record the number of slabs freed

940 Acquire the cache descriptor lock and disable interrupts

3.0.4 Cache Destroying

When a module is unloaded, it is responsible for destroying any cache is has created
as during module loading, it is ensured there is not two caches of the same name.
Core kernel code often does not destroy it’s caches as their existence persists for the
life of the system. The steps taken to destroy a cache are

• Delete the cache from the cache chain

• Shrink the cache to delete all slabs (See Section 3.0.3)

• Free any per CPU caches (kfree())

• Delete the cache descriptor from the cache_cache (See Section: 3.2.3)

Figure 3.3 Shows the call graph for this task.

3.0.4. Cache Destroying 55

kmem_cache_destroy

kfree kmem_cache_free __kmem_cache_shrink

Figure 3.3: kmem_cache_destroy

Function: kmem_cache_destroy (mm/slab.c)

995 int kmem_cache_destroy (kmem_cache_t * cachep)
996 {
997 if (!cachep || in_interrupt() || cachep->growing)
998 BUG();
999

1000 /* Find the cache in the chain of caches. */
1001 down(&cache_chain_sem);
1002 /* the chain is never empty, cache_cache is never destroyed */
1003 if (clock_searchp == cachep)
1004 clock_searchp = list_entry(cachep->next.next,
1005 kmem_cache_t, next);
1006 list_del(&cachep->next);
1007 up(&cache_chain_sem);
1008
1009 if (__kmem_cache_shrink(cachep)) {
1010 printk(KERN_ERR "kmem_cache_destroy: Can’t free all
objects %p\n",
1011 cachep);
1012 down(&cache_chain_sem);
1013 list_add(&cachep->next,&cache_chain);
1014 up(&cache_chain_sem);
1015 return 1;
1016 }
1017 #ifdef CONFIG_SMP
1018 {
1019 int i;
1020 for (i = 0; i < NR_CPUS; i++)
1021 kfree(cachep->cpudata[i]);
1022 }
1023 #endif
1024 kmem_cache_free(&cache_cache, cachep);

3.0.5. Cache Reaping 56

1025
1026 return 0;
1027 }

997-998 Sanity check. Make sure the cachep is not null, that an interrupt isn’t
trying to do this and that the cache hasn’t been marked growing, indicating
it’s in use

1001 Acquire the semaphore for accessing the cache chain

1003-1005 Acquire the list entry from the cache chain

1006 Delete this cache from the cache chain

1007 Release the cache chain semaphore

1009 Shrink the cache to free all slabs (See Section 3.0.3)

1010-1015 The shrink function returns true if there is still slabs in the cache. If
there is, the cache cannot be destroyed so it is added back into the cache chain
and the error reported

1020-1021 If SMP is enabled, the per-cpu data structures are deleted with kfree
kfree()

1024 Delete the cache descriptor from the cache_cache

3.0.5 Cache Reaping

When the page allocator notices that memory is getting tight, it wakes kswapd to
begin freeing up pages (See Section 1.1). One of the first ways it accomplishes this
task is telling the slab allocator to reap caches. It has to be the slab allocator that
selects the caches as other subsystems should not know anything about the cache
internals.

The call graph in Figure 3.4 is deceptively simple. The task of selecting the
proper cache to reap is quite long. In case there is many caches in the system, only
REAP_SCANLEN caches are examined in each call. The last cache to be scanned is
stored in the variable clock_searchp so as not to examine the same caches over
and over again. For each scanned cache, the reaper does the following

• Check flags for SLAB_NO_REAP and skip if set

• If the cache is growing, skip it

• if the cache has grown recently (DFLGS_GROWN is set in dflags), skip it
but clear the flag so it will be reaped the next time

• Count the number of free slabs in slabs_free and calculate how many pages
that would free in the variable pages

3.0.5. Cache Reaping 57

kmem_cache_reap

__free_block kmem_slab_destroy

kmem_cache_free_one kmem_freepages kmem_cache_free

Figure 3.4: kmem_cache_reap

• If the cache has constructors or large slabs, adjust pages to make it less likely
for the cache to be selected.

• If the number of pages that would be freed exceeds REAP_PERFECT, free half
of the slabs in slabs_free

• Otherwise scan the rest of the caches and select the one that would free the
most pages for freeing half of its slabs in slabs_free

Function: kmem_cache_reap (mm/slab.c)
Because of the size of this function, it will be broken up into three separate

sections. The first is simple function preamble. The second is the selection of a
cache to reap and the third is the freeing of the slabs

1736 int kmem_cache_reap (int gfp_mask)
1737 {
1738 slab_t *slabp;
1739 kmem_cache_t *searchp;
1740 kmem_cache_t *best_cachep;
1741 unsigned int best_pages;
1742 unsigned int best_len;
1743 unsigned int scan;
1744 int ret = 0;
1745
1746 if (gfp_mask & __GFP_WAIT)
1747 down(&cache_chain_sem);
1748 else
1749 if (down_trylock(&cache_chain_sem))
1750 return 0;

3.0.5. Cache Reaping 58

1751
1752 scan = REAP_SCANLEN;
1753 best_len = 0;
1754 best_pages = 0;
1755 best_cachep = NULL;
1756 searchp = clock_searchp;

1736 The only parameter is the GFP flag. The only check made is against the
__GFP_WAIT flag. As the only caller, kswapd, can sleep, this parameter is
virtually worthless

1746-1747 Can the caller sleep? If yes, then acquire the semaphore

1749-1750 Else, try and acquire the semaphore and if not available, return

1752 REAP_SCANLEN (10) is the number of caches to examine.

1756 Set searchp to be the last cache that was examined at the last reap

1757 do {
1758 unsigned int pages;
1759 struct list_head* p;
1760 unsigned int full_free;
1761
1763 if (searchp->flags & SLAB_NO_REAP)
1764 goto next;
1765 spin_lock_irq(&searchp->spinlock);
1766 if (searchp->growing)
1767 goto next_unlock;
1768 if (searchp->dflags & DFLGS_GROWN) {
1769 searchp->dflags &= ~DFLGS_GROWN;
1770 goto next_unlock;
1771 }
1772 #ifdef CONFIG_SMP
1773 {
1774 cpucache_t *cc = cc_data(searchp);
1775 if (cc && cc->avail) {
1776 __free_block(searchp, cc_entry(cc),

cc->avail);
1777 cc->avail = 0;
1778 }
1779 }
1780 #endif
1781
1782 full_free = 0;
1783 p = searchp->slabs_free.next;

3.0.5. Cache Reaping 59

1784 while (p != &searchp->slabs_free) {
1785 slabp = list_entry(p, slab_t, list);
1786 #if DEBUG
1787 if (slabp->inuse)
1788 BUG();
1789 #endif
1790 full_free++;
1791 p = p->next;
1792 }
1793
1799 pages = full_free * (1<<searchp->gfporder);
1800 if (searchp->ctor)
1801 pages = (pages*4+1)/5;
1802 if (searchp->gfporder)
1803 pages = (pages*4+1)/5;
1804 if (pages > best_pages) {
1805 best_cachep = searchp;
1806 best_len = full_free;
1807 best_pages = pages;
1808 if (pages >= REAP_PERFECT) {
1809 clock_searchp =

list_entry(searchp->next.next,
1810 kmem_cache_t,next);
1811 goto perfect;
1812 }
1813 }
1814 next_unlock:
1815 spin_unlock_irq(&searchp->spinlock);
1816 next:
1817 searchp =

list_entry(searchp->next.next,kmem_cache_t,next);
1818 } while (--scan && searchp != clock_searchp);

This block examines REAP_SCANLEN number of caches to select one to free

1765 Acquire an interrupt safe lock to the cache descriptor

1766-1767 If the cache is growing, skip it

1768-1771 If the cache has grown recently, skip it and clear the flag

1773-1779 Free any per CPU objects to the global pool

1784-1792 Count the number of slabs in the slabs_free list

1799 Calculate the number of pages all the slabs hold

3.0.5. Cache Reaping 60

1800-1801 If the objects have constructors, reduce the page count by one fifth to
make it less likely to be selected for reaping

1802-1803 If the slabs consist of more than one page, reduce the page count by
one fifth. This is because high order pages are hard to acquire

1804 If this is the best candidate found for reaping so far, check if it is perfect for
reaping

1805-1807 Record the new maximums

1806 best_len is recorded so that it is easy to know how many slabs is half of the
slabs in the free list

1808 If this cache is perfect for reaping then

1809 Update clock_searchp

1810 Goto perfect where half the slabs will be freed

1814 This label is reached if it was found the cache was growing after acquiring
the lock

1815 Release the cache descriptor lock

1816 Move to the next entry in the cache chain

1818 Scan while REAP_SCANLEN has not been reached and we have not cycled around
the whole cache chain

1820 clock_searchp = searchp;
1821
1822 if (!best_cachep)
1824 goto out;
1825
1826 spin_lock_irq(&best_cachep->spinlock);
1827 perfect:
1828 /* free only 50% of the free slabs */
1829 best_len = (best_len + 1)/2;
1830 for (scan = 0; scan < best_len; scan++) {
1831 struct list_head *p;
1832
1833 if (best_cachep->growing)
1834 break;
1835 p = best_cachep->slabs_free.prev;
1836 if (p == &best_cachep->slabs_free)
1837 break;
1838 slabp = list_entry(p,slab_t,list);

3.0.5. Cache Reaping 61

1839 #if DEBUG
1840 if (slabp->inuse)
1841 BUG();
1842 #endif
1843 list_del(&slabp->list);
1844 STATS_INC_REAPED(best_cachep);
1845
1846 /* Safe to drop the lock. The slab is no longer linked to
the
1847 * cache.
1848 */
1849 spin_unlock_irq(&best_cachep->spinlock);
1850 kmem_slab_destroy(best_cachep, slabp);
1851 spin_lock_irq(&best_cachep->spinlock);
1852 }
1853 spin_unlock_irq(&best_cachep->spinlock);
1854 ret = scan * (1 << best_cachep->gfporder);
1855 out:
1856 up(&cache_chain_sem);
1857 return ret;
1858 }

This block will free half of the slabs from the selected cache

1820 Update clock_searchp for the next cache reap

1822-1824 If a cache was not found, goto out to free the cache chain and exit

1826 Acquire the cache chain spinlock and disable interrupts. The cachep
descriptor has to be held by an interrupt safe lock as some caches may be
used from interrupt context. The slab allocator has no way to differentiate
between interrupt safe and unsafe caches

1829 Adjust best_len to be the number of slabs to free

1830-1852 Free best_len number of slabs

1833-1845 If the cache is growing, exit

1835 Get a slab from the list

1836-1837 If there is no slabs left in the list, exit

1838 Get the slab pointer

1840-1841 If debugging is enabled, make sure there isn’t active objects in the slab

1843 Remove the slab from the slabs_free list

3.1. Slabs 62

1844 Update statistics if enabled

1849 Free the cache descriptor and enable interrupts

1850 Destroy the slab. See Section 3.1.4

1851 Re-acquire the cache descriptor spinlock and disable interrupts

1853 Free the cache descriptor and enable interrupts

1854 ret is the number of pages that was freed

1856-1857 Free the cache semaphore and return the number of pages freed

3.1 Slabs

This section will describe how a slab is structured and managed. The struct which
describes it is much simpler than the cache descriptor, but how the slab is arranged
is slightly more complex. We begin with the descriptor.

155 typedef struct slab_s {
156 struct list_head list;
157 unsigned long colouroff;
158 void *s_mem;
159 unsigned int inuse;
160 kmem_bufctl_t free;
161 } slab_t;

list The list the slab belongs to. One of slab_full, slab_partial and
slab_free

colouroff The colour offset is the offset of the first object within the slab. The
address of the first object is s_mem + colouroff . See Section 3.1.1

s_mem The starting address of the first object within the slab

inuse Number of active objects in the slab

free This is an array of bufctl’s used for storing locations of free objects. See the
companion document for seeing how to track free objects.

3.1.1 Storing the Slab Descriptor

Function: kmem_cache_slabmgmt (mm/slab.c)
This function will either allocate allocate space to keep the slab descriptor off

cache or reserve enough space at the beginning of the slab for the descriptor and
the bufctl’s.

3.1.1. Storing the Slab Descriptor 63

1030 static inline slab_t * kmem_cache_slabmgmt (
kmem_cache_t *cachep,

1031 void *objp,
int colour_off,
int local_flags)

1032 {
1033 slab_t *slabp;
1034
1035 if (OFF_SLAB(cachep)) {
1037 slabp = kmem_cache_alloc(cachep->slabp_cache,

local_flags);
1038 if (!slabp)
1039 return NULL;
1040 } else {
1045 slabp = objp+colour_off;
1046 colour_off += L1_CACHE_ALIGN(cachep->num *
1047 sizeof(kmem_bufctl_t) +

sizeof(slab_t));
1048 }
1049 slabp->inuse = 0;
1050 slabp->colouroff = colour_off;
1051 slabp->s_mem = objp+colour_off;
1052
1053 return slabp;
1054 }

1030 The parameters of the function are

cachep The cache the slab is to be allocated to

objp When the function is called, this points to the beginning of the slab

colour_off The colour offset for this slab

local_flags These are the flags for the cache. They are described in the
companion document

1035-1040 If the slab descriptor is kept off cache....

1037 Allocate memory from the sizes cache. During cache creation, slabp_cache
is set to the appropriate size cache to allocate from. See Section 3.0.1

1038 If the allocation failed, return

1040-1048 Reserve space at the beginning of the slab

1045 The address of the slab will be the beginning of the slab (objp) plus the
colour offset

3.1.2. Slab Structure 64

1046 colour_off is calculated to be the offset where the first object will be placed.
The address is L1 cache aligned. cachep->num * sizeof(kmem_bufctl_t) is
the amount of space needed to hold the bufctls for each object in the slab and
sizeof(slab_t) is the size of the slab descriptor. This effectively has reserved
the space at the beginning of the slab

1049 The number of objects in use on the slab is 0

1050 The colouroff is updated for placement of the new object

1051 The address of the first object is calculated as the address of the beginning
of the slab plus the offset

Function: kmem_find_general_cachep (mm/slab.c)
If the slab descriptor is to be kept off-slab, this function, called during cache

creation (See Section 3.0.1) will find the appropriate sizes cache to use and will be
stored within the cache descriptor in the field slabp_cache.

1618 kmem_cache_t * kmem_find_general_cachep (size_t size,
int gfpflags)

1619 {
1620 cache_sizes_t *csizep = cache_sizes;
1621
1626 for (; csizep->cs_size; csizep++) {
1627 if (size > csizep->cs_size)
1628 continue;
1629 break;
1630 }
1631 return (gfpflags & GFP_DMA) ? csizep->cs_dmacachep :

csizep->cs_cachep;
1632 }

1618 size is the size of the slab descriptor. gfpflags is always 0 as DMA memory
is not needed for a slab descriptor

1626-1630 Starting with the smallest size, keep increasing the size until a cache
is found with buffers large enough to store the slab descriptor

1631 Return either a normal or DMA sized cache depending on the gfpflags passed
in. In reality, only the cs_cachep is ever passed back

3.1.2 Slab Structure

3.1.3 Slab Creation

This section will show how a cache is grown when no objects are left in the
slabs_partial list and there is no slabs in slabs_free. The principle function
for this is kmem_cache_grow(). The tasks it fulfills are

3.1.3. Slab Creation 65

• Perform basic sanity checks to guard against bad usage

• Calculate colour offset for objects in this slab

• Allocate memory for slab and acquire a slab descriptor

• Link the pages used for the slab to the slab and cache descriptors (See Section
3.1)

• Initialise objects in the slab

• Add the slab to the cache

Function: kmem_cache_grow (mm/slab.c)

kmem_cache_grow

kmem_getpages kmem_cache_init_objs kmem_cache_slabmgmt

__get_free_pages kmem_cache_alloc

__kmem_cache_alloc

Figure 3.5: kmem_cache_grow

Figure 3.5 shows the call graph to grow a cache. This function will be dealt
with in blocks. Each block corresponds to one of the tasks described in the previous
section

1103 static int kmem_cache_grow (kmem_cache_t * cachep, int flags)
1104 {
1105 slab_t *slabp;
1106 struct page *page;
1107 void *objp;
1108 size_t offset;
1109 unsigned int i, local_flags;
1110 unsigned long ctor_flags;
1111 unsigned long save_flags;

3.1.3. Slab Creation 66

Basic declarations. The parameters of the function are

cachep The cache to allocate a new slab to

flags The flags for a slab creation

1116 if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
1117 BUG();
1118 if (flags & SLAB_NO_GROW)
1119 return 0;
1120
1127 if (in_interrupt() && (flags & SLAB_LEVEL_MASK) != SLAB_ATOMIC)
1128 BUG();
1129
1130 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1131 local_flags = (flags & SLAB_LEVEL_MASK);
1132 if (local_flags == SLAB_ATOMIC)
1137 ctor_flags |= SLAB_CTOR_ATOMIC;

Perform basic sanity checks to guard against bad usage. The checks are made
here rather than kmem_cache_alloc() to protect the critical path. There is no
point checking the flags every time an object needs to be allocated.

1116-1117 Make sure only allowable flags are used for allocation

1118-1119 Do not grow the cache if this is set. In reality, it is never set

1127-1128 If this called within interrupt context, make sure the ATOMIC flag is
set

1130 This flag tells the constructor it is to init the object

1131 The local_flags are just those relevant to the page allocator

1132-1137 If the ATOMIC flag is set, the constructor needs to know about it in
case it wants to make new allocations

1140 spin_lock_irqsave(&cachep->spinlock, save_flags);
1141
1143 offset = cachep->colour_next;
1144 cachep->colour_next++;
1145 if (cachep->colour_next >= cachep->colour)
1146 cachep->colour_next = 0;
1147 offset *= cachep->colour_off;
1148 cachep->dflags |= DFLGS_GROWN;
1149
1150 cachep->growing++;
1151 spin_unlock_irqrestore(&cachep->spinlock, save_flags);

3.1.3. Slab Creation 67

Calculate colour offset for objects in this slab

1140 Acquire an interrupt safe lock for accessing the cache descriptor

1143 Get the offset for objects in this slab

1144 Move to the next colour offset

1145-1146 If colour has been reached, there is no more offsets available, so reset
colour_next to 0

1147 colour_off is the size of each offset, so offset * colour_off will give how
many bytes to offset the objects to

1148 Mark the cache that it is growing so that kmem_cache_reap() will ignore this
cache

1150 Increase the count for callers growing this cache

1151 Free the spinlock and re-enable interrupts

1163 if (!(objp = kmem_getpages(cachep, flags)))
1164 goto failed;
1165
1167 if (!(slabp = kmem_cache_slabmgmt(cachep,

objp, offset,
local_flags)))

1158 goto opps1;

Allocate memory for slab and acquire a slab descriptor

1163-1164 Allocate pages from the page allocator for the slab. See Section 3.6

1167 Acquire a slab descriptor. See Section 3.1.1

1171 i = 1 << cachep->gfporder;
1172 page = virt_to_page(objp);
1173 do {
1174 SET_PAGE_CACHE(page, cachep);
1175 SET_PAGE_SLAB(page, slabp);
1176 PageSetSlab(page);
1177 page++;
1178 } while (--i);

Link the pages for the slab used to the slab and cache descriptors

1171 i is the number of pages used for the slab. Each page has to be linked to the
slab and cache descriptors.

3.1.3. Slab Creation 68

1172 objp is a pointer to the beginning of the slab. The macro virt_to_page()
will give the struct page for that address

1173-1178 Link each pages list field to the slab and cache descriptors

1174 SET_PAGE_CACHE links the page to the cache descriptor. See the companion
document for details

1176 SET_PAGE_SLAB links the page to the slab descriptor. See the companion
document for details

1176 Set the PG_slab page flag. See the companion document for a full list of
page flags

1177 Move to the next page for this slab to be linked

1180 kmem_cache_init_objs(cachep, slabp, ctor_flags);

1180 Initialise all objects. See Section 3.2.1

1182 spin_lock_irqsave(&cachep->spinlock, save_flags);
1183 cachep->growing--;
1184
1186 list_add_tail(&slabp->list, &cachep->slabs_free);
1187 STATS_INC_GROWN(cachep);
1188 cachep->failures = 0;
1189
1190 spin_unlock_irqrestore(&cachep->spinlock, save_flags);
1191 return 1;

Add the slab to the cache

1182 Acquire the cache descriptor spinlock in an interrupt safe fashion

1183 Decrease the growing count

1186 Add the slab to the end of the slabs_free list

1187 If STATS is set, increase the cachep→grown field

1188 Set failures to 0. This field is never used elsewhere

1190 Unlock the spinlock in an interrupt safe fashion

1191 Return success

3.1.4. Slab Destroying 69

1192 opps1:
1193 kmem_freepages(cachep, objp);
1194 failed:
1195 spin_lock_irqsave(&cachep->spinlock, save_flags);
1196 cachep->growing--;
1197 spin_unlock_irqrestore(&cachep->spinlock, save_flags);
1298 return 0;
1299 }
1300

Error handling

1192-1193 opps1 is reached if the pages for the slab were allocated. They must be
freed

1195 Acquire the spinlock for accessing the cache descriptor

1196 Reduce the growing count

1197 Release the spinlock

1298 Return failure

3.1.4 Slab Destroying

When a cache is been shrunk or destroyed, the slabs will be deleted. As the objects
may have destructors, they must be called so the tasks of this function are

• If available, call the destructor for every object in the slab

• If debugging is enabled, check the red marking and poison pattern

• Free the pages the slab uses

The call graph at Figure 3.6 is very simple.

kmem_slab_destroy

kmem_freepages kmem_cache_free

Figure 3.6: kmem_slab_destroy

3.2. Objects 70

Function: kmem_slab_destroy (mm/slab.c)
The debugging section has been omitted from this function but are almost

identical to the debugging section during object allocation. See Section 3.2.1 for
how the markers and poison pattern are checked.

555 static void kmem_slab_destroy (kmem_cache_t *cachep, slab_t *slabp)
556 {
557 if (cachep->dtor
561) {
562 int i;
563 for (i = 0; i < cachep->num; i++) {
564 void* objp = slabp->s_mem+cachep->objsize*i;

565-574 DEBUG: Check red zone markers

575 if (cachep->dtor)
576 (cachep->dtor)(objp, cachep, 0);

577-584 DEBUG: Check poison pattern

585 }
586 }
587
588 kmem_freepages(cachep, slabp->s_mem-slabp->colouroff);
589 if (OFF_SLAB(cachep))
590 kmem_cache_free(cachep->slabp_cache, slabp);
591 }

557-586 If a destructor is available, call it for each object in the slab

563-585 Cycle through each object in the slab

564 Calculate the address of the object to destroy

575-576 Call the destructor

588 Free the pages been used for the slab

589 If the slab descriptor is been kept off-slab, then free the memory been used for
it

3.2 Objects

This section will cover how objects are managed. At this point, most of the real
hard work has been completed by either the cache or slab managers.

3.2.1. Initialising Objects in a Slab 71

3.2.1 Initialising Objects in a Slab

When a slab is created, all the objects in it put in an initialised state. If a constructor
is available, it is called for each object and it is expected when an object is freed,
it is left in its initialised state. Conceptually this is very simple, cycle through all
objects and call the constructor and initialise the kmem_bufctl for it. The function
kmem_cache_init_objs() is responsible for initialising the objects.

Function: kmem_cache_init_objs (mm/slab.c)
The vast part of this function is involved with debugging so we will start with

the function without the debugging and explain that in detail before handling the
debugging part. The two sections that are debugging are marked in the code excerpt
below as Part 1 and Part 2.

1056 static inline void kmem_cache_init_objs (kmem_cache_t * cachep,
1057 slab_t * slabp, unsigned long ctor_flags)
1058 {
1059 int i;
1060
1061 for (i = 0; i < cachep->num; i++) {
1062 void* objp = slabp->s_mem+cachep->objsize*i;

1063-1070 /* Debugging Part 1 */

1077 if (cachep->ctor)
1078 cachep->ctor(objp, cachep, ctor_flags);

1079-1092 /* Debugging Part 2 */

1093 slab_bufctl(slabp)[i] = i+1;
1094 }
1095 slab_bufctl(slabp)[i-1] = BUFCTL_END;
1096 slabp->free = 0;
1097 }

1056 The parameters of the function are

cachep The cache the objects are been initialised for

slabp The slab the objects are in

ctor_flags Flags the constructor needs whether this is an atomic allocation
or not

1061 Initialise cache→num number of objects

1062 The base address for objects in the slab is s_mem. The address of the object
to allocate is then i * (size of a single object)

3.2.1. Initialising Objects in a Slab 72

1077-1078 If a constructor is available, call it

1093 The macro slab_bufctl() casts slabp to a slab_t slab descriptor and adds
one to it. This brings the pointer to the end of the slab descriptor and then
casts it back to a kmem_bufctl_t effectively giving the beginning of the bufctl
array.

1096 The index of the first free object is 0 in the bufctl array

That covers the core of initialising objects. Next the first debugging part will be
covered

1063 #if DEBUG
1064 if (cachep->flags & SLAB_RED_ZONE) {
1065 *((unsigned long*)(objp)) = RED_MAGIC1;
1066 *((unsigned long*)(objp + cachep->objsize -
1067 BYTES_PER_WORD)) = RED_MAGIC1;
1068 objp += BYTES_PER_WORD;
1069 }
1070 #endif

1064 If the cache is to be red zones then place a marker at either end of the object

1065 Place the marker at the beginning of the object

1066 Place the marker at the end of the object. Remember that the size of the
object takes into account the size of the red markers when red zoning is enabled

1068 Increase the objp pointer by the size of the marker for the benefit of the
constructor which is called after this debugging block

1079 #if DEBUG
1080 if (cachep->flags & SLAB_RED_ZONE)
1081 objp -= BYTES_PER_WORD;
1082 if (cachep->flags & SLAB_POISON)
1084 kmem_poison_obj(cachep, objp);
1085 if (cachep->flags & SLAB_RED_ZONE) {
1086 if (*((unsigned long*)(objp)) != RED_MAGIC1)
1087 BUG();
1088 if (*((unsigned long*)(objp + cachep->objsize -
1089 BYTES_PER_WORD)) != RED_MAGIC1)
1090 BUG();
1091 }
1092 #endif

This is the debugging block that takes place after the constructor, if it exists,
has been called.

3.2.2. Object Allocation 73

1080-1081 The objp was increased by the size of the red marker in the previous
debugging block so move it back again

1082-1084 If there was no constructor, poison the object with a known pattern
that can be examined later to trap uninitialised writes

1086 Check to make sure the red marker at the beginning of the object was pre-
served to trap writes before the object

1088-1089 Check to make sure writes didn’t take place past the end of the object

3.2.2 Object Allocation

kmem_cache_alloc

__kmem_cache_alloc

kmem_cache_alloc_head kmem_cache_alloc_one kmem_cache_alloc_one_tail kmem_cache_grow

Figure 3.7: kmem_cache_alloc UP

Function: kmem_cache_alloc (mm/slab.c)
This trivial function simply calls __kmem_cache_alloc().

1527 void * kmem_cache_alloc (kmem_cache_t *cachep, int flags)
1529 {
1530 return __kmem_cache_alloc(cachep, flags);
1531 }

Function: __kmem_cache_alloc (UP Case) (mm/slab.c)
This will take the parts of the function specific to the UP case. The SMP case

will be dealt with in the next section.

1336 static inline void * __kmem_cache_alloc (kmem_cache_t *cachep, int flags)
1337 {
1338 unsigned long save_flags;
1339 void* objp;
1340
1341 kmem_cache_alloc_head(cachep, flags);
1342 try_again:
1343 local_irq_save(save_flags);

3.2.2. Object Allocation 74

1365 objp = kmem_cache_alloc_one(cachep);

1367 local_irq_restore(save_flags);
1368 return objp;
1369 alloc_new_slab:

1374 local_irq_restore(save_flags);
1375 if (kmem_cache_grow(cachep, flags))
1379 goto try_again;
1380 return NULL;
1381 }

1336 The parameters are the cache to allocate from and allocation specific flags.

1341 This function makes sure the appropriate combination of DMA flags are in
use

1343 Disable interrupts and save the flags. This function is used by interrupts so
this is the only way to provide synchronisation in the UP case

1365 This macro (See Section 3.2.2) allocates an object from one of the lists and
returns it. If no objects are free, it calls goto alloc_new_slab at the end of
this function

1367-1368 Restore interrupts and return

1374 At this label, no objects were free in slabs_partial and slabs_free is
empty so a new slab is needed

1375 Allocate a new slab (See Section 3.1.3)

1379 A new slab is available so try again

1380 No slabs could be allocated so return failure

Function: __kmem_cache_alloc (SMP Case) (mm/slab.c)
This is what the function looks like in the SMP case

1336 static inline void * __kmem_cache_alloc (kmem_cache_t *cachep, int flags)
1337 {
1338 unsigned long save_flags;
1339 void* objp;
1340
1341 kmem_cache_alloc_head(cachep, flags);
1342 try_again:
1343 local_irq_save(save_flags);
1345 {
1346 cpucache_t *cc = cc_data(cachep);

3.2.2. Object Allocation 75

1347
1348 if (cc) {
1349 if (cc->avail) {
1350 STATS_INC_ALLOCHIT(cachep);
1351 objp = cc_entry(cc)[--cc->avail];
1352 } else {
1353 STATS_INC_ALLOCMISS(cachep);
1354 objp =

kmem_cache_alloc_batch(cachep,cc,flags);
1355 if (!objp)
1356 goto alloc_new_slab_nolock;
1357 }
1358 } else {
1359 spin_lock(&cachep->spinlock);
1360 objp = kmem_cache_alloc_one(cachep);
1361 spin_unlock(&cachep->spinlock);
1362 }
1363 }
1364 local_irq_restore(save_flags);
1368 return objp;
1369 alloc_new_slab:
1371 spin_unlock(&cachep->spinlock);
1372 alloc_new_slab_nolock:
1373 local_irq_restore(save_flags);
1375 if (kmem_cache_grow(cachep, flags))
1379 goto try_again;
1380 return NULL;
1381 }

1336-1345 Same as UP case

1347 Obtain the per CPU data for this cpu

1348-1358 If a per CPU cache is available then

1349 If there is an object available then

1350 Update statistics for this cache if enabled

1351 Get an object and update the avail figure

1352 Else an object is not available so

1353 Update statistics for this cache if enabled

1354 Allocate batchcount number of objects, place all but one of them in the per
CPU cache and return the last one to objp

3.2.2. Object Allocation 76

1355-1356 The allocation failed, so goto alloc_new_slab_nolock to grow the cache
and allocate a new slab

1358-1362 If a per CPU cache is not available, take out the cache spinlock and
allocate one object in the same way the UP case does. This is the case during
the initialisation for the cache_cache for example

1361 Object was successfully assigned, release cache spinlock

1364-1368 Re-enable interrupts and return the allocated object

1369-1370 If kmem_cache_alloc_one() failed to allocate an object, it will goto
here with the spinlock still held so it must be released

1373-1381 Same as the UP case

Function: kmem_cache_alloc_head (mm/slab.c)
This simple function ensures the right combination of slab and GFP flags are

used for allocation from a slab. If a cache is for DMA use, this function will make
sure the caller does not accidently request normal memory and vice versa

1229 static inline void kmem_cache_alloc_head(kmem_cache_t *cachep, int flags)
1230 {
1231 if (flags & SLAB_DMA) {
1232 if (!(cachep->gfpflags & GFP_DMA))
1233 BUG();
1234 } else {
1235 if (cachep->gfpflags & GFP_DMA)
1236 BUG();
1237 }
1238 }

1229 The parameters are the cache we are allocating from and the flags requested
for the allocation

1231 If the caller has requested memory for DMA use and

1232 The cache is not using DMA memory then BUG()

1235 Else if the caller has not requested DMA memory and this cache is for DMA
use, BUG()

Function: kmem_cache_alloc_one (mm/slab.c)
This is a preprocessor macro. It may seem strange to not make this an

inline function but it is a preprocessor macro for for a goto optimisation in
__kmem_cache_alloc() (See Section 3.2.2)

3.2.2. Object Allocation 77

1281 #define kmem_cache_alloc_one(cachep) \
1282 ({ \
1283 struct list_head * slabs_partial, * entry; \
1284 slab_t *slabp; \
1285 \
1286 slabs_partial = &(cachep)->slabs_partial; \
1287 entry = slabs_partial->next; \
1288 if (unlikely(entry == slabs_partial)) { \
1289 struct list_head * slabs_free; \
1290 slabs_free = &(cachep)->slabs_free; \
1291 entry = slabs_free->next; \
1292 if (unlikely(entry == slabs_free)) \
1293 goto alloc_new_slab; \
1294 list_del(entry); \
1295 list_add(entry, slabs_partial); \
1296 } \
1297 \
1298 slabp = list_entry(entry, slab_t, list); \
1299 kmem_cache_alloc_one_tail(cachep, slabp); \
1300 })

1286-1287 Get the first slab from the slabs_partial list

1288-1296 If a slab is not available from this list, execute this block

1289-1291 Get the first slab from the slabs_free list

1292-1293 If there is no slabs on slabs_free, then goto alloc_new_slab(). This
goto label is in __kmem_cache_alloc() and it is will grow the cache by one
slab

1294-1295 Else remove the slab from the free list and place it on the slabs_partial
list because an object is about to be removed from it

1298 Obtain the slab from the list

1299 Allocate one object from the slab

Function: kmem_cache_alloc_one_tail (mm/slab.c)
This function is responsible for the allocation of one object from a slab. Much

of it is debugging code.

1240 static inline void * kmem_cache_alloc_one_tail (kmem_cache_t *cachep,
1241 slab_t *slabp)
1242 {
1243 void *objp;
1244

3.2.2. Object Allocation 78

1245 STATS_INC_ALLOCED(cachep);
1246 STATS_INC_ACTIVE(cachep);
1247 STATS_SET_HIGH(cachep);
1248
1250 slabp->inuse++;
1251 objp = slabp->s_mem + slabp->free*cachep->objsize;
1252 slabp->free=slab_bufctl(slabp)[slabp->free];
1253
1254 if (unlikely(slabp->free == BUFCTL_END)) {
1255 list_del(&slabp->list);
1256 list_add(&slabp->list, &cachep->slabs_full);
1257 }
1258 #if DEBUG
1259 if (cachep->flags & SLAB_POISON)
1260 if (kmem_check_poison_obj(cachep, objp))
1261 BUG();
1262 if (cachep->flags & SLAB_RED_ZONE) {
1264 if (xchg((unsigned long *)objp, RED_MAGIC2) !=
1265 RED_MAGIC1)
1266 BUG();
1267 if (xchg((unsigned long *)(objp+cachep->objsize -
1268 BYTES_PER_WORD), RED_MAGIC2) != RED_MAGIC1)
1269 BUG();
1270 objp += BYTES_PER_WORD;
1271 }
1272 #endif
1273 return objp;
1274 }

1230 The parameters are the cache and slab been allocated from

1245-1247 If stats are enabled, this will set three statistics. ALLOCED is the
total number of objects that have been allocated. ACTIVE is the number of
active objects in the cache. HIGH is the maximum number of objects that
were active as a single time

1250 inuse is the number of objects active on this slab

1251 Get a pointer to a free object. s_mem is a pointer to the first object on the
slab. free is an index of a free object in the slab. index * object size
gives an offset within the slab

1252 This updates the free pointer to be an index of the next free object. See the
companion document for seeing how to track free objects.

1254-1257 If the slab is full, remove it from the slabs_partial list and place it
on the slabs_full.

3.2.2. Object Allocation 79

1258-1272 Debugging code

1273 Without debugging, the object is returned to the caller

1259-1261 If the object was poisoned with a known pattern, check it to guard
against uninitialised access

1264-1265 If red zoning was enabled, check the marker at the beginning of the
object and confirm it is safe. Change the red marker to check for writes before
the object later

1267-1269 Check the marker at the end of the object and change it to check for
writes after the object later

1270 Update the object pointer to point to after the red marker

1273 Return the object

Function: kmem_cache_alloc_batch (mm/slab.c)
This function allocate a batch of objects to a CPU cache of objects. It is only

used in the SMP case. In many ways it is very similar kmem_cache_alloc_one()
(See Section 3.2.2).

1303 void* kmem_cache_alloc_batch(kmem_cache_t* cachep,
cpucache_t* cc, int flags)

1304 {
1305 int batchcount = cachep->batchcount;
1306
1307 spin_lock(&cachep->spinlock);
1308 while (batchcount--) {
1309 struct list_head * slabs_partial, * entry;
1310 slab_t *slabp;
1311 /* Get slab alloc is to come from. */
1312 slabs_partial = &(cachep)->slabs_partial;
1313 entry = slabs_partial->next;
1314 if (unlikely(entry == slabs_partial)) {
1315 struct list_head * slabs_free;
1316 slabs_free = &(cachep)->slabs_free;
1317 entry = slabs_free->next;
1318 if (unlikely(entry == slabs_free))
1319 break;
1320 list_del(entry);
1321 list_add(entry, slabs_partial);
1322 }
1323
1324 slabp = list_entry(entry, slab_t, list);
1325 cc_entry(cc)[cc->avail++] =

3.2.3. Object Freeing 80

1326 kmem_cache_alloc_one_tail(cachep, slabp);
1327 }
1328 spin_unlock(&cachep->spinlock);
1329
1330 if (cc->avail)
1331 return cc_entry(cc)[--cc->avail];
1332 return NULL;
1333 }

1303 The parameters are the cache to allocate from, the per CPU cache to fill and
allocation flags

1305 batchcount is the number of objects to allocate

1307 Obtain the spinlock for access to the cache descriptor

1308-1327 Loop batchcount times

1309-1322 This is example the same as kmem_cache_alloc_one() (See Section
3.2.2) . It selects a slab from either slabs_partial or slabs_free to allocate
from. If none are available, break out of the loop

1324-1325 Call kmem_cache_alloc_one_tail() (See Section 3.2.2) and place it
in the per CPU cache.

1328 Release the cache descriptor lock

1330-1331 Take one of the objects allocated in this batch and return it

1332 If no object was allocated, return. __kmem_cache_alloc() will grow the
cache by one slab and try again

3.2.3 Object Freeing

Function: kmem_cache_free (mm/slab.c)

1574 void kmem_cache_free (kmem_cache_t *cachep, void *objp)
1575 {
1576 unsigned long flags;
1577 #if DEBUG
1578 CHECK_PAGE(virt_to_page(objp));
1579 if (cachep != GET_PAGE_CACHE(virt_to_page(objp)))
1580 BUG();
1581 #endif
1582
1583 local_irq_save(flags);
1584 __kmem_cache_free(cachep, objp);
1585 local_irq_restore(flags);
1586 }

3.2.3. Object Freeing 81

kmem_cache_free

__kmem_cache_free

kmem_cache_free_one

Figure 3.8: kmem_cache_free

1574 The parameter is the cache the object is been freed from and the object itself

1577-1581 If debugging is enabled, the page will first be checked with CHECK_PAGE()
to make sure it is a slab page. Secondly the page list will be examined to make
sure it belongs to this cache (See Section 3.1.2)

1583 Interrupts are disabled to protect the path

1584 __kmem_cache_free() will free the object to the per CPU cache for the SMP
case and to the global pool in the normal case

1585 Re-enable interrupts

Function: __kmem_cache_free (mm/slab.c)
This covers what the function looks like in the UP case. Clearly, it simply releases

the object to the slab.

1491 static inline void __kmem_cache_free (kmem_cache_t *cachep, void* objp)
1492 {
1515 kmem_cache_free_one(cachep, objp);
1517 }

Function: __kmem_cache_free (mm/slab.c)
This case is slightly more interesting. In this case, the object is released to the

per-cpu cache if it is available.

1491 static inline void __kmem_cache_free (kmem_cache_t *cachep, void* objp)
1492 {
1494 cpucache_t *cc = cc_data(cachep);
1495

3.2.3. Object Freeing 82

1496 CHECK_PAGE(virt_to_page(objp));
1497 if (cc) {
1498 int batchcount;
1499 if (cc->avail < cc->limit) {
1500 STATS_INC_FREEHIT(cachep);
1501 cc_entry(cc)[cc->avail++] = objp;
1502 return;
1503 }
1504 STATS_INC_FREEMISS(cachep);
1505 batchcount = cachep->batchcount;
1506 cc->avail -= batchcount;
1507 free_block(cachep,
1508 &cc_entry(cc)[cc->avail],batchcount);
1509 cc_entry(cc)[cc->avail++] = objp;
1510 return;
1511 } else {
1512 free_block(cachep, &objp, 1);
1513 }
1517 }

1494 Get the data for this per CPU cache (See Section 3.4)

1496 Make sure the page is a slab page

1497-1511 If a per CPU cache is available, try to use it. This is not always
available. During cache destruction for instance, the per CPU caches are
already gone

1499-1503 If the number of available in the per CPU cache is below limit, then
add the object to the free list and return

1504 Update Statistics if enabled

1505 The pool has overflowed so batchcount number of objects is going to be freed
to the global pool

1506 Update the number of available (avail) objects

1507-1508 Free a block of objects to the global cache

1509 Free the requested object and place it on the per CPU pool

1511 If the per CPU cache is not available, then free this object to the global pool

3.2.3. Object Freeing 83

Function: kmem_cache_free_one (mm/slab.c)

1412 static inline void kmem_cache_free_one(kmem_cache_t *cachep, void *objp)
1413 {
1414 slab_t* slabp;
1415
1416 CHECK_PAGE(virt_to_page(objp));
1423 slabp = GET_PAGE_SLAB(virt_to_page(objp));
1424
1425 #if DEBUG
1426 if (cachep->flags & SLAB_DEBUG_INITIAL)
1431 cachep->ctor(objp, cachep,

SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
1432
1433 if (cachep->flags & SLAB_RED_ZONE) {
1434 objp -= BYTES_PER_WORD;
1435 if (xchg((unsigned long *)objp, RED_MAGIC1) !=

RED_MAGIC2)
1436 BUG();
1438 if (xchg((unsigned long *)(objp+cachep->objsize -
1439 BYTES_PER_WORD), RED_MAGIC1) !=

RED_MAGIC2)
1441 BUG();
1442 }
1443 if (cachep->flags & SLAB_POISON)
1444 kmem_poison_obj(cachep, objp);
1445 if (kmem_extra_free_checks(cachep, slabp, objp))
1446 return;
1447 #endif
1448 {
1449 unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;
1450
1451 slab_bufctl(slabp)[objnr] = slabp->free;
1452 slabp->free = objnr;
1453 }
1454 STATS_DEC_ACTIVE(cachep);
1455
1457 {
1458 int inuse = slabp->inuse;
1459 if (unlikely(!--slabp->inuse)) {
1460 /* Was partial or full, now empty. */
1461 list_del(&slabp->list);
1462 list_add(&slabp->list, &cachep->slabs_free);
1463 } else if (unlikely(inuse == cachep->num)) {
1464 /* Was full. */

3.2.3. Object Freeing 84

1465 list_del(&slabp->list);
1466 list_add(&slabp->list, &cachep->slabs_partial);
1467 }
1468 }
1469 }

1416 Make sure the page is a slab page

1423 Get the slab descriptor for the page

1425-1447 Debugging material. Discussed at end of section

1449 Calculate the index for the object been freed

1452 As this object is now free, update the bufctl to reflect that. See the companion
document for seeing how to track free objects.

1454 If statistics are enabled, disable the number of active objects in the slab

1459-1462 If inuse reaches 0, the slab is free and is moved to the slabs_free list

1463-1466 If the number in use equals the number of objects in a slab, it is full so
move it to the slabs_full list

1469 Return

1426-1431 If SLAB_DEBUG_INITIAL is set, the constructor is called to verify
the object is in an initialised state

1433-1442 Verify the red marks at either end of the object are still there. This
will check for writes beyond the boundaries of the object and for double frees

1443-1444 Poison the freed object with a known pattern

1445-1446 This function will confirm the object is a part of this slab and cache.
It will then check the free list (bufctl) to make sure this is not a double free

Function: free_block (mm/slab.c)
This function is only used in the SMP case when the per CPU cache gets too

full. It is used to free a batch of objects in bulk

1479 static void free_block (kmem_cache_t* cachep, void** objpp, int len)
1480 {
1481 spin_lock(&cachep->spinlock);
1482 __free_block(cachep, objpp, len);
1483 spin_unlock(&cachep->spinlock);
1484 }

1479 The parameters are

3.3. Sizes Cache 85

cachep The cache that objects are been freed from

objpp Pointer to the first object to free

len The number of objects to free

1483 Acquire a lock to the cache descriptor

1484 Discussed in next section

1485 Release the lock

Function: __free_block (mm/slab.c)
This function is trivial. Starting with objpp, it will free len number of objects.

1472 static inline void __free_block (kmem_cache_t* cachep,
1473 void** objpp, int len)
1474 {
1475 for (; len > 0; len--, objpp++)
1476 kmem_cache_free_one(cachep, *objpp);
1477 }

3.3 Sizes Cache

Function: kmem_cache_sizes_init (mm/slab.c)
This function is responsible for creating pairs of caches for small memory buffers

suitable for either normal or DMA memory.

436 void __init kmem_cache_sizes_init(void)
437 {
438 cache_sizes_t *sizes = cache_sizes;
439 char name[20];
440
444 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
445 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
446 do {
452 snprintf(name, sizeof(name), "size-%Zd",

sizes->cs_size);
453 if (!(sizes->cs_cachep =
454 kmem_cache_create(name,

sizes->cs_size,
455 0, SLAB_HWCACHE_ALIGN,

NULL, NULL))) {
456 BUG();
457 }
458
460 if (!(OFF_SLAB(sizes->cs_cachep))) {

3.3. Sizes Cache 86

461 offslab_limit = sizes->cs_size-sizeof(slab_t);
462 offslab_limit /= 2;
463 }
464 snprintf(name, sizeof(name), "size-%Zd(DMA)",

sizes->cs_size);
465 sizes->cs_dmacachep = kmem_cache_create(name,

sizes->cs_size, 0,
466 SLAB_CACHE_DMA|SLAB_HWCACHE_ALIGN,

NULL, NULL);
467 if (!sizes->cs_dmacachep)
468 BUG();
469 sizes++;
470 } while (sizes->cs_size);
471 }

438 Get a pointer to the cache_sizes array. See Section 3.3

439 The human readable name of the cache . Should be sized CACHE_NAMELEN
which is defined to be 20 long

444-445 slab_break_gfp_order determines how many pages a slab may use un-
less 0 objects fit into the slab. It is statically initialised to BREAK_GFP_ORDER_LO
(1). This check sees if more than 32MiB of memory is available and if it is,
allow BREAK_GFP_ORDER_HI number of pages to be used because internal frag-
mentation is more acceptable when more memory is available.

446-470 Create two caches for each size of memory allocation needed

452 Store the human readable cache name in name

453-454 Create the cache, aligned to the L1 cache. See Section 3.0.1

460-463 Calculate the off-slab bufctl limit which determines the number of objects
that can be stored in a cache when the slab descriptor is kept off-cache.

464 The human readable name for the cache for DMA use

465-466 Create the cache, aligned to the L1 cache and suitable for DMA user.
See Section 3.0.1

467 if the cache failed to allocate, it is a bug. If memory is unavailable this early,
the machine will not boot

469 Move to the next element in the cache_sizes array

470 The array is terminated with a 0 as the last element

3.3.1. kmalloc 87

3.3.1 kmalloc

With the existence of the sizes cache, the slab allocator is able to offer a new allocator
function, kmalloc for use when small memory buffers are required. When a request
is received, the appropriate sizes cache is selected and an object assigned from it.
The call graph on Figure 3.9 is therefore very simple as all the hard work is in cache
allocation (See Section 3.2.2)

kmalloc

__kmem_cache_alloc

Figure 3.9: kmalloc

Function: kmalloc (mm/slab.c)

1553 void * kmalloc (size_t size, int flags)
1554 {
1555 cache_sizes_t *csizep = cache_sizes;
1556
1557 for (; csizep->cs_size; csizep++) {
1558 if (size > csizep->cs_size)
1559 continue;
1560 return __kmem_cache_alloc(flags & GFP_DMA ?
1561 csizep->cs_dmacachep :

csizep->cs_cachep, flags);
1562 }
1563 return NULL;
1564 }

1555 cache_sizes is the array of caches for each size (See Section 3.3)

1557-1562 Starting with the smallest cache, examine the size of each cache until
one large enough to satisfy the request is found

1560 If the allocation is for use with DMA, allocate an object from cs_dmacachep
else use the cs_cachep

1563 If a sizes cache of sufficient size was not available or an object could not be
allocated, return failure

3.3.2. kfree 88

3.3.2 kfree

Just as there is a kmalloc() function to allocate small memory objects for use, there
is a kfree for freeing it. As with kmalloc, the real work takes place during object
freeing (See Section 3.2.3) so the call graph in Figure 3.9 is very simple.

kfree

__kmem_cache_free

Figure 3.10: kfree

Function: kfree (mm/slab.c)
It is worth noting that the work this function does is almost identical to the

function kmem_cache_free() with debugging enabled (See Section 3.2.3).

1595 void kfree (const void *objp)
1596 {
1597 kmem_cache_t *c;
1598 unsigned long flags;
1599
1600 if (!objp)
1601 return;
1602 local_irq_save(flags);
1603 CHECK_PAGE(virt_to_page(objp));
1604 c = GET_PAGE_CACHE(virt_to_page(objp));
1605 __kmem_cache_free(c, (void*)objp);
1606 local_irq_restore(flags);
1607 }

1600 Return if the pointer is NULL. This is possible if a caller used kmalloc and
had a catch-all failure routine which called kfree immediately

1602 Disable interrupts

1603 Make sure the page this object is in is a slab page

1604 Get the cache this pointer belongs to (See Section 3.1)

1605 Free the memory object

1606 Re-enable interrupts

3.4. Per-CPU Object Cache 89

3.4 Per-CPU Object Cache

One of the tasks the slab allocator is dedicated to is improved hardware cache
utilization. An aim of high performance computing in general is to use data on the
same CPU for as long as possible. Linux achieves this by trying to keep objects in
the same CPU cache with a Per-CPU object cache, called a cpucache for each CPU
in the system.

When allocating or freeing objects, they are placed in the cpucache. When there
is no objects free, a batch of objects is placed into the pool. When the pool gets
too large, half of them are removed and placed in the global cache. This way the
hardware cache will be used for as long as possible on the same CPU.

3.4.1 Describing the Per-CPU Object Cache

Each cache descriptor has a pointer to an array of cpucaches, described in the cache
descriptor as

231 cpucache_t *cpudata[NR_CPUS];

This structure is very simple

173 typedef struct cpucache_s {
174 unsigned int avail;
175 unsigned int limit;
176 } cpucache_t;

avail is the number of free objects available on this cpucache

limit is the total number of free objects that can exist

A helper macro cc_data() is provided to give the cpucache for a given cache
and processor. It is defined as

180 #define cc_data(cachep) \
181 ((cachep)->cpudata[smp_processor_id()])

This will take a given cache descriptor (cachep) and return a pointer from the
cpucache array (cpudata). The index needed is the ID of the current processor,
smp_processor_id().

Pointers to objects on the cpucache are placed immediately after the cpucache_t
struct. This is very similar to how objects are stored after a slab descriptor illus-
trated in Section 3.1.2.

3.4.2. Adding/Removing Objects from the Per-CPU Cache 90

3.4.2 Adding/Removing Objects from the Per-CPU Cache

To prevent fragmentation, objects are always added or removed from the end of the
array. To add an object (obj) to the CPU cache (cc), the following block of code is
used

cc_entry(cc)[cc->avail++] = obj;

To remove an object

obj = cc_entry(cc)[--cc->avail];

cc_entry() is a helper macro which gives a pointer to the first object in the
cpucache. It is defined as

178 #define cc_entry(cpucache) \
179 ((void **)(((cpucache_t*)(cpucache))+1))

This takes a pointer to a cpucache, increments the value by the size of the
cpucache_t descriptor giving the first object in the cache.

3.4.3 Enabling Per-CPU Caches

When a cache is created, its CPU cache has to be enabled and memory allocated for
it using kmalloc. The function enable_cpucache is responsible for deciding what
size to make the cache and calling kmem_tune_cpucache to allocate memory for it.

Obviously a CPU cache cannot exist until after the various sizes caches have
been enabled so a global variable g_cpucache_up is used to prevent cpucache’s been
enabled before it is possible. The function enable_all_cpucaches cycles through
all caches in the cache chain and enables their cpucache.

Once the CPU cache has been setup, it can be accessed without locking as a
CPU will never access the wrong cpucache so it is guaranteed safe access to it.

Function: enable_all_cpucaches (mm/slab.c)
This function locks the cache chain and enables the cpucache for every cache.

This is important after the cache_cache and sizes cache have been enabled.

1712 static void enable_all_cpucaches (void)
1713 {
1714 struct list_head* p;
1715
1716 down(&cache_chain_sem);
1717
1718 p = &cache_cache.next;
1719 do {
1720 kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);
1721

3.4.3. Enabling Per-CPU Caches 91

1722 enable_cpucache(cachep);
1723 p = cachep->next.next;
1724 } while (p != &cache_cache.next);
1725
1726 up(&cache_chain_sem);
1727 }

1716 Obtain the semaphore to the cache chain

1717 Get the first cache on the chain

1719-1724 Cycle through the whole chain

1720 Get a cache from the chain. This code will skip the first cache on the chain
but cache_cache doesn’t need a cpucache as it’s so rarely used

1722 Enable the cpucache

1723 Move to the next cache on the chain

1724 Release the cache chain semaphore

Function: enable_cpucache (mm/slab.c)
This function calculates what the size of a cpucache should be based on the size

of the objects the cache contains before calling kmem_tune_cpucache() which does
the actual allocation.

1691 static void enable_cpucache (kmem_cache_t *cachep)
1692 {
1693 int err;
1694 int limit;
1695
1697 if (cachep->objsize > PAGE_SIZE)
1698 return;
1699 if (cachep->objsize > 1024)
1700 limit = 60;
1701 else if (cachep->objsize > 256)
1702 limit = 124;
1703 else
1704 limit = 252;
1705
1706 err = kmem_tune_cpucache(cachep, limit, limit/2);
1707 if (err)
1708 printk(KERN_ERR

"enable_cpucache failed for %s, error %d.\n",
1709 cachep->name, -err);
1710 }

3.4.3. Enabling Per-CPU Caches 92

1697-1698 If an object is larger than a page, don’t have a Per CPU cache. They
are too expensive

1699-1700 If an object is larger than 1KiB, keep the cpu cache below 3MiB in size.
The limit is set to 124 objects to take the size of the cpucache descriptors into
account

1701-1702 For smaller objects, just make sure the cache doesn’t go above 3MiB
in size

1706 Allocate the memory for the cpucache

1708-1709 Print out an error message if the allocation failed

Function: kmem_tune_cpucache (mm/slab.c)
This function is responsible for allocating memory for the cpucaches. For each

CPU on the system, kmalloc gives a block of memory large enough for one cpu cache
and fills a cpupdate_struct_t struct. The function smp_call_function_all_cpus()
then calls do_ccupdate_local() which swaps the new information with the old in-
formation in the cache descriptor.

1637 static int kmem_tune_cpucache (kmem_cache_t* cachep,
int limit, int batchcount)

1638 {
1639 ccupdate_struct_t new;
1640 int i;
1641
1642 /*
1643 * These are admin-provided, so we are more graceful.
1644 */
1645 if (limit < 0)
1646 return -EINVAL;
1647 if (batchcount < 0)
1648 return -EINVAL;
1649 if (batchcount > limit)
1650 return -EINVAL;
1651 if (limit != 0 && !batchcount)
1652 return -EINVAL;
1653
1654 memset(&new.new,0,sizeof(new.new));
1655 if (limit) {
1656 for (i = 0; i< smp_num_cpus; i++) {
1657 cpucache_t* ccnew;
1658
1659 ccnew = kmalloc(sizeof(void*)*limit+
1660 sizeof(cpucache_t), GFP_KERNEL);

3.4.3. Enabling Per-CPU Caches 93

1661 if (!ccnew)
1662 goto oom;
1663 ccnew->limit = limit;
1664 ccnew->avail = 0;
1665 new.new[cpu_logical_map(i)] = ccnew;
1666 }
1667 }
1668 new.cachep = cachep;
1669 spin_lock_irq(&cachep->spinlock);
1670 cachep->batchcount = batchcount;
1671 spin_unlock_irq(&cachep->spinlock);
1672
1673 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
1674
1675 for (i = 0; i < smp_num_cpus; i++) {
1676 cpucache_t* ccold = new.new[cpu_logical_map(i)];
1677 if (!ccold)
1678 continue;
1679 local_irq_disable();
1680 free_block(cachep, cc_entry(ccold), ccold->avail);
1681 local_irq_enable();
1682 kfree(ccold);
1683 }
1684 return 0;
1685 oom:
1686 for (i--; i >= 0; i--)
1687 kfree(new.new[cpu_logical_map(i)]);
1688 return -ENOMEM;
1689 }

1637 The parameters of the function are

cachep The cache this cpucache is been allocated for

limit The total number of objects that can exist in the cpucache

batchcount The number of objects to allocate in one batch when the cpucache
is empty

1645 The number of objects in the cache cannot be negative

1647 A negative number of objects cannot be allocated in batch

1649 A batch of objects greater than the limit cannot be allocated

1651 A batchcount must be provided if the limit is positive

1654 Zero fill the update struct

3.4.4. Updating Per-CPU Information 94

1655 If a limit is provided, allocate memory for the cpucache

1656-1666 For every CPU, allocate a cpucache

1659 The amount of memory needed is limit number of pointers and the size of
the cpucache descriptor

1661 If out of memory, clean up and exit

1663-1664 Fill in the fields for the cpucache descriptor

1665 Fill in the information for ccupdate_update_t struct

1668 Tell the ccupdate_update_t struct what cache is been updated

1669-1671 Acquire an interrupt safe lock to the cache descriptor and set its batch-
count

1673 Get each CPU to update its cpucache information for itself. This swaps the
old cpucaches in the cache descriptor with the new ones in new

1675-1683 After smp_call_function_all_cpus(), the old cpucaches are in new.
This block of code cycles through them all, frees any objects in them and
deletes the old cpucache

1684 Return success

1686 In the event there is no memory, delete all cpucaches that have been allocated
up until this point and return failure

3.4.4 Updating Per-CPU Information

When the per-cpu caches have been created or changed, each CPU has to be told
about it. It’s not sufficient to change all the values in the cache descriptor as that
would lead to cache coherency issues and spinlocks would have to used to protect
the cpucache’s. Instead a ccupdate_t struct is populated with all the information
each CPU needs and each CPU swaps the new data with the old information in the
cache descriptor. The struct for storing the new cpucache information is defined as
follows

868 typedef struct ccupdate_struct_s
869 {
870 kmem_cache_t *cachep;
871 cpucache_t *new[NR_CPUS];
872 } ccupdate_struct_t;

The cachep is the cache been updated and the array new is of the cpucache
descriptors for each CPU on the system. The function smp_function_all_cpus()
is used to get each CPU to call the do_ccupdate_local() function which swaps the
information from ccupdate_struct_t with the information in the cache descriptor.

Once the information has been swapped, the old data can be deleted.

3.4.4. Updating Per-CPU Information 95

Function: smp_function_all_cpus (mm/slab.c)
This calls the function func() for all CPU’s. In the context of the slab allocator,

the function is do_ccupdate_local() and the argument is ccupdate_struct_t.

859 static void smp_call_function_all_cpus(void (*func) (void *arg),
void *arg)

860 {
861 local_irq_disable();
862 func(arg);
863 local_irq_enable();
864
865 if (smp_call_function(func, arg, 1, 1))
866 BUG();
867 }

861-863 Disable interrupts locally and call the function for this CPU

865 For all other CPU’s, call the function. smp_call_function() is an architecture
specific function and will not be discussed further here

Function: do_ccupdate_local (mm/slab.c)
This function swaps the cpucache information in the cache descriptor with the

information in info for this CPU.

874 static void do_ccupdate_local(void *info)
875 {
876 ccupdate_struct_t *new = (ccupdate_struct_t *)info;
877 cpucache_t *old = cc_data(new->cachep);
878
879 cc_data(new->cachep) = new->new[smp_processor_id()];
880 new->new[smp_processor_id()] = old;
881 }

876 The parameter passed in is a pointer to the ccupdate_struct_t passed to
smp_call_function_all_cpus()

877 Part of the ccupdate_struct_t is a pointer to the cache this cpucache belongs
to. cc_data() returns the cpucache_t for this processor

879 Place the new cpucache in cache descriptor. cc_data() returns the pointer to
the cpucache for this CPU.

880 Replace the pointer in new with the old cpucache so it can be deleted later by
the caller of smp_call_function_call_cpus(), kmem_tune_cpucache() for
example

3.4.5. Draining a Per-CPU Cache 96

3.4.5 Draining a Per-CPU Cache

When a cache is been shrunk, its first step is to drain the cpucaches of any objects
they might have. This is so the slab allocator will have a clearer view of what slabs
can be freed or not. This is important because if just one object in a slab is placed
in a Per-CPU cache, that whole slab cannot be freed. If the system is tight on
memory, saving a few milliseconds on allocations is the least of its trouble.

Function: drain_cpu_caches (mm/slab.c)

885 static void drain_cpu_caches(kmem_cache_t *cachep)
886 {
887 ccupdate_struct_t new;
888 int i;
889
890 memset(&new.new,0,sizeof(new.new));
891
892 new.cachep = cachep;
893
894 down(&cache_chain_sem);
895 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
896
897 for (i = 0; i < smp_num_cpus; i++) {
898 cpucache_t* ccold = new.new[cpu_logical_map(i)];
899 if (!ccold || (ccold->avail == 0))
900 continue;
901 local_irq_disable();
902 free_block(cachep, cc_entry(ccold), ccold->avail);
903 local_irq_enable();
904 ccold->avail = 0;
905 }
906 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
907 up(&cache_chain_sem);
908 }

890 Blank the update structure as it’s going to be clearing all data

892 Set new.cachep to cachep so that smp_call_function_all_cpus() knows
what cache it is affecting

894 Acquire the cache descriptor semaphore

895 do_ccupdate_local swaps the cpucache_t information in the cache descriptor
with the ones in new so they can be altered here

897-905 For each CPU in the system

898 Get the cpucache descriptor for this CPU

3.5. Slab Allocator Initialisation 97

899 If the structure does not exist for some reason or there is no objects available
in it, move to the next CPU

901 Disable interrupts on this processor. It is possible an allocation from an inter-
rupt handler elsewhere would try to access the per CPU cache

902 Free the block of objects (See Section 3.2.3)

903 Re-enable interrupts

904 Show that no objects are available

906 The information for each CPU has been updated so call do_ccupdate_local()
for each CPU to put the information back into the cache descriptor

907 Release the semaphore for the cache chain

3.5 Slab Allocator Initialisation

Here we will describe the slab allocator initialises itself. When the slab alloc-
ator creates a new cache, it allocates the kmem_cache_t from the cache_cache or
kmem_cache cache. This is an obvious chicken and egg problem so the cache_cache
has to be statically initialised as

357 static kmem_cache_t cache_cache = {
358 slabs_full: LIST_HEAD_INIT(cache_cache.slabs_full),
359 slabs_partial: LIST_HEAD_INIT(cache_cache.slabs_partial),
360 slabs_free: LIST_HEAD_INIT(cache_cache.slabs_free),
361 objsize: sizeof(kmem_cache_t),
362 flags: SLAB_NO_REAP,
363 spinlock: SPIN_LOCK_UNLOCKED,
364 colour_off: L1_CACHE_BYTES,
365 name: "kmem_cache",
366 };

358-360 Initialise the three lists as empty lists

361 The size of each object is the size of a cache descriptor

362 The creation and deleting of caches is extremely rare so do not consider it for
reaping ever

363 Initialise the spinlock unlocked

364 Align the objects to the L1 cache

365 The human readable name

That statically defines all the fields that can be calculated at compile time. To
initialise the rest of the struct, kmem_cache_init() is called from start_kernel().

3.6. Interfacing with the Buddy Allocator 98

Function: kmem_cache_init (mm/slab.c)
This function will

• Initialise the cache chain linked list

• Initialise a mutex for accessing the cache chain

• Calculate the cache_cache colour

416 void __init kmem_cache_init(void)
417 {
418 size_t left_over;
419
420 init_MUTEX(&cache_chain_sem);
421 INIT_LIST_HEAD(&cache_chain);
422
423 kmem_cache_estimate(0, cache_cache.objsize, 0,
424 &left_over, &cache_cache.num);
425 if (!cache_cache.num)
426 BUG();
427
428 cache_cache.colour = left_over/cache_cache.colour_off;
429 cache_cache.colour_next = 0;
430 }

420 Initialise the semaphore for access the cache chain

421 Initialise the cache chain linked list

423 This estimates the number of objects and amount of bytes wasted. See Section
3.0.2

425 If even one kmem_cache_t cannot be stored in a page, there is something
seriously wrong

428 colour is the number of different cache lines that can be used while still
keeping L1 cache alignment

429 colour_next indicates which line to use next. Start at 0

3.6 Interfacing with the Buddy Allocator

Function: kmem_getpages (mm/slab.c)
This allocates pages for the slab allocator

3.6. Interfacing with the Buddy Allocator 99

486 static inline void * kmem_getpages (kmem_cache_t *cachep, unsigned long
flags)
487 {
488 void *addr;
495 flags |= cachep->gfpflags;
496 addr = (void*) __get_free_pages(flags, cachep->gfporder);
503 return addr;
504 }

495 Whatever flags were requested for the allocation, append the cache flags to
it. The only flag it may append is GFP_DMA if the cache requires DMA
memory

496 Call the buddy allocator (See Section 1.3)

503 Return the pages or NULL if it failed

Function: kmem_freepages (mm/slab.c)
This frees pages for the slab allocator. Before it calls the buddy allocator API,

it will remove the PG_slab bit from the page flags

507 static inline void kmem_freepages (kmem_cache_t *cachep, void *addr)
508 {
509 unsigned long i = (1<<cachep->gfporder);
510 struct page *page = virt_to_page(addr);
511
517 while (i--) {
518 PageClearSlab(page);
519 page++;
520 }
521 free_pages((unsigned long)addr, cachep->gfporder);
522 }

509 Retrieve the order used for the original allocation

510 Get the struct page for the address

517-520 Clear the PG_slab bit on each page

521 Call the buddy allocator (See Section 1.4)

Chapter 4

Process Address Space

4.1 Managing the Address Space

4.2 Process Memory Descriptors

The process address space is described by the mm_struct defined in include/linux/sched.h

100

4.2. Process Memory Descriptors 101

210 struct mm_struct {
211 struct vm_area_struct * mmap;
212 rb_root_t mm_rb;
213 struct vm_area_struct * mmap_cache;
214 pgd_t * pgd;
215 atomic_t mm_users;
216 atomic_t mm_count;
217 int map_count;
218 struct rw_semaphore mmap_sem;
219 spinlock_t page_table_lock;
220
221 struct list_head mmlist;
222
226 unsigned long start_code, end_code, start_data, end_data;
227 unsigned long start_brk, brk, start_stack;
228 unsigned long arg_start, arg_end, env_start, env_end;
229 unsigned long rss, total_vm, locked_vm;
230 unsigned long def_flags;
231 unsigned long cpu_vm_mask;
232 unsigned long swap_address;
233
234 unsigned dumpable:1;
235
236 /* Architecture-specific MM context */
237 mm_context_t context;
238 };
239

mmap The head of a linked list of all VMA regions in the address space

mm_rb The VMA’s are arranged in a linked list and in a red-black tree. This is the
root of the tree

pgd The Page Global Directory for this process

mm_users Count of the number of threads accessing an mm. A cloned thread
will up this count to make sure an mm_struct is not destroyed early. The
swap_out() code will increment this count when swapping out portions of the
mm

mm_count A reference count to the mm. This is important for lazy TLB switches
where a task may be using one mm_struct temporarily

map_count Number of VMA’s in use

4.2.1. Allocating a Descriptor 102

mmap_sem This is a long lived lock which protects the vma list for readers and
writers. As the taker could run for so long, a spinlock is inappropriate. A
reader of the list takes this semaphore with down_read(). If they need to
write, it must be taken with down_write() and the page_table_lock must
be taken as well

page_table_lock This protects a number of things. It protects the page tables,
the rss count and the vma from modification

mmlist All mm’s are linked together via this field

start_code, end_code The start and end address of the code section

start_data, end_data The start and end address of the data section

start_brk, end_brk The start and end address of the heap

arg_start, arg_end The start and end address of command line arguments

env_start, env_end The start and end address of environment variables

rss Resident Set Size, the number of resident pages for this process

total_vm The total memory space occupied by all vma regions in the process

locked_vm The amount of memory locked with mlock by the process

def_flags It has only one possible value, VM_LOCKED. It is used to determine
if all future mappings are locked by default or not

cpu_vm_mask A bitmask representing all possible CPU’s in an SMP system. The
mask is used with IPI to determine if a processor should execute a particular
function or not. This is important during TLB flush for each CPU for example

swap_address Used by the vmscan code to record the last address that was
swapped from

dumpable Set by prctl(), this flag is important only to ptrace

context Architecture specific MMU context

4.2.1 Allocating a Descriptor

Two functions are provided to allocate. To be slightly confusing, they are essen-
tially the name. allocate_mm() will allocate a mm_struct from the slab allocator.
alloc_mm() will allocate and call the function mm_init() to initialise it.

Function: allocate_mm (kernel/fork.c)

226 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))

226 Allocate a mm_struct from the slab allocator

4.2.2. Initalising a Descriptor 103

Function: mm_alloc (kernel/fork.c)

247 struct mm_struct * mm_alloc(void)
248 {
249 struct mm_struct * mm;
250
251 mm = allocate_mm();
252 if (mm) {
253 memset(mm, 0, sizeof(*mm));
254 return mm_init(mm);
255 }
256 return NULL;
257 }

251 Allocate a mm_struct from the slab allocator

253 Zero out all contents of the struct

254 Perform basic initialisation

4.2.2 Initalising a Descriptor

The initial mm_struct in the system is called init_mm and is statically initialised at
compile time using the macro INIT_MM.

242 #define INIT_MM(name) \
243 { \
244 mm_rb: RB_ROOT, \
245 pgd: swapper_pg_dir, \
246 mm_users: ATOMIC_INIT(2), \
247 mm_count: ATOMIC_INIT(1), \
248 mmap_sem: __RWSEM_INITIALIZER(name.mmap_sem), \
249 page_table_lock: SPIN_LOCK_UNLOCKED, \
250 mmlist: LIST_HEAD_INIT(name.mmlist), \
251 }

Once it is established, new mm_struct’s are copies of their parent mm_struct
copied using copy_mm with the process specific fields initialised with init_mm().

Function: copy_mm (kernel/fork.c)
This function makes a copy of the mm_struct for the given task. This is only

called from do_fork() after a new process has been created and needs its own
mm_struct.

314 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
315 {
316 struct mm_struct * mm, *oldmm;

4.2.2. Initalising a Descriptor 104

317 int retval;
318
319 tsk->min_flt = tsk->maj_flt = 0;
320 tsk->cmin_flt = tsk->cmaj_flt = 0;
321 tsk->nswap = tsk->cnswap = 0;
322
323 tsk->mm = NULL;
324 tsk->active_mm = NULL;
325
326 /*
327 * Are we cloning a kernel thread?
328 *
329 * We need to steal a active VM for that..
330 */
331 oldmm = current->mm;
332 if (!oldmm)
333 return 0;
334
335 if (clone_flags & CLONE_VM) {
336 atomic_inc(&oldmm->mm_users);
337 mm = oldmm;
338 goto good_mm;
339 }
340
341 retval = -ENOMEM;
342 mm = allocate_mm();
343 if (!mm)
344 goto fail_nomem;
345
346 /* Copy the current MM stuff.. */
347 memcpy(mm, oldmm, sizeof(*mm));
348 if (!mm_init(mm))
349 goto fail_nomem;
350
351 if (init_new_context(tsk,mm))
352 goto free_pt;
353
354 down_write(&oldmm->mmap_sem);
355 retval = dup_mmap(mm);
356 up_write(&oldmm->mmap_sem);
357
358 if (retval)
359 goto free_pt;
360
361 /*

4.2.2. Initalising a Descriptor 105

362 * child gets a private LDT (if there was an LDT in the parent)
363 */
364 copy_segments(tsk, mm);
365
366 good_mm:
367 tsk->mm = mm;
368 tsk->active_mm = mm;
369 return 0;
370
371 free_pt:
372 mmput(mm);
373 fail_nomem:
374 return retval;
375 }

314 The parameters are the flags passed for clone and the task that is creating a
copy of the mm_struct

319-324 Initialise the task_struct fields related to memory management

331 Borrow the mm of the current running process to copy from

332 A kernel thread has no mm so it can return immediately

335-340 If the CLONE_VM flag is set, the child process is to share the mm with the
parent process. This is required by users like pthreads. The mm_users field
is incremented so the mm is not destroyed prematurely later. The goto_mm
label sets the mm and active_mm and returns success

342 Allocate a new mm

347-349 Copy the parent mm and initialise the process specific mm fields with
init_mm()

351-352 Initialise the MMU context for architectures that do not automatically
manage their MMU

354-356 Call dup_mmap(). dup_mmap is responsible for copying all the VMA’s
regions in use by the parent process

358 dup_mmap returns 0 on success. If it failed, the label free_pt will call mmput
which decrements the use count of the mm

365 This copies the LDT for the new process based on the parent process

367-369 Set the new mm, active_mm and return success

4.2.3. Destroying a Descriptor 106

Function: mm_init (kernel/fork.c)
This function initialises process specific mm fields.

229 static struct mm_struct * mm_init(struct mm_struct * mm)
230 {
231 atomic_set(&mm->mm_users, 1);
232 atomic_set(&mm->mm_count, 1);
233 init_rwsem(&mm->mmap_sem);
234 mm->page_table_lock = SPIN_LOCK_UNLOCKED;
235 mm->pgd = pgd_alloc(mm);
236 mm->def_flags = 0;
237 if (mm->pgd)
238 return mm;
239 free_mm(mm);
240 return NULL;
241 }

231 Set the number of users to 1

232 Set the reference count of the mm to 1

233 Initialise the semaphore protecting the VMA list

234 Initialise the spinlock protecting write access to it

235 Allocate a new PGD for the struct

236 By default, pages used by the process are not locked in memory

237 If a PGD exists, return the initialised struct

239 Initialisation failed, delete the mm_struct and return

4.2.3 Destroying a Descriptor

A new user to an mm increments the usage could with a simple call,

atomic_int(&mm->mm_users};

It is decremented with a call to mmput(). If the count reaches zero, all the
mapped regions with exit_mmap() and the mm destroyed with mm_drop().

4.2.3. Destroying a Descriptor 107

Function: mmput (kernel/fork.c)

275 void mmput(struct mm_struct *mm)
276 {
277 if (atomic_dec_and_lock(&mm->mm_users, &mmlist_lock)) {
278 extern struct mm_struct *swap_mm;
279 if (swap_mm == mm)
280 swap_mm = list_entry(mm->mmlist.next,

struct mm_struct, mmlist);
281 list_del(&mm->mmlist);
282 mmlist_nr--;
283 spin_unlock(&mmlist_lock);
284 exit_mmap(mm);
285 mmdrop(mm);
286 }
287 }

277 Atomically decrement the mm_users field while holding the mmlist_lock lock.
Return with the lock held if the count reaches zero

278-285 If the usage count reaches zero, the mm and associated structures need
to be removed

278-280 The swap_mm is the last mm that was swapped out by the vmscan code.
If the current process was the last mm swapped, move to the next entry in the
list

281 Remove this mm from the list

282-283 Reduce the count of mm’s in the list and release the mmlist lock

284 Remove all associated mappings

285 Delete the mm

Function: mmdrop (include/linux/sched.h)

767 static inline void mmdrop(struct mm_struct * mm)
768 {
769 if (atomic_dec_and_test(&mm->mm_count))
770 __mmdrop(mm);
771 }

769 Atomically decrement the reference count. The reference count could be higher
if the mm was been used by lazy tlb switching tasks

770 If the reference count reaches zero, call __mmdrop()

4.3. Memory Regions 108

Function: __mmdrop (kernel/fork.c)

264 inline void __mmdrop(struct mm_struct *mm)
265 {
266 BUG_ON(mm == &init_mm);
267 pgd_free(mm->pgd);
268 destroy_context(mm);
269 free_mm(mm);
270 }

266 Make sure the init_mm is not destroyed

267 Delete the PGD entry

268 Delete the LDT

269 Call kmem_cache_free for the mm freeing it with the slab allocator

4.3 Memory Regions
44 struct vm_area_struct {
45 struct mm_struct * vm_mm;
46 unsigned long vm_start;
47 unsigned long vm_end;
49
50 /* linked list of VM areas per task, sorted by address */
51 struct vm_area_struct *vm_next;
52
53 pgprot_t vm_page_prot;
54 unsigned long vm_flags;
55
56 rb_node_t vm_rb;
57
63 struct vm_area_struct *vm_next_share;
64 struct vm_area_struct **vm_pprev_share;
65
66 /* Function pointers to deal with this struct. */
67 struct vm_operations_struct * vm_ops;
68
69 /* Information about our backing store: */
70 unsigned long vm_pgoff;
72 struct file * vm_file;
73 unsigned long vm_raend;
74 void * vm_private_data;
75 };

4.3. Memory Regions 109

vm_mm The mm_struct this VMA belongs to

vm_start The starting address

vm_end The end address

vm_next All the VMA’s in an address space are linked together in an address
ordered linked list with this field

vm_page_prot The protection flags for all pages in this VMA. See the companion
document for a full list of flags

vm_rb As well as been in a linked list, all the VMA’s are stored on a red-black tree
for fast lookups

vm_next_share Shared VMA regions such as shared library mappings are linked
together with this field

vm_pprev_share The complement to vm_next_share

vm_ops The vm_ops field contains functions pointers for open,close and nopage.
These are needed for syncing with information from the disk

vm_pgoff This is the page aligned offset within a file that is mmap’ed

vm_file The struct file pointer to the file been mapped

vm_raend This is the end address of a readahead window. When a fault occurs,
a readahead window will page in a number of pages after the fault address.
This field records how far to read ahead

vm_private_data Used by some device drivers to store private information. Not
of concern to the memory manager

As mentioned, all the regions are linked together on a linked list ordered by
address. When searching for a free area, it is a simple matter of traversing the list.
A frequent operation is to search for the VMA for a particular address, during page
faulting for example. In this case, the Red-Black tree is traversed as it has O(logN)
search time on average.

In the event the region is backed by a file, the vm_file leads to an associated
address_space. The struct contains information of relevance to the filesystem such
as the number of dirty pages which must be flushed to disk. It is defined as follows
in include/linux/fs.h

4.3. Memory Regions 110

400 struct address_space {
401 struct list_head clean_pages;
402 struct list_head dirty_pages;
403 struct list_head locked_pages;
404 unsigned long nrpages;
405 struct address_space_operations *a_ops;
406 struct inode *host;
407 struct vm_area_struct *i_mmap;
408 struct vm_area_struct *i_mmap_shared;
409 spinlock_t i_shared_lock;
410 int gfp_mask;
411 };

clean_pages A list of clean pages which do not have to be synchronized with the
disk

dirty_pages Pages that the process has touched and need to by sync-ed

locked_pages The number of pages locked in memory

nrpages Number of resident pages in use by the address space

a_ops A struct of function pointers within the filesystem

host The host inode the file belongs to

i_mmap A pointer to the vma the address space is part of

i_mmap_shared A pointer to the next VMA which shares this address space

i_shared_lock A spinlock to protect this structure

gfp_mask The mask to use when calling __alloc_pages() for new pages

Periodically the memory manger will need to flush information to disk. The
memory manager doesn’t know and doesn’t care how information is written to disk,
so the a_ops struct is used to call the relevant functions. It is defined as follows in
include/linux/fs.h

4.3. Memory Regions 111

382 struct address_space_operations {
383 int (*writepage)(struct page *);
384 int (*readpage)(struct file *, struct page *);
385 int (*sync_page)(struct page *);
386 /*
387 * ext3 requires that a successful prepare_write()

* call be followed
388 * by a commit_write() call - they must be balanced
389 */
390 int (*prepare_write)(struct file *, struct page *,

unsigned, unsigned);
391 int (*commit_write)(struct file *, struct page *,

unsigned, unsigned);
392 /* Unfortunately this kludge is needed for FIBMAP.

* Don’t use it */
393 int (*bmap)(struct address_space *, long);
394 int (*flushpage) (struct page *, unsigned long);
395 int (*releasepage) (struct page *, int);
396 #define KERNEL_HAS_O_DIRECT
397 int (*direct_IO)(int, struct inode *, struct kiobuf *,

unsigned long, int);
398 };

writepage Write a page to disk. The offset within the file to write to is stored
within the page struct. It is up to the filesystem specific code to find the block.
See buffer.c:block_write_full_page()

readpage Read a page from disk. See buffer.c:block_read_full_page()

sync_page Sync a dirty page with disk. See buffer.c:block_sync_page()

prepare_write This is called before data is copied from userspace into a page that
will be written to disk. With a journaled filesystem, this ensures the filesystem
log is up to date. With normal filesystems, it makes sure the needed buffer
pages are allocated. See buffer.c:block_prepare_write()

commit_write After the data has been copied from userspace, this function is called
to commit the information to disk. See buffer.c:block_commit_write()

bmap Maps a block so raw IO can be performed. Only of concern to the filesystem
specific code.

flushpage This makes sure there is no IO pending on a page before releasing it.
See buffer.c:discard_bh_page()

4.3.1. Creating A Memory Region 112

releasepage This tries to flush all the buffers associated with a page before freeing
the page itself. See try_to_free_buffers()

4.3.1 Creating A Memory Region

The system call mmap() is provided for creating new memory regions within a pro-
cess. For the x86, the function is called sys_mmap2 and is responsible for performing
basic checks before calling do_mmap_pgoff which is the prime function for creating
new areas for all architectures.

The two high functions above do_mmap_pgoff() are essentially sanity check-
ers. They ensure the mapping size of page aligned if necessary, clears invalid flags,
looks up the struct file for the given file descriptor and acquires the mmap_sem
semaphore.

Function: do_mmap_pgoff (mm/mmap.c)
This function is very large and so is broken up into a number of sections. Broadly

speaking the sections are

• Call the filesystem specific mmap function

• Sanity check the parameters

• Find a linear address space for the memory mapping

• Calculate the VM flags and check them against the file access permissions

• If an old area exists where the mapping is to take place, fix it up so it’s suitable
for the new mapping

• Allocate a vm_area_struct from the slab allocator and fill in its entries

• Link in the new VMA

• Update statistics and exit

4.3.1. Creating A Memory Region 113

sy
s_

m
m

ap
2

do
_m

m
ap

2

fp
ut

do
_m

m
ap

_p
go

ff
fg

et

dp
ut

de
nt

ry
_i

pu
t

ip
ut

vm
a_

m
er

ge
ge

t_
un

m
ap

pe
d_

ar
ea

za
p_

pa
ge

_r
an

ge
vm

_e
no

ug
h_

m
em

or
y

vm
a_

lin
k

m
ak

e_
pa

ge
s_

pr
es

en
t

fin
d_

vm
a_

pr
ep

ar
e

sh
m

em
_z

er
o_

se
tu

p
ca

lc
_v

m
_f

la
gs

de
ny

_w
rit

e_
ac

ce
ss

ar
ch

_g
et

_u
nm

ap
pe

d_
ar

ea

fin
d_

vm
a

za
p_

pm
d_

ra
ng

e

za
p_

pt
e_

ra
ng

e

nr
_f

re
e_

pa
ge

s
un

lo
ck

_v
m

a_
m

ap
pi

ng
s

__
vm

a_
lin

k
lo

ck
_v

m
a_

m
ap

pi
ng

s

Figure 4.1: sys_mmap2

393 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
unsigned long len, unsigned long prot,

394 unsigned long flags, unsigned long pgoff)
395 {
396 struct mm_struct * mm = current->mm;
397 struct vm_area_struct * vma, * prev;
398 unsigned int vm_flags;
399 int correct_wcount = 0;
400 int error;
401 rb_node_t ** rb_link, * rb_parent;
402
403 if (file && (!file->f_op || !file->f_op->mmap))
404 return -ENODEV;
405
406 if ((len = PAGE_ALIGN(len)) == 0)
407 return addr;
408
409 if (len > TASK_SIZE)
410 return -EINVAL;
411
412 /* offset overflow? */
413 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
414 return -EINVAL;
415
416 /* Too many mappings? */
417 if (mm->map_count > max_map_count)
418 return -ENOMEM;
419

4.3.1. Creating A Memory Region 114

393 The parameters which correspond directly to the parameters to the mmap
system call are

file the struct file to mmap if this is a file backed mapping

addr the requested address to map

len the length in bytes to mmap

prot is the permissions on the area

flags are the flags for the mapping

pgoff is the offset within the file to begin the mmap at

403-404 If a file or device is been mapped, make sure a filesystem or device specific
mmap function is provided. For most filesystems, this is generic_file_mmap()

406-407 Make sure a zero length mmap is not requested

409 Ensure that it is possible to map the requested area. The limit on the x86 is
PAGE_OFFSET or 3GB

413-414 Ensure the mapping will not overflow the end of the largest possible file

417-488Only max_map_count are allowed. By default this value is DEFAULT_MAX_MAP_COUNT
or 65536 mappings

420 /* Obtain the address to map to. we verify (or select) it and
421 * ensure that it represents a valid section of the address space.
422 */
423 addr = get_unmapped_area(file, addr, len, pgoff, flags);
424 if (addr & ~PAGE_MASK)
425 return addr;
426

423 After basic sanity checks, this function will call the device or file spe-
cific get_unmapped_area function. If a device specific one is unavailable,
arch_get_unmapped_area is called. This function is discussed in Section 4.3.3

4.3.1. Creating A Memory Region 115

427 /* Do simple checking here so the lower-level routines won’t have
428 * to. we assume access permissions have been handled by the open
429 * of the memory object, so we don’t do any here.
430 */
431 vm_flags = calc_vm_flags(prot,flags) | mm->def_flags

| VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
432
433 /* mlock MCL_FUTURE? */
434 if (vm_flags & VM_LOCKED) {
435 unsigned long locked = mm->locked_vm << PAGE_SHIFT;
436 locked += len;
437 if (locked > current->rlim[RLIMIT_MEMLOCK].rlim_cur)
438 return -EAGAIN;
439 }
440

431 calc_vm_flags() translates the prot and flags from userspace and translates
them to their VM_ equivalents

434-438 Check if it has been requested that all future mappings be locked in
memory. If yes, make sure the process isn’t locking more memory than it is
allowed to. If it is, return -EAGAIN

4.3.1. Creating A Memory Region 116

441 if (file) {
442 switch (flags & MAP_TYPE) {
443 case MAP_SHARED:
444 if ((prot & PROT_WRITE) &&

!(file->f_mode & FMODE_WRITE))
445 return -EACCES;
446
447 /* Make sure we don’t allow writing to

an append-only file.. */
448 if (IS_APPEND(file->f_dentry->d_inode) &&

(file->f_mode & FMODE_WRITE))
449 return -EACCES;
450
451 /* make sure there are no mandatory

locks on the file. */
452 if (locks_verify_locked(file->f_dentry->d_inode))
453 return -EAGAIN;
454
455 vm_flags |= VM_SHARED | VM_MAYSHARE;
456 if (!(file->f_mode & FMODE_WRITE))
457 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
458
459 /* fall through */
460 case MAP_PRIVATE:
461 if (!(file->f_mode & FMODE_READ))
462 return -EACCES;
463 break;
464
465 default:
466 return -EINVAL;
467 }
468 } else {
469 vm_flags |= VM_SHARED | VM_MAYSHARE;
470 switch (flags & MAP_TYPE) {
471 default:
472 return -EINVAL;
473 case MAP_PRIVATE:
474 vm_flags &= ~(VM_SHARED | VM_MAYSHARE);
475 /* fall through */
476 case MAP_SHARED:
477 break;
478 }
479 }

4.3.1. Creating A Memory Region 117

441-468 If a file is been memory mapped, check the files access permissions

444-445 If write access is requested, make sure the file is opened for write

448-449 Similarly, if the file is opened for append, make sure it cannot be written
to. It is unclear why it is not the prot field that is checked here

451 If the file is mandatory locked, return EAGAIN so the caller will try a second
type

455-457 Fix up the flags to be consistent with the file flags

461-462 Make sure the file can be read before mmapping it

469-479 If the file is been mapped for anonymous use, fix up the flags if the
requested mapping is MAP_PRIVATE to make sure the flags are consistent

480
481 /* Clear old maps */
482 munmap_back:
483 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
484 if (vma && vma->vm_start < addr + len) {
485 if (do_munmap(mm, addr, len))
486 return -ENOMEM;
487 goto munmap_back;
488 }
489
490 /* Check against address space limit. */
491 if ((mm->total_vm << PAGE_SHIFT) + len
492 > current->rlim[RLIMIT_AS].rlim_cur)
493 return -ENOMEM;
494
495 /* Private writable mapping? Check memory availability.. */
496 if ((vm_flags & (VM_SHARED | VM_WRITE)) == VM_WRITE &&
497 !(flags & MAP_NORESERVE) &&
498 !vm_enough_memory(len >> PAGE_SHIFT))
499 return -ENOMEM;
500
501 /* Can we just expand an old anonymous mapping? */
502 if (!file && !(vm_flags & VM_SHARED) && rb_parent)
503 if (vma_merge(mm, prev, rb_parent, addr, addr + len,
vm_flags))
504 goto out;
505

4.3.1. Creating A Memory Region 118

483 This function steps through the RB tree for he vma corresponding to a given
address

484-486 If a vma was found and it is part of the new mmaping, remove the old
mapping as the new one will cover both

491-493 Make sure the new mapping will not will not exceed the total VM a
process is allowed to have. It is unclear why this check is not made earlier

496-499 If the caller does not specifically request that free space is not checked with
MAP_NORESERVE and it is a private mapping, make sure enough memory
is available to satisfy the mapping under current conditions

502-504 If two adjacent anonymous memory mappings can be treated as one,
expand an old mapping rather than creating a new one

4.3.1. Creating A Memory Region 119

506 /* Determine the object being mapped and call the appropriate
507 * specific mapper. the address has already been validated, but
508 * not unmapped, but the maps are removed from the list.
509 */
510 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
511 if (!vma)
512 return -ENOMEM;
513
514 vma->vm_mm = mm;
515 vma->vm_start = addr;
516 vma->vm_end = addr + len;
517 vma->vm_flags = vm_flags;
518 vma->vm_page_prot = protection_map[vm_flags & 0x0f];
519 vma->vm_ops = NULL;
520 vma->vm_pgoff = pgoff;
521 vma->vm_file = NULL;
522 vma->vm_private_data = NULL;
523 vma->vm_raend = 0;
524
525 if (file) {
526 error = -EINVAL;
527 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
528 goto free_vma;
529 if (vm_flags & VM_DENYWRITE) {
530 error = deny_write_access(file);
531 if (error)
532 goto free_vma;
533 correct_wcount = 1;
534 }
535 vma->vm_file = file;
536 get_file(file);
537 error = file->f_op->mmap(file, vma);
538 if (error)
539 goto unmap_and_free_vma;
540 } else if (flags & MAP_SHARED) {
541 error = shmem_zero_setup(vma);
542 if (error)
543 goto free_vma;
544 }
545

510 Allocate a vm_area_struct from the slab allocator

514-523 Fill in the basic vm_area_struct fields

4.3.1. Creating A Memory Region 120

525-540 Fill in the file related fields if this is a file been mapped

527-528 These are both invalid flags for a file mapping so free the vm_area_struct
and return

529-534 This flag is cleared by the system call mmap so it is unclear why the
check is still made. Historically, an ETXTBUSY signal was sent to the calling
process if the underlying file was been written to

535 Fill in the vm_file field

536 This increments the file use count

537 Call the filesystem or device specific mmap function

538-539 If an error called, goto unmap_and_free_vma to clean up and return th
error

541 If an anonymous shared mapping is required, call shmem_zero_setup() to do
the hard work

4.3.1. Creating A Memory Region 121

546 /* Can addr have changed??
547 *
548 * Answer: Yes, several device drivers can do it in their
549 * f_op->mmap method. -DaveM
550 */
551 if (addr != vma->vm_start) {
552 /*
553 * It is a bit too late to pretend changing the virtual
554 * area of the mapping, we just corrupted userspace
555 * in the do_munmap, so FIXME (not in 2.4 to avoid

breaking
556 * the driver API).
557 */
558 struct vm_area_struct * stale_vma;
559 /* Since addr changed, we rely on the mmap op to prevent
560 * collisions with existing vmas and just use

find_vma_prepare
561 * to update the tree pointers.
562 */
563 addr = vma->vm_start;
564 stale_vma = find_vma_prepare(mm, addr, &prev,
565 &rb_link, &rb_parent);
566 /*
567 * Make sure the lowlevel driver did its job right.
568 */
569 if (unlikely(stale_vma && stale_vma->vm_start <

vma->vm_end)) {
570 printk(KERN_ERR "buggy mmap operation: [<%p>]\n",
571 file ? file->f_op->mmap : NULL);
572 BUG();
573 }
574 }
575
576 vma_link(mm, vma, prev, rb_link, rb_parent);
577 if (correct_wcount)
578 atomic_inc(&file->f_dentry->d_inode->i_writecount);
579

551-574 If the address has changed, it means the device specific mmap operation
mapped the vma somewhere else. find_vma_prepare() is used to find the
new vma that was set up

576 Link in the new vm_area_struct

577-578 Update the file write count

4.3.2. Finding a Mapped Memory Region 122

580 out:
581 mm->total_vm += len >> PAGE_SHIFT;
582 if (vm_flags & VM_LOCKED) {
583 mm->locked_vm += len >> PAGE_SHIFT;
584 make_pages_present(addr, addr + len);
585 }
586 return addr;
587
588 unmap_and_free_vma:
589 if (correct_wcount)
590 atomic_inc(&file->f_dentry->d_inode->i_writecount);
591 vma->vm_file = NULL;
592 fput(file);
593
594 /* Undo any partial mapping done by a device driver. */
595 zap_page_range(mm, vma->vm_start, vma->vm_end - vma->vm_start);
596 free_vma:
597 kmem_cache_free(vm_area_cachep, vma);
598 return error;
599 }

581-586 Update statistics for the process mm_struct and return the new address

588-595 This is reached if the file has been partially mapped before failing.
The write statistics are updated and then all user pages are removed with
zap_page_range()

596-598 This goto is used if the mapping failed immediately after the vm_area_struct
is created. It is freed back to the slab allocator before the error is returned

4.3.2 Finding a Mapped Memory Region

Function: find_vma (mm/mmap.c)

659 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long
addr)
660 {
661 struct vm_area_struct *vma = NULL;
662
663 if (mm) {
664 /* Check the cache first. */
665 /* (Cache hit rate is typically around 35%.) */
666 vma = mm->mmap_cache;
667 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr))

4.3.2. Finding a Mapped Memory Region 123

{
668 rb_node_t * rb_node;
669
670 rb_node = mm->mm_rb.rb_node;
671 vma = NULL;
672
673 while (rb_node) {
674 struct vm_area_struct * vma_tmp;
675
676 vma_tmp = rb_entry(rb_node, struct
vm_area_struct, vm_rb);
677
678 if (vma_tmp->vm_end > addr) {
679 vma = vma_tmp;
680 if (vma_tmp->vm_start <= addr)
681 break;
682 rb_node = rb_node->rb_left;
683 } else
684 rb_node = rb_node->rb_right;
685 }
686 if (vma)
687 mm->mmap_cache = vma;
688 }
689 }
690 return vma;
691 }

659 The two parameters are the top level mm_struct that is to be searched and
the address the caller is interested in

661 Default to returning NULL for address not found

663 Make sure the caller does not try and search a bogus mm

666 mmap_cache has the result of the last call to find_vma(). This has a chance
of not having to search at all through the red-black tree

667 If it is a valid VMA that is being examined, check to see if the address being
searched is contained within it. If it is, the VMA was the mmap_cache one so
it can be returned, otherwise the tree is searched

668-672 Start at the root of the tree

673-685 This block is the tree walk

676 The macro, as the name suggests, returns the VMA this tree node points to

678 Check if the next node traversed by the left or right leaf

4.3.2. Finding a Mapped Memory Region 124

680 If the current VMA is what is required, exit the while loop

687 If the VMA is valid, set the mmap_cache for the next call to find_vma()

690 Return the VMA that contains the address or as a side effect of the tree walk,
return the VMA that is closest to the requested address

Function: find_vma_prev (mm/mmap.c)

694 struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long
addr,
695 struct vm_area_struct **pprev)
696 {
697 if (mm) {
698 /* Go through the RB tree quickly. */
699 struct vm_area_struct * vma;
700 rb_node_t * rb_node, * rb_last_right, * rb_prev;
701
702 rb_node = mm->mm_rb.rb_node;
703 rb_last_right = rb_prev = NULL;
704 vma = NULL;
705
706 while (rb_node) {
707 struct vm_area_struct * vma_tmp;
708
709 vma_tmp = rb_entry(rb_node, struct vm_area_struct,
vm_rb);
710
711 if (vma_tmp->vm_end > addr) {
712 vma = vma_tmp;
713 rb_prev = rb_last_right;
714 if (vma_tmp->vm_start <= addr)
715 break;
716 rb_node = rb_node->rb_left;
717 } else {
718 rb_last_right = rb_node;
719 rb_node = rb_node->rb_right;
720 }
721 }
722 if (vma) {
723 if (vma->vm_rb.rb_left) {
724 rb_prev = vma->vm_rb.rb_left;
725 while (rb_prev->rb_right)
726 rb_prev = rb_prev->rb_right;
727 }
728 *pprev = NULL;

4.3.3. Finding a Free Memory Region 125

729 if (rb_prev)
730 *pprev = rb_entry(rb_prev, struct

vm_area_struct, vm_rb);
731 if ((rb_prev ? (*pprev)->vm_next : mm->mmap) !=
vma)
732 BUG();
733 return vma;
734 }
735 }
736 *pprev = NULL;
737 return NULL;
738 }

694-721 This is essentially the same as the find_vma() function already described.
The only difference is that the last right node accesses is remembered as this
will represent the vma previous to the requested vma.

723-727 If the returned VMA has a left node, it means that it has to be traversed.
It first takes the left leaf and then follows each right leaf until the bottom of
the tree is found.

729-730 Extract the VMA from the red-black tree node

731-732 A debugging check, if this is the previous node, then its next field should
point to the VMA being returned. If it is not, it’s a bug

Function: find_vma_intersection (include/linux/mm.h)

662 static inline struct vm_area_struct * find_vma_intersection(struct
mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
663 {
664 struct vm_area_struct * vma = find_vma(mm,start_addr);
665
666 if (vma && end_addr <= vma->vm_start)
667 vma = NULL;
668 return vma;
669 }

664 Return the VMA closest to the starting address

666 If a VMA is returned and the end address is still less than the beginning of
the returned VMA, the VMA does not intersect

668 Return the VMA if it does intersect

4.3.3. Finding a Free Memory Region 126

get_unmapped_area

arch_get_unmapped_area

find_vma

Figure 4.2: Call Graph: get_unmapped_area

4.3.3 Finding a Free Memory Region

Function: get_unmapped_area (mm/mmap.c)

642 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
643 {
644 if (flags & MAP_FIXED) {
645 if (addr > TASK_SIZE - len)
646 return -ENOMEM;
647 if (addr & ~PAGE_MASK)
648 return -EINVAL;
649 return addr;
650 }
651
652 if (file && file->f_op && file->f_op->get_unmapped_area)
653 return file->f_op->get_unmapped_area(file, addr, len,
pgoff, flags);
654
655 return arch_get_unmapped_area(file, addr, len, pgoff, flags);
656 }

642 The parameters passed are

fileThe file or device being mapped

addrThe requested address to map to

lenThe length of the mapping

pgoffThe offset within the file being mapped

4.3.3. Finding a Free Memory Region 127

flagsProtection flags

644-650 Sanity checked. If it is required that the mapping be placed at the specified
address, make sure it will not overflow the address space and that it is page
aligned

652 If the struct file provides a get_unmapped_area() function, use it

655 Else use the architecture specific function

Function: arch_get_unmapped_area (mm/mmap.c)

612 #ifndef HAVE_ARCH_UNMAPPED_AREA
613 static inline unsigned long arch_get_unmapped_area(struct file *filp,
unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long
flags)
614 {
615 struct vm_area_struct *vma;
616
617 if (len > TASK_SIZE)
618 return -ENOMEM;
619
620 if (addr) {
621 addr = PAGE_ALIGN(addr);
622 vma = find_vma(current->mm, addr);
623 if (TASK_SIZE - len >= addr &&
624 (!vma || addr + len <= vma->vm_start))
625 return addr;
626 }
627 addr = PAGE_ALIGN(TASK_UNMAPPED_BASE);
628
629 for (vma = find_vma(current->mm, addr); ; vma = vma->vm_next) {
630 /* At this point: (!vma || addr < vma->vm_end). */
631 if (TASK_SIZE - len < addr)
632 return -ENOMEM;
633 if (!vma || addr + len <= vma->vm_start)
634 return addr;
635 addr = vma->vm_end;
636 }
637 }
638 #else
639 extern unsigned long arch_get_unmapped_area(struct file *, unsigned long,
unsigned long, unsigned long, unsigned long);
640 #endif

4.3.4. Inserting a memory region 128

612 If this is not defined, it means that the architecture does not provide its own
arch_get_unmapped_area so this one is used instead

613 The parameters are the same as those for get_unmapped_area()

617-618 Sanity check, make sure the required map length is not too long

620-626 If an address is provided, use it for the mapping

621 Make sure the address is page aligned

622 find_vma() will return the region closest to the requested address

623-625 Make sure the mapping will not overlap with another region. If it does
not, return it as it is safe to use. Otherwise it gets ignored

627 TASK_UNMAPPED_BASE is the starting point for searching for a free re-
gion to use

629-636 Starting from TASK_UNMAPPED_BASE, linearly search the VMA’s
until a large enough region between them is found to store the new mapping.
This is essentially a first fit search

639 If an external function is provided, it still needs to be declared here

4.3.4 Inserting a memory region

Function: __insert_vm_struct (mm/mmap.c)
This is the top level function for inserting a new vma into an address space.

There is a second function like it called simply insert_vm_struct() that is not
described in detail here as the only difference is the one line of code increasing the
map_count.

1168 void __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
1169 {
1170 struct vm_area_struct * __vma, * prev;
1171 rb_node_t ** rb_link, * rb_parent;
1172
1173 __vma = find_vma_prepare(mm, vma->vm_start, &prev,

&rb_link, &rb_parent);
1174 if (__vma && __vma->vm_start < vma->vm_end)
1175 BUG();
1176 __vma_link(mm, vma, prev, rb_link, rb_parent);
1177 mm->map_count++;
1178 validate_mm(mm);
1179 }

1168 The arguments are the mm_struct mm that represents the linear space the
vm_area_struct vma is to be inserted into

4.3.4. Inserting a memory region 129

insert_vm_struct

find_vma_prepare vma_link

unlock_vma_mappings __vma_link lock_vma_mappings

__vma_link_file __vma_link_rb __vma_link_list

rb_insert_color

__rb_rotate_right __rb_rotate_left

Figure 4.3: insert_vm_struct

4.3.4. Inserting a memory region 130

1173 find_vma_prepare() locates where the new vma can be inserted. It will be
inserted between prev and __vma and the required nodes for the red-black tree
are also returned

1174-1175 This is a check to make sure the returned vma is invalid. It is unclear
how such a broken vma could exist

1176 This function does the actual work of linking the vma struct into the linear
linked list and the red-black tree

1177 Increase the map_count to show a new mapping has been added

1178 validate_mm() is a debugging macro for red-black trees. If DEBUG_MM_RB is
set, the linear list of vma’s and the tree will be traversed to make sure it is
valid. The tree traversal is a recursive function so it is very important that
that it is used only if really necessary as a large number of mappings could
cause a stack overflow. If it is not set, validate_mm() does nothing at all

Function: find_vma_prepare (mm/mmap.c)
This is responsible for finding the correct places to insert a VMA at the supplied

address. It returns a number of pieces of information via the actual return and the
function arguments. The forward VMA to link to is returned with return. pprev is
the previous node which is required because the list is a singly linked list. rb_link
and rb_parent are the parent and leaf node the new VMA will be inserted between.

246 static struct vm_area_struct * find_vma_prepare(struct mm_struct * mm,
unsigned long addr,

247 struct vm_area_struct ** pprev,
248 rb_node_t *** rb_link,

rb_node_t ** rb_parent)
249 {
250 struct vm_area_struct * vma;
251 rb_node_t ** __rb_link, * __rb_parent, * rb_prev;
252
253 __rb_link = &mm->mm_rb.rb_node;
254 rb_prev = __rb_parent = NULL;
255 vma = NULL;
256
257 while (*__rb_link) {
258 struct vm_area_struct *vma_tmp;
259
260 __rb_parent = *__rb_link;
261 vma_tmp = rb_entry(__rb_parent,

struct vm_area_struct, vm_rb);
262
263 if (vma_tmp->vm_end > addr) {

4.3.4. Inserting a memory region 131

264 vma = vma_tmp;
265 if (vma_tmp->vm_start <= addr)
266 return vma;
267 __rb_link = &__rb_parent->rb_left;
268 } else {
269 rb_prev = __rb_parent;
270 __rb_link = &__rb_parent->rb_right;
271 }
272 }
273
274 *pprev = NULL;
275 if (rb_prev)
276 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
277 *rb_link = __rb_link;
278 *rb_parent = __rb_parent;
279 return vma;
280 }

246 The function arguments are described above

253-255 Initialise the search

267-272 This is a similar tree walk to what was described for find_vma(). The
only real difference is the nodes last traversed are remembered with the
__rb_link() and __rb_parent() variables

275-276 Get the back linking vma via the red-black tree

279 Return the forward linking vma

Function: vma_link (mm/mmap.c)
This is the top-level function for linking a VMA into the proper lists. It is

responsible for acquiring the necessary locks to make a safe insertion

337 static inline void vma_link(struct mm_struct * mm,
struct vm_area_struct * vma,
struct vm_area_struct * prev,

338 rb_node_t ** rb_link, rb_node_t * rb_parent)
339 {
340 lock_vma_mappings(vma);
341 spin_lock(&mm->page_table_lock);
342 __vma_link(mm, vma, prev, rb_link, rb_parent);
343 spin_unlock(&mm->page_table_lock);
344 unlock_vma_mappings(vma);
345
346 mm->map_count++;
347 validate_mm(mm);
348 }

4.3.4. Inserting a memory region 132

337 mm is the address space the vma is to be inserted into. prev is the backwards
linked vma for the linear linked list of vma’s. rb_link and rb_parent are the
nodes required to make the rb insertion

340 This function acquires the spinlock protecting the address_space representing
the file that is been memory mapped.

341 Acquire the page table lock which protects the whole mm_struct

342 Insert the VMA

343 Free the lock protecting the mm_struct

345 Unlock the address_space for the file

346 Increase the number of mappings in this mm

347 If DEBUG_MM_RB is set, the RB trees and linked lists will be checked to make
sure they are still valid

Function: __vma_link (mm/mmap.c)
This simply calls three helper functions which are responsible for linking the

VMA into the three linked lists that link VMA’s together.

329 static void __vma_link(struct mm_struct * mm,
struct vm_area_struct * vma,
struct vm_area_struct * prev,

330 rb_node_t ** rb_link, rb_node_t * rb_parent)
331 {
332 __vma_link_list(mm, vma, prev, rb_parent);
333 __vma_link_rb(mm, vma, rb_link, rb_parent);
334 __vma_link_file(vma);
335 }

332 This links the VMA into the linear linked lists of VMA’s in this mm via the
vm_next field

333 This links the VMA into the red-black tree of VMA’s in this mm whose root
is stored in the vm_rb field

334 This links the VMA into the shared mapping VMA links. Memory mapped
files are linked together over potentially many mm’s by this function via the
vm_next_share and vm_pprev_share fields

4.3.4. Inserting a memory region 133

Function: __vma_link_list (mm/mmap.c)

282 static inline void __vma_link_list(struct mm_struct * mm,
struct vm_area_struct * vma,
struct vm_area_struct * prev,

283 rb_node_t * rb_parent)
284 {
285 if (prev) {
286 vma->vm_next = prev->vm_next;
287 prev->vm_next = vma;
288 } else {
289 mm->mmap = vma;
290 if (rb_parent)
291 vma->vm_next = rb_entry(rb_parent, struct
vm_area_struct, vm_rb);
292 else
293 vma->vm_next = NULL;
294 }
295 }

285 If prev is not null, the vma is simply inserted into the list

289 Else this is the first mapping and the first element of the list has to be stored
in the mm_struct

290 The vma is stored as the parent node

Function: __vma_link_rb (mm/mmap.c)
The principle workings of this function are stored within include/linux/rbtree.h

and will not be discussed in detail with this document.

297 static inline void __vma_link_rb(struct mm_struct * mm,
struct vm_area_struct * vma,

298 rb_node_t ** rb_link,
rb_node_t * rb_parent)

299 {
300 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
301 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
302 }

Function: __vma_link_file (mm/mmap.c)
This function links the VMA into a linked list of shared file mappings.

304 static inline void __vma_link_file(struct vm_area_struct * vma)
305 {
306 struct file * file;

4.3.5. Merging contiguous region 134

307
308 file = vma->vm_file;
309 if (file) {
310 struct inode * inode = file->f_dentry->d_inode;
311 struct address_space *mapping = inode->i_mapping;
312 struct vm_area_struct **head;
313
314 if (vma->vm_flags & VM_DENYWRITE)
315 atomic_dec(&inode->i_writecount);
316
317 head = &mapping->i_mmap;
318 if (vma->vm_flags & VM_SHARED)
319 head = &mapping->i_mmap_shared;
320
321 /* insert vma into inode’s share list */
322 if((vma->vm_next_share = *head) != NULL)
323 (*head)->vm_pprev_share = &vma->vm_next_share;
324 *head = vma;
325 vma->vm_pprev_share = head;
326 }
327 }

309 Check to see if this VMA has a shared file mapping. If it does not, this function
has nothing more to do

310-312 Extract the relevant information about the mapping from the vma

314-315 If this mapping is not allowed to write even if the permissions are ok
for writing, decrement the i_writecount field. A negative value to this field
indicates that the file is memory mapped and may not be written to. Efforts
to open the file for writing will now fail

317-319 Check to make sure this is a shared mapping

322-325 Insert the VMA into the shared mapping linked list

4.3.5 Merging contiguous region

Function: vma_merge (mm/mmap.c)
This function checks to see if a region pointed to be prev may be expanded

forwards to cover the area from addr to end instead of allocating a new VMA. If it
cannot, the VMA ahead is checked to see can it be expanded backwards instead.

350 static int vma_merge(struct mm_struct * mm, struct vm_area_struct * prev,
351 rb_node_t * rb_parent,

unsigned long addr, unsigned long end,

4.3.5. Merging contiguous region 135

unsigned long vm_flags)
352 {
353 spinlock_t * lock = &mm->page_table_lock;
354 if (!prev) {
355 prev = rb_entry(rb_parent, struct vm_area_struct, vm_rb);
356 goto merge_next;
357 }
358 if (prev->vm_end == addr && can_vma_merge(prev, vm_flags)) {
359 struct vm_area_struct * next;
360
361 spin_lock(lock);
362 prev->vm_end = end;
363 next = prev->vm_next;
364 if (next && prev->vm_end == next->vm_start &&

can_vma_merge(next, vm_flags)) {
365 prev->vm_end = next->vm_end;
366 __vma_unlink(mm, next, prev);
367 spin_unlock(lock);
368
369 mm->map_count--;
370 kmem_cache_free(vm_area_cachep, next);
371 return 1;
372 }
373 spin_unlock(lock);
374 return 1;
375 }
376
377 prev = prev->vm_next;
378 if (prev) {
379 merge_next:
380 if (!can_vma_merge(prev, vm_flags))
381 return 0;
382 if (end == prev->vm_start) {
383 spin_lock(lock);
384 prev->vm_start = addr;
385 spin_unlock(lock);
386 return 1;
387 }
388 }
389
390 return 0;
391 }

350 The parameters are as follows;

mm The mm the VMA’s belong to

4.3.5. Merging contiguous region 136

prev The VMA before the address we are interested in

rb_parent The parent RB node as returned by find_vma_prepare()

addr The starting address of the region to be merged

end The end of the region to be merged

vm_flags The permission flags of the region to be merged

353 This is the lock to the mm struct

354-357 If prev is not passed it, it is taken to mean that the VMA being tested for
merging is in front of the region from addr to end. The entry for that VMA
is extracted from the rb_parent

358-375 Check to see can the region pointed to by prev may be expanded to cover
the current region

358 The function can_vma_merge() checks the permissions of prev with those in
vm_flags and that the VMA has no file mappings. If it is true, the area at
prev may be expanded

361 Lock the mm struct

362 Expand the end of the VMA region (vm_end) to the end of the new mapping
(end)

363 next is now the VMA in front of the newly expanded VMA

364 Check if the expanded region can be merged with the VMA in front of it

365 If it can, continue to expand the region to cover the next VMA

366 As a VMA has been merged, one region is now defunct and may be unlinked

367 No further adjustments are made to the mm struct so the lock is released

369 There is one less mapped region to reduce the map_count

370 Delete the struct describing the merged VMA

371 Return success

377 If this line is reached it means the region pointed to by prev could not be
expanded forward so a check is made to see if the region ahead can be merged
backwards instead

382-388 Same idea as the above block except instead of adjusted vm_end to cover
end, vm_start is expanded to cover addr

4.3.6. Remapping and moving a memory region 137

Function: can_vma_merge (include/linux/mm.h)
This trivial function checks to see if the permissions of the supplied VMA match

the permissions in vm_flags

571 static inline int can_vma_merge(struct vm_area_struct * vma, unsigned long
vm_flags)
572 {
573 if (!vma->vm_file && vma->vm_flags == vm_flags)
574 return 1;
575 else
576 return 0;
577 }

573 Self explanatory, true if there is no file/device mapping and the flags equal
each other

4.3.6 Remapping and moving a memory region

Function: sys_mremap (mm/mremap.c)

sys_mremap

do_mremap

make_pages_present move_vma do_munmap vm_enough_memory get_unmapped_area find_vma

nr_free_pages

Figure 4.4: Call Graph: sys_mremap

This is the system service call to remap a memory region

342 asmlinkage unsigned long sys_mremap(unsigned long addr,
343 unsigned long old_len, unsigned long new_len,
344 unsigned long flags, unsigned long new_addr)
345 {
346 unsigned long ret;
347
348 down_write(¤t->mm->mmap_sem);
349 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
350 up_write(¤t->mm->mmap_sem);

4.3.6. Remapping and moving a memory region 138

351 return ret;
352 }
353

342-344 The parameters are the same as those described in the mremap man page

348 Acquire the mm semaphore

349 do_mremap() is the top level function for remapping a region

350 Release the mm semaphore

351 Return the status of the remapping

Function: do_mremap (mm/mremap.c)
This function does most of the actual “work” required to remap, resize and move

a memory region. It is quite long but can be broken up into distinct parts which
will be dealt with separately here. The tasks are broadly speaking

• Check usage flags and page align lengths

• Handle the condition where MAP_FIXED is set and the region is been moved
to a new location.

• If a region is shrinking, allow it to happen unconditionally

• If the region is growing or moving, perform a number of checks in advance to
make sure the move is allowed and safe

• Handle the case where the region is been expanded and cannot be moved

• Finally handle the case where the region has to be resized and moved

214 unsigned long do_mremap(unsigned long addr,
215 unsigned long old_len, unsigned long new_len,
216 unsigned long flags, unsigned long new_addr)
217 {
218 struct vm_area_struct *vma;
219 unsigned long ret = -EINVAL;
220
221 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE))
222 goto out;
223
224 if (addr & ~PAGE_MASK)
225 goto out;
226
227 old_len = PAGE_ALIGN(old_len);
228 new_len = PAGE_ALIGN(new_len);
229

4.3.6. Remapping and moving a memory region 139

214 The parameters of the function are

addr is the old starting address

old_len is the old region length

new_len is the new region length

flags is the option flags passed. If MREMAP_MAYMOVE is specified, it
means that the region is allowed to move if there is not enough linear
address space at the current space. If MREMAP_FIXED is specified, it
means that the whole region is to move to the specified new_addr with
the new length. The area from new_addr to new_addr+new_len will be
unmapped with do_munmap().

new_addr is the address of the new region if it is moved

219 At this point, the default return is EINVAL for invalid arguments

221-222 Make sure flags other than the two allowed flags are not used

224-225 The address passed in must be page aligned

227-228 Page align the passed region lengths

231 if (flags & MREMAP_FIXED) {
232 if (new_addr & ~PAGE_MASK)
233 goto out;
234 if (!(flags & MREMAP_MAYMOVE))
235 goto out;
236
237 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
238 goto out;
239
240 /* Check if the location we’re moving into overlaps the
241 * old location at all, and fail if it does.
242 */
243 if ((new_addr <= addr) && (new_addr+new_len) > addr)
244 goto out;
245
246 if ((addr <= new_addr) && (addr+old_len) > new_addr)
247 goto out;
248
249 do_munmap(current->mm, new_addr, new_len);
250 }

This block handles the condition where the region location is fixed and must be
fully moved. It ensures the area been moved to is safe and definitely unmapped.

231 MREMAP_FIXED is the flag which indicates the location is fixed

4.3.6. Remapping and moving a memory region 140

232-233 The new_addr requested has to be page aligned

234-235 If MREMAP_FIXED is specified, then the MAYMOVE flag must be used
as well

237-238 Make sure the resized region does not exceed TASK_SIZE

243-244 Just as the comments indicate, the two regions been used for the move
may not overlap

249 Unmap the region that is about to be used. It is presumed the caller ensures
that the region is not in use for anything important

256 ret = addr;
257 if (old_len >= new_len) {
258 do_munmap(current->mm, addr+new_len, old_len - new_len);
259 if (!(flags & MREMAP_FIXED) || (new_addr == addr))
260 goto out;
261 }

256 At this point, the address of the resized region is the return value

257 If the old length is larger than the new length, then the region is shrinking

258 Unmap the unused region

259-230 If the region is not to be moved, either because MREMAP_FIXED is not
used or the new address matches the old address, goto out which will return
the address

266 ret = -EFAULT;
267 vma = find_vma(current->mm, addr);
268 if (!vma || vma->vm_start > addr)
269 goto out;
270 /* We can’t remap across vm area boundaries */
271 if (old_len > vma->vm_end - addr)
272 goto out;
273 if (vma->vm_flags & VM_DONTEXPAND) {
274 if (new_len > old_len)
275 goto out;
276 }
277 if (vma->vm_flags & VM_LOCKED) {
278 unsigned long locked = current->mm->locked_vm <<
PAGE_SHIFT;
279 locked += new_len - old_len;
280 ret = -EAGAIN;
281 if (locked > current->rlim[RLIMIT_MEMLOCK].rlim_cur)

4.3.6. Remapping and moving a memory region 141

282 goto out;
283 }
284 ret = -ENOMEM;
285 if ((current->mm->total_vm << PAGE_SHIFT) + (new_len - old_len)
286 > current->rlim[RLIMIT_AS].rlim_cur)
287 goto out;
288 /* Private writable mapping? Check memory availability.. */
289 if ((vma->vm_flags & (VM_SHARED | VM_WRITE)) == VM_WRITE &&
290 !(flags & MAP_NORESERVE) &&
291 !vm_enough_memory((new_len - old_len) >> PAGE_SHIFT))
292 goto out;

Do a number of checks to make sure it is safe to grow or move the region

266 At this point, the default action is to return EFAULT causing a segmentation
fault as the ranges of memory been used are invalid

267 Find the VMA responsible for the requested address

268 If the returned VMA is not responsible for this address, then an invalid address
was used so return a fault

271-272 If the old_len passed in exceeds the length of the VMA, it means the user
is trying to remap multiple regions which is not allowed

273-276 If the VMA has been explicitly marked as non-resizable, raise a fault

277-278 If the pages for this VMA must be locked in memory, recalculate the
number of locked pages that will be kept in memory. If the number of pages
exceed the ulimit set for this resource, return EAGAIN indicating to the caller
that the region is locked and cannot be resized

284 The default return at this point is to indicate there is not enough memory

285-287 Ensure that the user will not exist their allowed allocation of memory

289-292 Ensure that there is enough memory to satisfy the request after the res-
izing

297 if (old_len == vma->vm_end - addr &&
298 !((flags & MREMAP_FIXED) && (addr != new_addr)) &&
299 (old_len != new_len || !(flags & MREMAP_MAYMOVE))) {
300 unsigned long max_addr = TASK_SIZE;
301 if (vma->vm_next)
302 max_addr = vma->vm_next->vm_start;
303 /* can we just expand the current mapping? */
304 if (max_addr - addr >= new_len) {
305 int pages = (new_len - old_len) >> PAGE_SHIFT;

4.3.6. Remapping and moving a memory region 142

306 spin_lock(&vma->vm_mm->page_table_lock);
307 vma->vm_end = addr + new_len;
308 spin_unlock(&vma->vm_mm->page_table_lock);
309 current->mm->total_vm += pages;
310 if (vma->vm_flags & VM_LOCKED) {
311 current->mm->locked_vm += pages;
312 make_pages_present(addr + old_len,
313 addr + new_len);
314 }
315 ret = addr;
316 goto out;
317 }
318 }

Handle the case where the region is been expanded and cannot be moved

297 If it is the full region that is been remapped and ...

298 The region is definitely not been moved and ...

299 The region is been expanded and cannot be moved then ...

300 Set the maximum address that can be used to TASK_SIZE, 3GB on an x86

301-302 If there is another region, set the max address to be the start of the next
region

304-317 Only allow the expansion if the newly sized region does not overlap with
the next VMA

305 Calculate the number of extra pages that will be required

306 Lock the mm spinlock

307 Expand the VMA

308 Free the mm spinlock

309 Update the statistics for the mm

310-314 If the pages for this region are locked in memory, make them present now

315-316 Return the address of the resized region

can t

4.3.6. Remapping and moving a memory region 143

324 ret = -ENOMEM;
325 if (flags & MREMAP_MAYMOVE) {
326 if (!(flags & MREMAP_FIXED)) {
327 unsigned long map_flags = 0;
328 if (vma->vm_flags & VM_SHARED)
329 map_flags |= MAP_SHARED;
330
331 new_addr = get_unmapped_area(vma->vm_file, 0,

new_len, vma->vm_pgoff, map_flags);
332 ret = new_addr;
333 if (new_addr & ~PAGE_MASK)
334 goto out;
335 }
336 ret = move_vma(vma, addr, old_len, new_len, new_addr);
337 }
338 out:
339 return ret;
340 }

To expand the region, a new one has to be allocated and the old one moved to it

324 The default action is to return saying no memory is available

325 Check to make sure the region is allowed to move

326 If MREMAP_FIXED is not specified, it means the new location was not
supplied so one must be found

328-329 Preserve the MAP_SHARED option

331 Find an unmapped region of memory large enough for the expansion

332 The return value is the address of the new region

333-334 For the returned address to be not page aligned, get_unmapped_area
would need to be broken. This could possibly be the case with a buggy device
driver implementing get_unmapped_area incorrectly

336 Call move_vma to move the region

338-339 Return the address if successful and the error code otherwise

Function: move_vma (mm/mremap.c)
This function is responsible for moving all the page table entries from one VMA

to another region. If necessary a new VMA will be allocated for the region being
moved to. Just like the function above, it is very long but may be broken up into
the following distinct parts.

4.3.6. Remapping and moving a memory region 144

move_vma

insert_vm_struct make_pages_present do_munmap find_vma_prev move_page_tables

Figure 4.5: Call Graph: move_vma

• Function preamble, find the VMA preceding the area about to be moved to
and the VMA in front of the region to be mapped

• Handle the case where the new location is between two existing VMA’s. See
if the preceding region can be expanded forward or the next region expanded
backwards to cover the new mapped region

• Handle the case where the new location is going to be the last VMA on the
list. See if the preceding region can be expanded forward

• If a region could not be expanded, allocate a new VMA from the slab allocator

• Call move_page_tables(), fill in the new VMA details if a new one was al-
located and update statistics before returning

125 static inline unsigned long move_vma(struct vm_area_struct * vma,
126 unsigned long addr, unsigned long old_len, unsigned long new_len,
127 unsigned long new_addr)
128 {
129 struct mm_struct * mm = vma->vm_mm;
130 struct vm_area_struct * new_vma, * next, * prev;
131 int allocated_vma;
132
133 new_vma = NULL;
134 next = find_vma_prev(mm, new_addr, &prev);

125-127 The parameters are

vmaThe VMA that the address been moved belongs to

addrThe starting address of the moving region

old_lenThe old length of the region to move

new_lenThe new length of the region moved

new_addrThe new address to relocate to

134 Find the VMA preceding the address been moved to indicated by prev and
return the region after the new mapping as next

4.3.6. Remapping and moving a memory region 145

135 if (next) {
136 if (prev && prev->vm_end == new_addr &&
137 can_vma_merge(prev, vma->vm_flags) &&

!vma->vm_file && !(vma->vm_flags & VM_SHARED)) {
138 spin_lock(&mm->page_table_lock);
139 prev->vm_end = new_addr + new_len;
140 spin_unlock(&mm->page_table_lock);
141 new_vma = prev;
142 if (next != prev->vm_next)
143 BUG();
144 if (prev->vm_end == next->vm_start &&

can_vma_merge(next, prev->vm_flags)) {
145 spin_lock(&mm->page_table_lock);
146 prev->vm_end = next->vm_end;
147 __vma_unlink(mm, next, prev);
148 spin_unlock(&mm->page_table_lock);
149
150 mm->map_count--;
151 kmem_cache_free(vm_area_cachep, next);
152 }
153 } else if (next->vm_start == new_addr + new_len &&
154 can_vma_merge(next, vma->vm_flags) &&
!vma->vm_file && !(vma->vm_flags & VM_SHARED)) {
155 spin_lock(&mm->page_table_lock);
156 next->vm_start = new_addr;
157 spin_unlock(&mm->page_table_lock);
158 new_vma = next;
159 }
160 } else {

In this block, the new location is between two existing VMA’s. Checks are made
to see can be preceding region be expanded to cover the new mapping and then if
it can be expanded to cover the next VMA as well. If it cannot be expanded, the
next region is checked to see if it can be expanded backwards.

136-137 If the preceding region touches the address to be mapped to and may be
merged then enter this block which will attempt to expand regions

138 Lock the mm

139 Expand the preceding region to cover the new location

140 Unlock the mm

141 The new vma is now the preceding VMA which was just expanded

4.3.6. Remapping and moving a memory region 146

142-143 Unnecessary check to make sure the VMA linked list is intact. It is unclear
how this situation could possibly occur

144 Check if the region can be expanded forward to encompass the next region

145 If it can, then lock the mm

146 Expand the VMA further to cover the next VMA

147 There is now an extra VMA so unlink it

148 Unlock the mm

150 There is one less mapping now so update the map_count

151 Free the memory used by the memory mapping

153 Else the prev region could not be expanded forward so check if the region
pointed to be next may be expanded backwards to cover the new mapping
instead

155 If it can, lock the mm

156 Expand the mapping backwards

157 Unlock the mm

158 The VMA representing the new mapping is now next

161 prev = find_vma(mm, new_addr-1);
162 if (prev && prev->vm_end == new_addr &&
163 can_vma_merge(prev, vma->vm_flags) && !vma->vm_file &&

!(vma->vm_flags & VM_SHARED)) {
164 spin_lock(&mm->page_table_lock);
165 prev->vm_end = new_addr + new_len;
166 spin_unlock(&mm->page_table_lock);
167 new_vma = prev;
168 }
169 }

This block is for the case where the newly mapped region is the last VMA (next
is NULL) so a check is made to see can the preceding region be expanded.

161 Get the previously mapped region

162-163 Check if the regions may be mapped

164 Lock the mm

165 Expand the preceding region to cover the new mapping

4.3.6. Remapping and moving a memory region 147

166 Lock the mm

167 The VMA representing the new mapping is now prev

170
171 allocated_vma = 0;
172 if (!new_vma) {
173 new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
174 if (!new_vma)
175 goto out;
176 allocated_vma = 1;
177 }
178

171 Set a flag indicating if a new VMA was not allocated

172 If a VMA has not been expanded to cover the new mapping then...

173 Allocate a new VMA from the slab allocator

174-175 If it could not be allocated, goto out to return failure

176 Set the flag indicated a new VMA was allocated

179 if (!move_page_tables(current->mm, new_addr, addr, old_len)) {
180 if (allocated_vma) {
181 *new_vma = *vma;
182 new_vma->vm_start = new_addr;
183 new_vma->vm_end = new_addr+new_len;
184 new_vma->vm_pgoff +=

(addr - vma->vm_start) >> PAGE_SHIFT;
185 new_vma->vm_raend = 0;
186 if (new_vma->vm_file)
187 get_file(new_vma->vm_file);
188 if (new_vma->vm_ops && new_vma->vm_ops->open)
189 new_vma->vm_ops->open(new_vma);
190 insert_vm_struct(current->mm, new_vma);
191 }
192 do_munmap(current->mm, addr, old_len);
193 current->mm->total_vm += new_len >> PAGE_SHIFT;
194 if (new_vma->vm_flags & VM_LOCKED) {
195 current->mm->locked_vm += new_len >> PAGE_SHIFT;
196 make_pages_present(new_vma->vm_start,
197 new_vma->vm_end);
198 }
199 return new_addr;
200 }

4.3.6. Remapping and moving a memory region 148

201 if (allocated_vma)
202 kmem_cache_free(vm_area_cachep, new_vma);
203 out:
204 return -ENOMEM;
205 }

179 move_page_tables() is responsible for copying all the page table entries. It
returns 0 on success

180-191 If a new VMA was allocated, fill in all the relevant details, including
the file/device entries and insert it into the various VMA linked lists with
insert_vm_struct()

192 Unmap the old region as it is no longer required

193 Update the total_vm size for this process. The size of the old region is not
important as it is handled within do_munmap()

194-198 If the VMA has the VM_LOCKED flag, all the pages within the region
are made present with mark_pages_present()

199 Return the address of the new region

201-202 This is the error path. If a VMA was allocated, delete it

204 Return an out of memory error

Function: move_page_tables (mm/mremap.c)
This function is responsible copying all the page table entries from the region

pointed to be old_addr to new_addr. It works by literally copying page table entries
one at a time. When it is finished, it deletes all the entries from the old area. This
is not the most efficient way to perform the operation, but it is very easy to error
recover.

90 static int move_page_tables(struct mm_struct * mm,
91 unsigned long new_addr, unsigned long old_addr, unsigned long len)
92 {
93 unsigned long offset = len;
94
95 flush_cache_range(mm, old_addr, old_addr + len);
96

102 while (offset) {
103 offset -= PAGE_SIZE;
104 if (move_one_page(mm, old_addr + offset, new_addr +

offset))
105 goto oops_we_failed;
106 }

4.3.6. Remapping and moving a memory region 149

move_page_tables

zap_page_range move_one_page

zap_pmd_range

zap_pte_range

copy_one_pte alloc_one_pte get_one_pte

pte_alloc

Figure 4.6: Call Graph: move_page_tables

107 flush_tlb_range(mm, old_addr, old_addr + len);
108 return 0;
109
117 oops_we_failed:
118 flush_cache_range(mm, new_addr, new_addr + len);
119 while ((offset += PAGE_SIZE) < len)
120 move_one_page(mm, new_addr + offset, old_addr + offset);
121 zap_page_range(mm, new_addr, len);
122 return -1;
123 }

90 The parameters are the mm for the process, the new location, the old location
and the length of the region to move entries for

95 flush_cache_range() will flush all CPU caches for this range. It must be called
first as some architectures, notably Sparc’s require that a virtual to physical
mapping exist before flushing the TLB

102-106 This loops through each page in the region and calls move_one_page()
to move the PTE. This translates to a lot of page table walking and could be
performed much better but it is a rare operation

107 Flush the TLB for the old region

108 Return success

4.3.6. Remapping and moving a memory region 150

118-120 This block moves all the PTE’s back. A flush_tlb_range() is not neces-
sary as there is no way the region could have been used yet so no TLB entries
should exist

121 Zap any pages that were allocated for the move

122 Return failure

Function: move_one_page (mm/mremap.c)
This function is responsible for acquiring the spinlock before finding the correct

PTE with get_one_pte() and copying it with copy_one_pte()

77 static int move_one_page(struct mm_struct *mm,
unsigned long old_addr, unsigned long new_addr)

78 {
79 int error = 0;
80 pte_t * src;
81
82 spin_lock(&mm->page_table_lock);
83 src = get_one_pte(mm, old_addr);
84 if (src)
85 error = copy_one_pte(mm, src, alloc_one_pte(mm, new_addr));
86 spin_unlock(&mm->page_table_lock);
87 return error;
88 }

82 Acquire the mm lock

83 Call get_one_pte() which walks the page tables to get the correct PTE

84-85 If the PTE exists, allocate a PTE for the destination and call copy_one_pte()
to copy the PTE’s

86 Release the lock

87 Return whatever copy_one_pte() returned

Function: get_one_pte (mm/mremap.c)
This is a very simple page table walk.

18 static inline pte_t *get_one_pte(struct mm_struct *mm, unsigned long addr)
19 {
20 pgd_t * pgd;
21 pmd_t * pmd;
22 pte_t * pte = NULL;
23
24 pgd = pgd_offset(mm, addr);

4.3.6. Remapping and moving a memory region 151

25 if (pgd_none(*pgd))
26 goto end;
27 if (pgd_bad(*pgd)) {
28 pgd_ERROR(*pgd);
29 pgd_clear(pgd);
30 goto end;
31 }
32
33 pmd = pmd_offset(pgd, addr);
34 if (pmd_none(*pmd))
35 goto end;
36 if (pmd_bad(*pmd)) {
37 pmd_ERROR(*pmd);
38 pmd_clear(pmd);
39 goto end;
40 }
41
42 pte = pte_offset(pmd, addr);
43 if (pte_none(*pte))
44 pte = NULL;
45 end:
46 return pte;
47 }

24 Get the PGD for this address

25-26 If no PGD exists, return NULL as no PTE will exist either

27-31 If the PGD is bad, mark that an error occurred in the region, clear its
contents and return NULL

33-40 Acquire the correct PMD in the same fashion as for the PGD

42 Acquire the PTE so it may be returned if it exists

Function: alloc_one_pte (mm/mremap.c)
Trivial function to allocate what is necessary for one PTE in a region.

49 static inline pte_t *alloc_one_pte(struct mm_struct *mm,
unsigned long addr)

50 {
51 pmd_t * pmd;
52 pte_t * pte = NULL;
53
54 pmd = pmd_alloc(mm, pgd_offset(mm, addr), addr);
55 if (pmd)
56 pte = pte_alloc(mm, pmd, addr);

4.3.7. Deleting a memory region 152

57 return pte;
58 }

54 If a PMD entry does not exist, allocate it

55-56 If the PMD exists, allocate a PTE entry. The check to make sure it succeeded
is performed later in the function copy_one_pte()

Function: copy_one_pte (mm/mremap.c)
Copies the contents of one PTE to another.

60 static inline int copy_one_pte(struct mm_struct *mm,
pte_t * src, pte_t * dst)

61 {
62 int error = 0;
63 pte_t pte;
64
65 if (!pte_none(*src)) {
66 pte = ptep_get_and_clear(src);
67 if (!dst) {
68 /* No dest? We must put it back. */
69 dst = src;
70 error++;
71 }
72 set_pte(dst, pte);
73 }
74 return error;
75 }

65 If the source PTE does not exist, just return 0 to say the copy was successful

66 Get the PTE and remove it from its old location

67-71 If the dst does not exist, it means the call to alloc_one_pte() failed and
the copy operation has failed and must be aborted

72 Move the PTE to its new location

74 Return an error if one occurred

4.3.7 Deleting a memory region

Function: do_munmap (mm/mmap.c)
This function is responsible for unmapping a region. If necessary, the unmapping

can span multiple VMA’s and it can partially unmap one if necessary. Hence the
full unmapping operation is divided into two major operations. This function is

4.3.7. Deleting a memory region 153

do_munmap

zap_page_range remove_shared_vm_structunmap_fixup free_pgtables

lock_vma_mappings __remove_shared_vm_structunlock_vma_mappings__insert_vm_struct

Figure 4.7: do_munmap

responsible for finding what VMA’s are affected and unmap_fixup() is responsible
for fixing up the remaining VMA’s.

This function is divided up in a number of small sections will be dealt with in
turn. The are broadly speaking;

• Function preamble and find the VMA to start working from

• Take all VMA’s affected by the unmapping out of the mm and place them on
a linked list headed by the variable free

• Cycle through the list headed by free, unmap all the pages in the region to
be unmapped and call unmap_fixup() to fix up the mappings

• Validate the mm and free memory associated with the unmapping

919 int do_munmap(struct mm_struct *mm, unsigned long addr, size_t len)
920 {
921 struct vm_area_struct *mpnt, *prev, **npp, *free, *extra;
922
923 if ((addr & ~PAGE_MASK) || addr > TASK_SIZE ||

len > TASK_SIZE-addr)
924 return -EINVAL;
925
926 if ((len = PAGE_ALIGN(len)) == 0)
927 return -EINVAL;
928
934 mpnt = find_vma_prev(mm, addr, &prev);
935 if (!mpnt)
936 return 0;
937 /* we have addr < mpnt->vm_end */
938
939 if (mpnt->vm_start >= addr+len)
940 return 0;

4.3.7. Deleting a memory region 154

941
943 if ((mpnt->vm_start < addr && mpnt->vm_end > addr+len)
944 && mm->map_count >= max_map_count)
945 return -ENOMEM;
946
951 extra = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
952 if (!extra)
953 return -ENOMEM;

919 The parameters are as follows;

mmThe mm for the processes performing the unmap operation

addrThe starting address of the region to unmap

lenThe length of the region

923-924 Ensure the address is page aligned and that the area to be unmapped is
not in the kernel virtual address space

926-927 Make sure the region size to unmap is page aligned

934 Find the VMA that contains the starting address and the preceding VMA so
it can be easily unlinked later

935-936 If no mpnt was returned, it means the address must be past the last used
VMA so the address space is unused, just return

939-940 If the returned VMA starts past the region we are trying to unmap, then
the region in unused, just return

943-945 The first part of the check sees if the VMA is just been partially unmapped,
if it is, another VMA will be created later to deal with a region being broken
into so to the map_count has to be checked to make sure it is not too large

951-953 In case a new mapping is required, it is allocated now as later it will be
much more difficult to back out in event of an error

955 npp = (prev ? &prev->vm_next : &mm->mmap);
956 free = NULL;
957 spin_lock(&mm->page_table_lock);
958 for (; mpnt && mpnt->vm_start < addr+len; mpnt = *npp) {
959 *npp = mpnt->vm_next;
960 mpnt->vm_next = free;
961 free = mpnt;
962 rb_erase(&mpnt->vm_rb, &mm->mm_rb);
963 }
964 mm->mmap_cache = NULL; /* Kill the cache. */
965 spin_unlock(&mm->page_table_lock);

4.3.7. Deleting a memory region 155

This section takes all the VMA’s affected by the unmapping and places them on
a separate linked list headed by a variable called free. This makes the fixup of the
regions much easier.

955 npp becomes the next VMA in the list during the for loop following below.
To initialise it, it’s either the current VMA (mpnt) or else it becomes the first
VMA in the list

956 free is the head of a linked list of VMAs that are affected by the unmapping

957 Lock the mm

958 Cycle through the list until the start of the current VMA is past the end of
the region to be unmapped

959 npp becomes the next VMA in the list

960-961 Remove the current VMA from the linear linked list within the mm and
place it on a linked list headed by free. The current mpnt becomes the head
of the free linked list

962 Delete mpnt from the red-black tree

964 Remove the cached result in case the last looked up result is one of the regions
to be unmapped

965 Free the mm

966
967 /* Ok - we have the memory areas we should free on the ’free’
list,
968 * so release them, and unmap the page range..
969 * If the one of the segments is only being partially unmapped,
970 * it will put new vm_area_struct(s) into the address space.
971 * In that case we have to be careful with VM_DENYWRITE.
972 */
973 while ((mpnt = free) != NULL) {
974 unsigned long st, end, size;
975 struct file *file = NULL;
976
977 free = free->vm_next;
978
979 st = addr < mpnt->vm_start ? mpnt->vm_start : addr;
980 end = addr+len;
981 end = end > mpnt->vm_end ? mpnt->vm_end : end;
982 size = end - st;
983
984 if (mpnt->vm_flags & VM_DENYWRITE &&

4.3.7. Deleting a memory region 156

985 (st != mpnt->vm_start || end != mpnt->vm_end) &&
986 (file = mpnt->vm_file) != NULL) {
987 atomic_dec(&file->f_dentry->d_inode->i_writecount);
988 }
989 remove_shared_vm_struct(mpnt);
990 mm->map_count--;
991
992 zap_page_range(mm, st, size);
993
994 /*
995 * Fix the mapping, and free the old area if it wasn’t
reused.
996 */
997 extra = unmap_fixup(mm, mpnt, st, size, extra);
998 if (file)
999 atomic_inc(&file->f_dentry->d_inode->i_writecount);
1000 }

973 Keep stepping through the list until no VMA’s are left

977 Move free to the next element in the list leaving mpnt as the head about to
be removed

979 st is the start of the region to be unmapped. If the addr is before the start of
the VMA, the starting point is mpnt→vm_start, otherwise it is the supplied
address

980-981 Calculate the end of the region to map in a similar fashion

982 Calculate the size of the region to be unmapped in this pass

984-988 If the VM_DENYWRITE flag is specified, a hole will be created by this
unmapping and a file is mapped then the writecount is decremented. When
this field is negative, it counts how many users there is protecting this file from
being opened for writing

989 Remove the file mapping. If the file is still partially mapped, it will be acquired
again during unmap_fixup()

990 Reduce the map count

992 Remove all pages within this region

997 Call the fixup routing

998-999 Increment the writecount to the file as the region has been unmapped. If
it was just partially unmapped, this call will simply balance out the decrement
at line 987

4.3.7. Deleting a memory region 157

1001 validate_mm(mm);
1002
1003 /* Release the extra vma struct if it wasn’t used */
1004 if (extra)
1005 kmem_cache_free(vm_area_cachep, extra);
1006
1007 free_pgtables(mm, prev, addr, addr+len);
1008
1009 return 0;
1010 }

1001 A debugging function only. If enabled, it will ensure the VMA tree for this
mm is still valid

1004-1005 If extra VMA was not required, delete it

1007 Free all the page tables that were used for the unmapped region

1009 Return success

Function: unmap_fixup (mm/mmap.c)
This function fixes up the regions after a block has been unmapped. It is passed

a list of VMAs that are affected by the unmapping, the region and length to be
unmapped and a spare VMA that may be required to fix up the region if a whole
is created. There is four principle cases it handles; The unmapping of a region,
partial unmapping from the start to somewhere in the middle, partial unmapping
from somewhere in the middle to the end and the creation of a hole in the middle
of the region. Each case will be taken in turn.

785 static struct vm_area_struct * unmap_fixup(struct mm_struct *mm,
786 struct vm_area_struct *area, unsigned long addr, size_t len,
787 struct vm_area_struct *extra)
788 {
789 struct vm_area_struct *mpnt;
790 unsigned long end = addr + len;
791
792 area->vm_mm->total_vm -= len >> PAGE_SHIFT;
793 if (area->vm_flags & VM_LOCKED)
794 area->vm_mm->locked_vm -= len >> PAGE_SHIFT;
795

Function preamble.

785 The parameters to the function are;

mm is the mm the unmapped region belongs to

area is the head of the linked list of VMAs affected by the unmapping

4.3.7. Deleting a memory region 158

addr is the starting address of the unmapping

len is the length of the region to be unmapped

extra is a spare VMA passed in for when a hole in the middle is created

790 Calculate the end address of the region being unmapped

792 Reduce the count of the number of pages used by the process

793-794 If the pages were locked in memory, reduce the locked page count

796 /* Unmapping the whole area. */
797 if (addr == area->vm_start && end == area->vm_end) {
798 if (area->vm_ops && area->vm_ops->close)
799 area->vm_ops->close(area);
800 if (area->vm_file)
801 fput(area->vm_file);
802 kmem_cache_free(vm_area_cachep, area);
803 return extra;
804 }

The first, and easiest, case is where the full region is being unmapped

797 The full region is unmapped if the addr is the start of the VMA and the end is
the end of the VMA. This is interesting because if the unmapping is spanning
regions, it’s possible the end is beyond the end of the VMA but the full of this
VMA is still being unmapped

798-799 If a close operation is supplied by the VMA, call it

800-801 If a file or device is mapped, call fput() which decrements the usage
count and releases it if the count falls to 0

802 Free the memory for the VMA back to the slab allocator

803 Return the extra VMA as it was unused

807 if (end == area->vm_end) {
808 /*
809 * here area isn’t visible to the semaphore-less readers
810 * so we don’t need to update it under the spinlock.
811 */
812 area->vm_end = addr;
813 lock_vma_mappings(area);
814 spin_lock(&mm->page_table_lock);
815 }

Handle the case where the middle of the region to the end is been unmapped

4.3.7. Deleting a memory region 159

812 Truncate the VMA back to addr. At this point, the pages for the region have
already freed and the page table entries will be freed later so no further work
is required

813 If a file/device is being mapped, the lock protecting shared access to it is taken
in the function lock_vm_mappings()

814 Lock the mm. Later in the function, the remaining VMA will be reinserted
into the mm

815 else if (addr == area->vm_start) {
816 area->vm_pgoff += (end - area->vm_start) >> PAGE_SHIFT;
817 /* same locking considerations of the above case */
818 area->vm_start = end;
819 lock_vma_mappings(area);
820 spin_lock(&mm->page_table_lock);
821 }

Handle the case where the VMA is been unmapped from the start to some part
in the middle

816 Increase the offset within the file/device mapped by the number of pages this
unmapping represents

818 Move the start of the VMA to the end of the region being unmapped

819-820 Lock the file/device and mm as above

else {
822 /* Unmapping a hole: area->vm_start < addr <= end < area->vm_end */
823 /* Add end mapping -- leave beginning for below */
824 mpnt = extra;
825 extra = NULL;
826
827 mpnt->vm_mm = area->vm_mm;
828 mpnt->vm_start = end;
829 mpnt->vm_end = area->vm_end;
830 mpnt->vm_page_prot = area->vm_page_prot;
831 mpnt->vm_flags = area->vm_flags;
832 mpnt->vm_raend = 0;
833 mpnt->vm_ops = area->vm_ops;
834 mpnt->vm_pgoff = area->vm_pgoff +

((end - area->vm_start) >> PAGE_SHIFT);
835 mpnt->vm_file = area->vm_file;
836 mpnt->vm_private_data = area->vm_private_data;
837 if (mpnt->vm_file)
838 get_file(mpnt->vm_file);

4.3.7. Deleting a memory region 160

839 if (mpnt->vm_ops && mpnt->vm_ops->open)
840 mpnt->vm_ops->open(mpnt);
841 area->vm_end = addr; /* Truncate area */
842
843 /* Because mpnt->vm_file == area->vm_file this locks
844 * things correctly.
845 */
846 lock_vma_mappings(area);
847 spin_lock(&mm->page_table_lock);
848 __insert_vm_struct(mm, mpnt);
849 }

Handle the case where a hole is being created by a partial unmapping. In this
case, the extra VMA is required to create a new mapping from the end of the
unmapped region to the end of the old VMA

824-825 Take the extra VMA and make VMA NULL so that the calling function
will know it is in use and cannot be freed

826-836 Copy in all the VMA information

837 If a file/device is mapped, get a reference to it with get_file()

839-840 If an open function is provided, call it

841 Truncate the VMA so that it ends at the start of the region to be unmapped

846-847 Lock the files and mm as with the two previous cases

848 Insert the extra VMA into the mm

850
851 __insert_vm_struct(mm, area);
852 spin_unlock(&mm->page_table_lock);
853 unlock_vma_mappings(area);
854 return extra;
855 }

851 Reinsert the VMA into the mm

852 Unlock the page tables

853 Unlock the spinlock to the shared mapping

854 Return the extra VMA if it was not used and NULL if it was

4.3.8. Deleting all memory regions 161

4.3.8 Deleting all memory regions

Function: exit_mmap (mm/mmap.c)
This function simply steps through all VMAs associated with the supplied mm

and unmaps them.

1122 void exit_mmap(struct mm_struct * mm)
1123 {
1124 struct vm_area_struct * mpnt;
1125
1126 release_segments(mm);
1127 spin_lock(&mm->page_table_lock);
1128 mpnt = mm->mmap;
1129 mm->mmap = mm->mmap_cache = NULL;
1130 mm->mm_rb = RB_ROOT;
1131 mm->rss = 0;
1132 spin_unlock(&mm->page_table_lock);
1133 mm->total_vm = 0;
1134 mm->locked_vm = 0;
1135
1136 flush_cache_mm(mm);
1137 while (mpnt) {
1138 struct vm_area_struct * next = mpnt->vm_next;
1139 unsigned long start = mpnt->vm_start;
1140 unsigned long end = mpnt->vm_end;
1141 unsigned long size = end - start;
1142
1143 if (mpnt->vm_ops) {
1144 if (mpnt->vm_ops->close)
1145 mpnt->vm_ops->close(mpnt);
1146 }
1147 mm->map_count--;
1148 remove_shared_vm_struct(mpnt);
1149 zap_page_range(mm, start, size);
1150 if (mpnt->vm_file)
1151 fput(mpnt->vm_file);
1152 kmem_cache_free(vm_area_cachep, mpnt);
1153 mpnt = next;
1154 }
1155 flush_tlb_mm(mm);
1156
1157 /* This is just debugging */
1158 if (mm->map_count)
1159 BUG();
1160
1161 clear_page_tables(mm, FIRST_USER_PGD_NR, USER_PTRS_PER_PGD);

4.4. Page Fault Handler 162

1162 }

1126 release_segments() will release memory segments associated with the pro-
cess on its Local Descriptor Table (LDT) if the architecture supports segments
and the process was using them. Some applications, notably WINE use this
feature

1127 Lock the mm

1128 mpnt becomes the first VMA on the list

1129 Clear VMA related information from the mm so it may be unlocked

1132 Unlock the mm

1133-1134 Clear the mm statistics

1136 Flush the CPU for the address range

1137-1154 Step through every VMA that was associated with the mm

1138 Record what the next VMA to clear will be so this one may be deleted

1139-1141 Record the start, end and size of the region to be deleted

1143-1146 If there is a close operation associated with this VMA, call it

1147 Reduce the map count

1148 Remove the file/device mapping from the shared mappings list

1149 Free all pages associated with this region

1150-1151 If a file/device was mapped in this region, free it

1152 Free the VMA struct

1153 Move to the next VMA

1155 Flush the TLB for this whole mm as it is about to be unmapped

1158-1159 If the map_count is positive, it means the map count was not accounted
for properly so call BUG to mark it

1161 Clear the page tables associated with this region

4.4. Page Fault Handler 163

do_page_fault

force_sig_info find_vma handle_mm_fault search_exception_table

handle_pte_fault pte_alloc

do_wp_page do_swap_page establish_pte do_no_page

do_anonymous_page lru_cache_add

search_one_table

Figure 4.8: do_page_fault

4.4. Page Fault Handler 164

4.4 Page Fault Handler

Function: do_page_fault (arch/i386/mm/fault.c)
This function is the x86 architecture dependent function for the handling of page

fault exception handlers. Each architecture registers their own but all of them have
similar responsibilities.

140 asmlinkage void do_page_fault(struct pt_regs *regs,
unsigned long error_code)

141 {
142 struct task_struct *tsk;
143 struct mm_struct *mm;
144 struct vm_area_struct * vma;
145 unsigned long address;
146 unsigned long page;
147 unsigned long fixup;
148 int write;
149 siginfo_t info;
150
151 /* get the address */
152 __asm__("movl %%cr2,%0":"=r" (address));
153
154 /* It’s safe to allow irq’s after cr2 has been saved */
155 if (regs->eflags & X86_EFLAGS_IF)
156 local_irq_enable();
157
158 tsk = current;
159

Function preamble. Get the fault address and enable interrupts

140 The parameters are

regs is a struct containing what all the registers at fault time

error_code indicates what sort of fault occurred

152 As the comment indicates, the cr2 register is the fault addres

155-156 If the fault is from within an interrupt, enable them

158 Set the current task

173 if (address >= TASK_SIZE && !(error_code & 5))
174 goto vmalloc_fault;
175
176 mm = tsk->mm;
177 info.si_code = SEGV_MAPERR;

4.4. Page Fault Handler 165

178
183 if (in_interrupt() || !mm)
184 goto no_context;
185

Check for exceptional faults, kernel faults, fault in interrupt and fault with no
memory context

173 If the fault address is over TASK_SIZE, it is within the kernel address space.
If the error code is 5, then it means it happened while in kernel mode and is
not a protection error so handle a vmalloc fault

176 Record the working mm

183 If this is an interrupt, or there is no memory context (such as with a kernel
thread), there is no way to safely handle the fault so goto no_context

186 down_read(&mm->mmap_sem);
187
188 vma = find_vma(mm, address);
189 if (!vma)
190 goto bad_area;
191 if (vma->vm_start <= address)
192 goto good_area;
193 if (!(vma->vm_flags & VM_GROWSDOWN))
194 goto bad_area;
195 if (error_code & 4) {
196 /*
197 * accessing the stack below %esp is always a bug.
198 * The "+ 32" is there due to some instructions (like
199 * pusha) doing post-decrement on the stack and that
200 * doesn’t show up until later..
201 */
202 if (address + 32 < regs->esp)
203 goto bad_area;
204 }
205 if (expand_stack(vma, address))
206 goto bad_area;

If a fault in userspace, find the VMA for the faulting address and determine if it
is a good area, a bad area or if the fault occurred near a region that can be expanded
such as the stack

186 Take the long lived mm semaphore

188 Find the VMA that is responsible or is closest to the faulting address

4.4. Page Fault Handler 166

189-190 If a VMA does not exist at all, goto bad_area

191-192 If the start of the region is before the address, it means this VMA is the
correct VMA for the fault so goto good_area which will check the permissions

193-194 For the region that is closest, check if it can gown down (VM_GROWSDOWN).
If it does, it means the stack can probably be expanded. If not, goto bad_area

195-204 Check to make sure it isn’t an access below the stack. if the error_code
is 4, it means it is running in userspace

205-206 expand the stack, if it fails, goto bad_area

211 good_area:
212 info.si_code = SEGV_ACCERR;
213 write = 0;
214 switch (error_code & 3) {
215 default: /* 3: write, present */
216 #ifdef TEST_VERIFY_AREA
217 if (regs->cs == KERNEL_CS)
218 printk("WP fault at %08lx\n", regs->eip);
219 #endif
220 /* fall through */
221 case 2: /* write, not present */
222 if (!(vma->vm_flags & VM_WRITE))
223 goto bad_area;
224 write++;
225 break;
226 case 1: /* read, present */
227 goto bad_area;
228 case 0: /* read, not present */
229 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
230 goto bad_area;
231 }

There is the first part of a good area is handled. The permissions need to be
checked in case this is a protection fault.

212 By default return an error

214 Check the error code against bits 0 and 1 of the error code. Bit 0 at 0 means
page was not present. At 1, it means a protection fault like a write to a
read-only area. Bit 1 is 0 if it was a read fault and 1 if a write

215 If it is 3, both bits are 1 so it is a write protection fault

221 Bit 1 is a 1 so it’s a write fault

4.4. Page Fault Handler 167

222-223 If the region can not be written to, it is a bad write to goto bad_area.
If the region can be written to, this is a page that is marked Copy On Write
(COW)

224 Flag that a write has occurred

226-227 This is a read and the page is present. There is no reason for the fault
so must be some other type of exception like a divide by zero, goto bad_area
where it is handled

228-230 A read occurred on a missing page. Make sure it is ok to read or exec this
page. If not, goto bad_area. The check for exec is made because the x86 can
not exec protect a page and instead uses the read protect flag. This is why
both have to be checked

233 survive:
239 switch (handle_mm_fault(mm, vma, address, write)) {
240 case 1:
241 tsk->min_flt++;
242 break;
243 case 2:
244 tsk->maj_flt++;
245 break;
246 case 0:
247 goto do_sigbus;
248 default:
249 goto out_of_memory;
250 }
251
252 /*
253 * Did it hit the DOS screen memory VA from vm86 mode?
254 */
255 if (regs->eflags & VM_MASK) {
256 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
257 if (bit < 32)
258 tsk->thread.screen_bitmap |= 1 << bit;
259 }
260 up_read(&mm->mmap_sem);
261 return;

At this point, an attempt is going to be made to handle the fault gracefully with
handle_mm_fault().

239 Call handle_mm_fault() with the relevant information about the fault. This
is the architecture independent part of the handler

240-242 A return of 1 means it was a minor fault. Update statistics

4.4. Page Fault Handler 168

243-245 A return of 2 means it was a major fault. Update statistics

246-247 A return of 0 means some IO error happened during the fault so go to
the do_sigbus handler

248-249 Any other return means memory could not be allocated for the fault
so we are out of memory. In reality this does not happen as another func-
tion out_of_memory() is invoked in mm/oom_kill.c before this could happen
which is a lot more graceful about who it kills

255-259 Not sure

260 Release the lock to the mm

261 Return as the fault has been successfully handled

267 bad_area:
268 up_read(&mm->mmap_sem);
269
270 /* User mode accesses just cause a SIGSEGV */
271 if (error_code & 4) {
272 tsk->thread.cr2 = address;
273 tsk->thread.error_code = error_code;
274 tsk->thread.trap_no = 14;
275 info.si_signo = SIGSEGV;
276 info.si_errno = 0;
277 /* info.si_code has been set above */
278 info.si_addr = (void *)address;
279 force_sig_info(SIGSEGV, &info, tsk);
280 return;
281 }
282
283 /*
284 * Pentium F0 0F C7 C8 bug workaround.
285 */
286 if (boot_cpu_data.f00f_bug) {
287 unsigned long nr;
288
289 nr = (address - idt) >> 3;
290
291 if (nr == 6) {
292 do_invalid_op(regs, 0);
293 return;
294 }
295 }

4.4. Page Fault Handler 169

This is the bad area handler such as using memory with no vm_area_struct
managing it. If the fault is not by a user process or the f00f bug, the no_context
label is fallen through to.

271 An error code of 4 implies userspace so it’s a simple case of sending a SIGSEGV
to kill the process

272-274 Set thread information about what happened which can be read by a
debugger later

275 Record that a SIGSEGV signal was sent

276 clear errno

278 Record the address

279 Send the SIGSEGV signal. The process will exit and dump all the relevant
information

280 Return as the fault has been successfully handled

286-295 An bug in the first Pentiums was called the f00f bug which caused the
processor to constantly page fault. It was used as a local DoS attack on a
running Linux system. This bug was trapped within a few hours and a patch
released. Now it results in a harmless termination of the process rather than
a locked system

296
297 no_context:
298 /* Are we prepared to handle this kernel fault? */
299 if ((fixup = search_exception_table(regs->eip)) != 0) {
300 regs->eip = fixup;
301 return;
302 }

299-302 Check can this exception be handled and if so, call the proper exception
handler after returning. This is really important during copy_from_user()
and copy_to_user() when an exception handler is especially installed to trap
reads and writes to invalid regions in userspace without having to make ex-
pensive checks. It means that a small fixup block of code can be called rather
than falling through to the next block which causes an oops

303
304 /*
305 * Oops. The kernel tried to access some bad page. We’ll have to
306 * terminate things with extreme prejudice.
307 */
308

4.4. Page Fault Handler 170

309 bust_spinlocks(1);
310
311 if (address < PAGE_SIZE)
312 printk(KERN_ALERT "Unable to handle kernel NULL pointer

dereference");
313 else
314 printk(KERN_ALERT "Unable to handle kernel paging

request");
315 printk(" at virtual address %08lx\n",address);
316 printk(" printing eip:\n");
317 printk("%08lx\n", regs->eip);
318 asm("movl %%cr3,%0":"=r" (page));
319 page = ((unsigned long *) __va(page))[address >> 22];
320 printk(KERN_ALERT "*pde = %08lx\n", page);
321 if (page & 1) {
322 page &= PAGE_MASK;
323 address &= 0x003ff000;
324 page = ((unsigned long *)

__va(page))[address >> PAGE_SHIFT];
325 printk(KERN_ALERT "*pte = %08lx\n", page);
326 }
327 die("Oops", regs, error_code);
328 bust_spinlocks(0);
329 do_exit(SIGKILL);

This is the no_context handler. Some bad exception occurred which is going to
end up in the process been terminated in all likeliness. Otherwise the kernel faulted
when it definitely should have and an OOPS report is generated.

309-329 Otherwise the kernel faulted when it really shouldn’t have and it is a
kernel bug. This block generates an oops report

309 Forcibly free spinlocks which might prevent a message getting to console

311-312 If the address is < PAGE_SIZE, it means that a null pointer was used.
Linux deliberately has page 0 unassigned to trap this type of fault which is a
common programming error

313-314 Otherwise it’s just some bad kernel error such as a driver trying to access
userspace incorrectly

315-320 Print out information about the fault

321-326 Print out information about the page been faulted

327 Die and generate an oops report which can be used later to get a stack trace
so a developer can see more accurately where and how the fault occurred

4.4. Page Fault Handler 171

329 Forcibly kill the faulting process

335 out_of_memory:
336 if (tsk->pid == 1) {
337 yield();
338 goto survive;
339 }
340 up_read(&mm->mmap_sem);
341 printk("VM: killing process %s\n", tsk->comm);
342 if (error_code & 4)
343 do_exit(SIGKILL);
344 goto no_context;

The out of memory handler. Usually ends with the faulting process getting killed
unless it is init

336-339 If the process is init, just yield and goto survive which will try to handle
the fault gracefully. init should never be killed

340 Free the mm semaphore

341 Print out a helpful “You are Dead” message

342 If from userspace, just kill the process

344 If in kernel space, go to the no_context handler which in this case will probably
result in a kernel oops

345
346 do_sigbus:
347 up_read(&mm->mmap_sem);
348
353 tsk->thread.cr2 = address;
354 tsk->thread.error_code = error_code;
355 tsk->thread.trap_no = 14;
356 info.si_signo = SIGBUS;
357 info.si_errno = 0;
358 info.si_code = BUS_ADRERR;
359 info.si_addr = (void *)address;
360 force_sig_info(SIGBUS, &info, tsk);
361
362 /* Kernel mode? Handle exceptions or die */
363 if (!(error_code & 4))
364 goto no_context;
365 return;

347 Free the mm lock

4.4. Page Fault Handler 172

353-359 Fill in information to show a SIGBUS occurred at the faulting address so
that a debugger can trap it later

360 Send the signal

363-364 If in kernel mode, try and handle the exception during no_context

365 If in userspace, just return and the process will die in due course

367 vmalloc_fault:
368 {
376 int offset = __pgd_offset(address);
377 pgd_t *pgd, *pgd_k;
378 pmd_t *pmd, *pmd_k;
379 pte_t *pte_k;
380
381 asm("movl %%cr3,%0":"=r" (pgd));
382 pgd = offset + (pgd_t *)__va(pgd);
383 pgd_k = init_mm.pgd + offset;
384
385 if (!pgd_present(*pgd_k))
386 goto no_context;
387 set_pgd(pgd, *pgd_k);
388
389 pmd = pmd_offset(pgd, address);
390 pmd_k = pmd_offset(pgd_k, address);
391 if (!pmd_present(*pmd_k))
392 goto no_context;
393 set_pmd(pmd, *pmd_k);
394
395 pte_k = pte_offset(pmd_k, address);
396 if (!pte_present(*pte_k))
397 goto no_context;
398 return;
399 }
400 }

This is the vmalloc fault handler. In this case the process page table needs to be
synchronized with the reference page table. This could occur if a global TLB flush
flushed some kernel page tables as well and the page table information just needs to
be copied back in.

376 Get the offset within a PGD

381 Copy the address of the PGD for the process from the cr3 register to pgd

382 Calculate the pgd pointer from the process PGD

4.4.1. Handling the Page Fault 173

383 Calculate for the kernel reference PGD

385-386 If the pgd entry is invalid for the kernel page table, goto no_context

386 Set the page table entry in the process page table with a copy from the kernel
reference page table

389-393 Same idea for the PMD. Copy the page table entry from the kernel refer-
ence page table to the process page tables

395 Check the PTE

396-397 If it is not present, it means the page was not valid even in the kernel
reference page table so goto no_context to handle what is probably a kernel
bug, probably a reference to a random part of unused kernel space

398 Otherwise return knowing the process page tables have been updated and are
in sync with the kernel page tables

4.4.1 Handling the Page Fault

This is the top level pair of functions for the architecture independent page fault
handler.

Function: handle_mm_fault (mm/memory.c)
This function allocates the PMD and PTE necessary for this new PTE hat is

about to be allocated. It takes the necessary locks to protect the page tables before
calling handle_pte_fault() to fault in the page itself.

1364 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
1365 unsigned long address, int write_access)
1366 {
1367 pgd_t *pgd;
1368 pmd_t *pmd;
1369
1370 current->state = TASK_RUNNING;
1371 pgd = pgd_offset(mm, address);
1372
1373 /*
1374 * We need the page table lock to synchronize with kswapd
1375 * and the SMP-safe atomic PTE updates.
1376 */
1377 spin_lock(&mm->page_table_lock);
1378 pmd = pmd_alloc(mm, pgd, address);
1379
1380 if (pmd) {
1381 pte_t * pte = pte_alloc(mm, pmd, address);
1382 if (pte)

4.4.1. Handling the Page Fault 174

1383 return handle_pte_fault(mm, vma, address,
write_access, pte);

1384 }
1385 spin_unlock(&mm->page_table_lock);
1386 return -1;
1387 }

1364 The parameters of the function are;

mm is the mm_struct for the faulting process

vma is the vm_area_struct managing the region the fault occurred in

address is the faulting address

write_access is 1 if the fault is a write fault

1370 Set the current state of the process

1371 Get the pgd entry from the top level page table

1377 Lock the mm_struct as the page tables will change

1378 pmd_alloc will allocate a pmd_t if one does not already exist

1380 If the pmd has been successfully allocated then...

1381 Allocate a PTE for this address if one does not already exist

1382-1383 Handle the page fault with handle_pte_fault() and return the status
code

1385 Failure path, unlock the mm_struct

1386 Return -1 which will be interpreted as an out of memory condition which is
correct as this line is only reached if a PMD or PTE could not be allocated

Function: handle_pte_fault (mm/memory.c)
This function decides what type of fault this is and which function should

handle it. do_no_page() is called if this is the first time a page is to be alloc-
ated. do_swap_page() handles the case where the page was swapped out to disk.
do_wp_page() breaks COW pages. If none of them are appropriate, the PTE entry
is simply updated. If it was written to, it is marked dirty and it is marked accessed
to show it is a young page.

1331 static inline int handle_pte_fault(struct mm_struct *mm,
1332 struct vm_area_struct * vma, unsigned long address,
1333 int write_access, pte_t * pte)
1334 {
1335 pte_t entry;
1336

4.4.1. Handling the Page Fault 175

1337 entry = *pte;
1338 if (!pte_present(entry)) {
1339 /*
1340 * If it truly wasn’t present, we know that kswapd
1341 * and the PTE updates will not touch it later. So
1342 * drop the lock.
1343 */
1344 if (pte_none(entry))
1345 return do_no_page(mm, vma, address,

write_access, pte);
1346 return do_swap_page(mm, vma, address, pte, entry,

write_access);
1347 }
1348
1349 if (write_access) {
1350 if (!pte_write(entry))
1351 return do_wp_page(mm, vma, address, pte, entry);
1352
1353 entry = pte_mkdirty(entry);
1354 }
1355 entry = pte_mkyoung(entry);
1356 establish_pte(vma, address, pte, entry);
1357 spin_unlock(&mm->page_table_lock);
1358 return 1;
1359 }

1331 The parameters of the function are the same as those for handle_mm_fault()
except the PTE for the fault is included

1337 Record the PTE

1338 Handle the case where the PTE is not present

1344 If the PTE has never been filled, handle the allocation of the PTE with
do_no_page()

1346 If the page has been swapped out to backing storage, handle it with
do_swap_page()

1349-1354 Handle the case where the page is been written to

1350-1351 If the PTE is marked write-only, it is a COW page so handle it with
do_wp_page()

1353 Otherwise just simply mark the page as dirty

1355 Mark the page as accessed

4.4.2. Demand Allocation 176

1356 establish_pte() copies the PTE and then updates the TLB and MMU
cache. This does not copy in a new PTE but some architectures require the
TLB and MMU update

1357 Unlock the mm_struct and return that a minor fault occurred

4.4.2 Demand Allocation

Function: do_no_page (mm/memory.c)
This function is called the first time a page is referenced so that it may be

allocated and filled with data if necessary. If it is an anonymous page, determined
by the lack of a vm_ops available to the VMA or the lack of a nopage() function,
then do_anonymous_page() is called. Otherwise the supplied nopage() function is
called to allocate a page and it is inserted into the page tables here. The function
has the following tasks;

do_no_page

do_anonymous_page

lru_cache_add mark_page_accessed

Figure 4.9: do_no_page

• Check if do_anonymous_page() should be used and if so, call it and return
the page it allocates. If not, call the supplied nopage() function and ensure
it allocates a page successfully.

• Break COW early if appropriate

• Add the page to the page table entries and call the appropriate architecture
dependent hooks

1245 static int do_no_page(struct mm_struct * mm, struct vm_area_struct * vma,
1246 unsigned long address, int write_access, pte_t *page_table)
1247 {
1248 struct page * new_page;

4.4.2. Demand Allocation 177

1249 pte_t entry;
1250
1251 if (!vma->vm_ops || !vma->vm_ops->nopage)
1252 return do_anonymous_page(mm, vma, page_table,

write_access, address);
1253 spin_unlock(&mm->page_table_lock);
1254
1255 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, 0);
1256
1257 if (new_page == NULL) /* no page was available -- SIGBUS */
1258 return 0;
1259 if (new_page == NOPAGE_OOM)
1260 return -1;

1245 The parameters supplied are the same as those for handle_pte_fault()

1251-1252 If no vm_ops is supplied or no nopage() function is supplied, then call
do_anonymous_page() to allocate a page and return it

1253 Otherwise free the page table lock as the nopage() function can not be called
with spinlocks held

1255 Call the supplied nopage function, in the case of filesystems, this is frequently
filemap_nopage() but will be different for each device driver

1257-1258 If NULL is returned, it means some error occurred in the nopage func-
tion such as an IO error while reading from disk. In this case, 0 is returned
which results in a SIGBUS been sent to the faulting process

1259-1260 If NOPAGE_OOM is returned, the physical page allocator failed to
allocate a page and -1 is returned which will forcibly kill the process

1265 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1266 struct page * page = alloc_page(GFP_HIGHUSER);
1267 if (!page) {
1268 page_cache_release(new_page);
1269 return -1;
1270 }
1271 copy_user_highpage(page, new_page, address);
1272 page_cache_release(new_page);
1273 lru_cache_add(page);
1274 new_page = page;
1275 }

Break COW early in this block if appropriate. COW is broken if the fault is
a write fault and the region is not shared with VM_SHARED. If COW was not
broken in this case, a second fault would occur immediately upon return.

4.4.2. Demand Allocation 178

1265 Check if COW should be broken early

1266 If so, allocate a new page for the process

1267-1270 If the page could not be allocated, reduce the reference count to the
page returned by the nopage() function and return -1 for out of memory

1271 Otherwise copy the contents

1272 Reduce the reference count to the returned page which may still be in use by
another process

1273 Add the new page to the LRU lists so it may be reclaimed by kswapd later

1276
1277 spin_lock(&mm->page_table_lock);
1288 /* Only go through if we didn’t race with anybody else... */
1289 if (pte_none(*page_table)) {
1290 ++mm->rss;
1291 flush_page_to_ram(new_page);
1292 flush_icache_page(vma, new_page);
1293 entry = mk_pte(new_page, vma->vm_page_prot);
1294 if (write_access)
1295 entry = pte_mkwrite(pte_mkdirty(entry));
1296 set_pte(page_table, entry);
1297 } else {
1298 /* One of our sibling threads was faster, back out. */
1299 page_cache_release(new_page);
1300 spin_unlock(&mm->page_table_lock);
1301 return 1;
1302 }
1303
1304 /* no need to invalidate: a not-present page shouldn’t be cached
*/
1305 update_mmu_cache(vma, address, entry);
1306 spin_unlock(&mm->page_table_lock);
1307 return 2; /* Major fault */
1308 }

1277 Lock the page tables again as the allocations have finished and the page tables
are about to be updated

1289 Check if there is still no PTE in the entry we are about to use. If two faults hit
here at the same time, it is possible another processor has already completed
the page fault and this one should be backed out

1290-1297 If there is no PTE entered, complete the fault

4.4.2. Demand Allocation 179

1290 Increase the RSS count as the process is now using another page

1291 As the page is about to be mapped to the process space, it is possible for
some architectures that writes to the page in kernel space will not be visible
to the process. flush_page_to_ram() ensures the cache will be coherent

1292 flush_icache_page() is similar in principle except it ensures the icache and
dcache’s are coherent

1293 Create a pte_t with the appropriate permissions

1294-1295 If this is a write, then make sure the PTE has write permissions

1296 Place the new PTE in the process page tables

1297-1302 If the PTE is already filled, the page acquired from the nopage()
function must be released

1299 Decrement the reference count to the page. If it drops to 0, it will be freed

1300-1301 Release the mm_struct lock and return 1 to signal this is a minor page
fault as no major work had to be done for this fault as it was all done by the
winner of the race

1305 Update the MMU cache for architectures that require it

1306-1307 Release the mm_struct lock and return 2 to signal this is a major page
fault

Function: do_anonymous_page (mm/memory.c)
This function allocates a new page for a process accessing a page for the first

time. If it is a read access, a system wide page containing only zeros is mapped into
the process. If it’s write, a zero filled page is allocated and placed within the page
tables

1190 static int do_anonymous_page(struct mm_struct * mm,
struct vm_area_struct * vma,
pte_t *page_table, int write_access,
unsigned long addr)

1191 {
1192 pte_t entry;
1193
1194 /* Read-only mapping of ZERO_PAGE. */
1195 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1196
1197 /* ..except if it’s a write access */
1198 if (write_access) {
1199 struct page *page;

4.4.2. Demand Allocation 180

1200
1201 /* Allocate our own private page. */
1202 spin_unlock(&mm->page_table_lock);
1203
1204 page = alloc_page(GFP_HIGHUSER);
1205 if (!page)
1206 goto no_mem;
1207 clear_user_highpage(page, addr);
1208
1209 spin_lock(&mm->page_table_lock);
1210 if (!pte_none(*page_table)) {
1211 page_cache_release(page);
1212 spin_unlock(&mm->page_table_lock);
1213 return 1;
1214 }
1215 mm->rss++;
1216 flush_page_to_ram(page);
1217 entry = pte_mkwrite(

pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1218 lru_cache_add(page);
1219 mark_page_accessed(page);
1220 }
1221
1222 set_pte(page_table, entry);
1223
1224 /* No need to invalidate - it was non-present before */
1225 update_mmu_cache(vma, addr, entry);
1226 spin_unlock(&mm->page_table_lock);
1227 return 1; /* Minor fault */
1228
1229 no_mem:
1230 return -1;
1231 }

1190 The parameters are the same as those passed to handle_pte_fault()

1195 For read accesses, simply map the system wide empty_zero_page which the
ZERO_PAGE macro returns with the given permissions. The page is write
protected so that a write to the page will result in a page fault

1198-1220 If this is a write fault, then allocate a new page and zero fill it

1202 Unlock the mm_struct as the allocation of a new page could sleep

1204 Allocate a new page

1205 If a page could not be allocated, return -1 to handle the OOM situation

4.4.3. Demand Paging 181

1207 Zero fill the page

1209 Reacquire the lock as the page tables are to be updated

1216 Ensure the cache is coherent

1217 Mark the PTE writable and dirty as it has been written to

1218 Add the page to the LRU list so it may be reclaimed by the swapper later

1219 Mark the page accessed which ensures the page is marked hot and on the top
of the active list

1222 Fix the PTE in the page tables for this process

1225 Update the MMU cache if the architecture needs it

1226 Free the page table lock

1227 Return as a minor fault as even though it is possible the page allocator spent
time writing out pages, data did not have to be read from disk to fill this page

4.4.3 Demand Paging

Function: do_swap_page (mm/memory.c)
This function handles the case where a page has been swapped out. A swapped

out page may exist in the swap cache if it is shared between a number of processes or
recently swapped in during readahead. This function is broken up into three parts

• Search for the page in swap cache

• If it does not exist, call swapin_readahead() to read in the page

• Insert the page into the process page tables

1117 static int do_swap_page(struct mm_struct * mm,
1118 struct vm_area_struct * vma, unsigned long address,
1119 pte_t * page_table, pte_t orig_pte, int write_access)
1120 {
1121 struct page *page;
1122 swp_entry_t entry = pte_to_swp_entry(orig_pte);
1123 pte_t pte;
1124 int ret = 1;
1125
1126 spin_unlock(&mm->page_table_lock);
1127 page = lookup_swap_cache(entry);

Function preamble, check for the page in the swap cache

4.4.3. Demand Paging 182

1117-1119 The parameters are the same as those supplied to handle_pte_fault()

1122 Get the swap entry information from the PTE

1126 Free the mm_struct spinlock

1127 Lookup the page in the swap cache

1128 if (!page) {
1129 swapin_readahead(entry);
1130 page = read_swap_cache_async(entry);
1131 if (!page) {
1136 int retval;
1137 spin_lock(&mm->page_table_lock);
1138 retval = pte_same(*page_table, orig_pte) ? -1 :
1;
1139 spin_unlock(&mm->page_table_lock);
1140 return retval;
1141 }
1142
1143 /* Had to read the page from swap area: Major fault */
1144 ret = 2;
1145 }

If the page did not exist in the swap cache, then read it from backing storage
with swapin_readhead() which reads in the requested pages and a number of pages
after it. Once it completes, read_swap_cache_async() should be able to return the
page.

1128-1145 This block is executed if the page was not in the swap cache

1129 swapin_readahead() reads in the requested page and a number of pages after
it. The number of pages read in is determined by the page_cluster variable
in mm/swap.c which is initialised to 2 on machines with less than 16MiB of
memory and 3 otherwise. 2page_cluster pages are read in after the requested
page unless a bad or empty page entry is encountered

1230 Look up the requested page

1131-1141 If the page does not exist, there was another fault which swapped in
this page and removed it from the cache while spinlocks were dropped

1137 Lock the mm_struct

1138 Compare the two PTE’s. If they do not match, -1 is returned to signal an IO
error, else 1 is returned to mark a minor page fault as a disk access was not
required for this particular page.

4.4.3. Demand Paging 183

1139-1140 Free the mm_struct and return the status

1144 The disk had to be accessed to mark that this is a major page fault

1147 mark_page_accessed(page);
1148
1149 lock_page(page);
1150
1151 /*
1152 * Back out if somebody else faulted in this pte while we
1153 * released the page table lock.
1154 */
1155 spin_lock(&mm->page_table_lock);
1156 if (!pte_same(*page_table, orig_pte)) {
1157 spin_unlock(&mm->page_table_lock);
1158 unlock_page(page);
1159 page_cache_release(page);
1160 return 1;
1161 }
1162
1163 /* The page isn’t present yet, go ahead with the fault. */
1164
1165 swap_free(entry);
1166 if (vm_swap_full())
1167 remove_exclusive_swap_page(page);
1168
1169 mm->rss++;
1170 pte = mk_pte(page, vma->vm_page_prot);
1171 if (write_access && can_share_swap_page(page))
1172 pte = pte_mkdirty(pte_mkwrite(pte));
1173 unlock_page(page);
1174
1175 flush_page_to_ram(page);
1176 flush_icache_page(vma, page);
1177 set_pte(page_table, pte);
1178
1179 /* No need to invalidate - it was non-present before */
1180 update_mmu_cache(vma, address, pte);
1181 spin_unlock(&mm->page_table_lock);
1182 return ret;
1183 }

Place the page in the process page tables

1147 Mark the page as active so it will be moved to the top of the active LRU list

4.4.4. Copy On Write (COW) Pages 184

1149 Lock the page which has the side effect of waiting for the IO swapping in the
page to complete

1155-1161 If someone else faulted in the page before we could, the reference to the
page is dropped, the lock freed and return that this was a minor fault

1165 The function swap_free() reduces the reference to a swap entry. If it drops
to 0, it is actually freed

1166-1167 Page slots in swap space are reserved for pages once they have been
swapped out once if possible. If the swap space is full though, the reservation
is broken and the slot freed up for another page

1169 The page is now going to be used so increment the mm_struct’s RSS count

1170 Make a PTE for this page

1171 If the page is been written to and it is shared between more than one process,
mark it dirty so that it will be kept in sync with the backing storage and swap
cache for other processes

1173 Unlock the page

1175 As the page is about to be mapped to the process space, it is possible for
some architectures that writes to the page in kernel space will not be visible
to the process. flush_page_to_ram() ensures the cache will be coherent

1176 flush_icache_page() is similar in principle except it ensures the icache and
dcache’s are coherent

1177 Set the PTE in the process page tables

1180 Update the MMU cache if the architecture requires it

1181-1182 Unlock the mm_struct and return whether it was a minor or major
page fault

4.4.4 Copy On Write (COW) Pages

4.4.4. Copy On Write (COW) Pages 185

do
_s

w
ap

_p
ag

e

lo
ck

_p
ag

e
un

lo
ck

_p
ag

e

re
ad

_s
w

ap
_c

ac
he

_a
sy

nc

re
m

ov
e_

ex
cl

us
iv

e_
sw

ap
_p

ag
e

sw
ap

in
_r

ea
da

he
ad

ca
n_

sh
ar

e_
sw

ap
_p

ag
e

lo
ok

up
_s

w
ap

_c
ac

he
m

ar
k_

pa
ge

_a
cc

es
se

d
sw

ap
_f

re
e

pa
ge

_w
ai

tq
ue

ue
ex

cl
us

iv
e_

sw
ap

_p
ag

e
ac

tiv
at

e_
pa

ge

ac
tiv

at
e_

pa
ge

_n
ol

oc
k

Figure 4.10: do_swap_page

4.4.4. Copy On Write (COW) Pages 186

do_wp_page

break_cow

establish_pte

can_share_swap_page lru_cache_add copy_cow_page unlock_page

exclusive_swap_page page_waitqueue

Figure 4.11: do_wp_page

Chapter 5

Page Frame Reclamation

5.1 Page Swap Daemon

Function: kswapd_init (mm/vmscan.c)
Start the kswapd kernel thread

767 static int __init kswapd_init(void)
768 {
769 printk("Starting kswapd\n");
770 swap_setup();
771 kernel_thread(kswapd, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL);
772 return 0;
773 }

770 swap_setup() setups up how many pages will be prefetched when reading
from backing storage based on the amount of physical memory

771 Start the kswapd kernel thread

Function: kswapd (mm/vmscan.c)
The main function of the kswapd kernel thread.

720 int kswapd(void *unused)
721 {
722 struct task_struct *tsk = current;
723 DECLARE_WAITQUEUE(wait, tsk);
724
725 daemonize();
726 strcpy(tsk->comm, "kswapd");
727 sigfillset(&tsk->blocked);
728
741 tsk->flags |= PF_MEMALLOC;
742
746 for (;;) {

187

5.1. Page Swap Daemon 188

747 __set_current_state(TASK_INTERRUPTIBLE);
748 add_wait_queue(&kswapd_wait, &wait);
749
750 mb();
751 if (kswapd_can_sleep())
752 schedule();
753
754 __set_current_state(TASK_RUNNING);
755 remove_wait_queue(&kswapd_wait, &wait);
756
762 kswapd_balance();
763 run_task_queue(&tq_disk);
764 }
765 }

725 Call daemonize() which will make this a kernel thread, remove the mm con-
text, close all files and re-parent the process

726 Set the name of the process

727 Ignore all signals

741 By setting this flag, the physical page allocator will always try to satisfy
requests for pages. As this process will always be trying to free pages, it is
worth satisfying requests

746-764 Endlessly loop

747-748 This adds kswapd to the wait queue in preparation to sleep

750 The Memory Block (mb) function ensures that all reads and writes that oc-
curred before this line will be visible to all CPU’s

751 kswapd_can_sleep() cycles through all nodes and zones checking the need_balance
field. If any of them are set to 1, kswapd can not sleep

752 By calling schedule, kswapd will sleep until woken again by the physical page
allocator

754-755 Once woken up, kswapd is removed from the wait queue as it is now
running

762 kswapd_balance() cycles through all zones and calls try_to_free_pages_zone()
for each zone that requires balance

763 Run the task queue for processes waiting to write to disk

5.1. Page Swap Daemon 189

Function: kswapd_can_sleep (mm/vmscan.c)
Simple function to cycle through all pgdats to call kswapd_can_sleep_pgdat()

on each.

695 static int kswapd_can_sleep(void)
696 {
697 pg_data_t * pgdat;
698
699 for_each_pgdat(pgdat) {
700 if (!kswapd_can_sleep_pgdat(pgdat))
701 return 0;
702 }
703
704 return 1;
705 }

699-702 for_each_pgdat() does exactly as the name implies. It cycles through
all available pgdat’s. On the x86, there will only be one

Function: kswapd_can_sleep_pgdat (mm/vmscan.c)
Cycles through all zones to make sure none of them need balance.

680 static int kswapd_can_sleep_pgdat(pg_data_t * pgdat)
681 {
682 zone_t * zone;
683 int i;
684
685 for (i = pgdat->nr_zones-1; i >= 0; i--) {
686 zone = pgdat->node_zones + i;
687 if (!zone->need_balance)
688 continue;
689 return 0;
690 }
691
692 return 1;
693 }

685-689 Simple for loop to cycle through all zones

686 The node_zones field is an array of all available zones so adding i gives the
index

687-688 If the zone does not need balance, continue

689 0 is returned if any needs balance indicating kswapd can not sleep

692 Return indicating kswapd can sleep if the for loop completes

5.1. Page Swap Daemon 190

Function: kswapd_balance (mm/vmscan.c)
Continuously cycle through each pgdat until none require balancing

667 static void kswapd_balance(void)
668 {
669 int need_more_balance;
670 pg_data_t * pgdat;
671
672 do {
673 need_more_balance = 0;
674
675 for_each_pgdat(pgdat)
676 need_more_balance |= kswapd_balance_pgdat(pgdat);
677 } while (need_more_balance);
678 }

672-677 Continuously cycle through each pgdat

675 For each pgdat, call kswapd_balance_pgdat(). If any of them had required
balancing, need_more_balance will be equal to 1

Function: kswapd_balance_pgdat (mm/vmscan.c)

641 static int kswapd_balance_pgdat(pg_data_t * pgdat)
642 {
643 int need_more_balance = 0, i;
644 zone_t * zone;
645
646 for (i = pgdat->nr_zones-1; i >= 0; i--) {
647 zone = pgdat->node_zones + i;
648 if (unlikely(current->need_resched))
649 schedule();
650 if (!zone->need_balance)
651 continue;
652 if (!try_to_free_pages_zone(zone, GFP_KSWAPD)) {
653 zone->need_balance = 0;
654 __set_current_state(TASK_INTERRUPTIBLE);
655 schedule_timeout(HZ);
656 continue;
657 }
658 if (check_classzone_need_balance(zone))
659 need_more_balance = 1;
660 else
661 zone->need_balance = 0;
662 }
663

5.2. Page Cache 191

664 return need_more_balance;
665 }

646-662 Cycle through each zone and call try_to_free_pages_zone() if it needs
re-balancing

647 node_zones is an array and i is an index within it

648-649 Call schedule() if the quanta is expired to prevent kswapd hogging the
CPU

650-651 If the zone does not require balance, move to the next one

652-657 If the function returns 0, it means the out_of_memory() function was
called because a sufficient number of pages could not be freed. kswapd sleeps
for 1 second to give the system a chance to reclaim the killed processes pages

658-661 If is was successful, check_classzone_need_balance() is called to see if
the zone requires further balancing or not

664 Return 1 if one zone requires further balancing

5.2 Page Cache

Function: lru_cache_add (mm/swap.c)
Adds a page to the LRU inactive_list.

58 void lru_cache_add(struct page * page)
59 {
60 if (!PageLRU(page)) {
61 spin_lock(&pagemap_lru_lock);
62 if (!TestSetPageLRU(page))
63 add_page_to_inactive_list(page);
64 spin_unlock(&pagemap_lru_lock);
65 }
66 }

60 If the page is not already part of the LRU lists, add it

61 Acquire the LRU lock

62-63 Test and set the LRU bit. If it was clear then call add_page_to_inactive_list()

64 Release the LRU lock

5.2. Page Cache 192

Function: add_page_to_active_list (include/linux/swap.h)
Adds the page to the active_list

179 #define add_page_to_active_list(page) \
180 do { \
181 DEBUG_LRU_PAGE(page); \
182 SetPageActive(page); \
183 list_add(&(page)->lru, &active_list); \
184 nr_active_pages++; \
185 } while (0)

181 The DEBUG_LRU_PAGE() macro will call BUG() if the page is already on the
LRU list or is marked been active

182 Update the flags of the page to show it is active

183 Add the page to the active_list

184 Update the count of the number of pages in the active_list

Function: add_page_to_inactive_list (include/linux/swap.h)
Adds the page to the inactive_list

187 #define add_page_to_inactive_list(page) \
188 do { \
189 DEBUG_LRU_PAGE(page); \
190 list_add(&(page)->lru, &inactive_list); \
191 nr_inactive_pages++; \
192 } while (0)

189 The DEBUG_LRU_PAGE() macro will call BUG() if the page is already on the
LRU list or is marked been active

190 Add the page to the inactive_list

191 Update the count of the number of inactive pages on the list

Function: lru_cache_del (mm/swap.c)
Acquire the lock protecting the LRU lists before calling __lru_cache_del().

90 void lru_cache_del(struct page * page)
91 {
92 spin_lock(&pagemap_lru_lock);
93 __lru_cache_del(page);
94 spin_unlock(&pagemap_lru_lock);
95 }

92 Acquire the LRU lock

93 __lru_cache_del() does the “real” work of removing the page from the LRU
lists

94 Release the LRU lock

5.2. Page Cache 193

Function: __lru_cache_del (mm/swap.c)
Select which function is needed to remove the page from the LRU list.

75 void __lru_cache_del(struct page * page)
76 {
77 if (TestClearPageLRU(page)) {
78 if (PageActive(page)) {
79 del_page_from_active_list(page);
80 } else {
81 del_page_from_inactive_list(page);
82 }
83 }
84 }

77 Test and clear the flag indicating the page is in the LRU

78-82 If the page is on the LRU, select the appropriate removal function

78-79 If the page is active, then call del_page_from_active_list() else call
del_page_from_inactive_list()

Function: del_page_from_active_list (include/linux/swap.h)
Remove the page from the active_list

194 #define del_page_from_active_list(page) \
195 do { \
196 list_del(&(page)->lru); \
197 ClearPageActive(page); \
198 nr_active_pages--; \
199 } while (0)

196 Delete the page from the list

197 Clear the flag indicating it is part of active_list. The flag indicating it is
part of the LRU list has already been cleared by __lru_cache_del()

198 Update the count of the number of pages in the active_list

Function: del_page_from_inactive_list (include/linux/swap.h)

201 #define del_page_from_inactive_list(page) \
202 do { \
203 list_del(&(page)->lru); \
204 nr_inactive_pages--; \
205 } while (0)

203 Remove the page from the LRU list

204 Update the count of the number of pages in the inactive_list

5.2. Page Cache 194

Function: mark_page_accessed (mm/filemap.c)
This marks that a page has been referenced. If the page is already on the

active_list or the referenced flag is clear, the referenced flag will be simply set. If
it is in the inactive_list and the referenced flag has been set, activate_page()
will be called to move the page to the top of the active_list.

1316 void mark_page_accessed(struct page *page)
1317 {
1318 if (!PageActive(page) && PageReferenced(page)) {
1319 activate_page(page);
1320 ClearPageReferenced(page);
1321 } else
1322 SetPageReferenced(page);
1323 }

1318-1321 If the page is on the inactive_list (!PageActive) and has been ref-
erenced recently (PageReferenced), activate_page() is called to move it to
the active_list

1322 Otherwise, mark the page as been referenced

Function: activate_lock (mm/swap.c)
Acquire the LRU lock before calling activate_page_nolock() which moves the

page from the inactive_list to the active_list.

47 void activate_page(struct page * page)
48 {
49 spin_lock(&pagemap_lru_lock);
50 activate_page_nolock(page);
51 spin_unlock(&pagemap_lru_lock);
52 }

49 Acquire the LRU lock

50 Call the main work function

51 Release the LRU lock

Function: activate_page_nolock (mm/swap.c)
Move the page from the inactive_list to the active_list

39 static inline void activate_page_nolock(struct page * page)
40 {
41 if (PageLRU(page) && !PageActive(page)) {
42 del_page_from_inactive_list(page);
43 add_page_to_active_list(page);
44 }
45 }

5.2. Page Cache 195

41 Make sure the page is on the LRU and not already on the active_list

42-43 Delete the page from the inactive_list and add to the active_list

Function: page_cache_get (include/linux/pagemap.h)

31 #define page_cache_get(x) get_page(x)

31 Simple call get_page() which simply uses atomic_inc() to increment the page
reference count

Function: page_cache_release (include/linux/pagemap.h)

32 #define page_cache_release(x) __free_page(x)

32 Call __free_page() which decrements the page count. If the count reaches 0,
the page will be freed

Function: add_to_page_cache (mm/filemap.c)
Acquire the lock protecting the page cache before calling __add_to_page_cache()

which will add the page to the page hash table and inode queue which allows the
pages belonging to files to be found quickly.

665 void add_to_page_cache(struct page * page,
struct address_space * mapping,
unsigned long offset)

666 {
667 spin_lock(&pagecache_lock);
668 __add_to_page_cache(page, mapping,

offset, page_hash(mapping, offset));
669 spin_unlock(&pagecache_lock);
670 lru_cache_add(page);
671 }

667 Acquire the lock protecting the page hash and inode queues

668 Call the function which performs the “real” work

669 Release the lock protecting the hash and inode queue

670 Add the page to the page cache

5.3. Shrinking all caches 196

Function: __add_to_page_cache (mm/filemap.c)
Clear all page flags, lock it, take a reference and add it to the inode and hash

queues.

651 static inline void __add_to_page_cache(struct page * page,
652 struct address_space *mapping, unsigned long offset,
653 struct page **hash)
654 {
655 unsigned long flags;
656
657 flags = page->flags & ~(1 << PG_uptodate |

1 << PG_error | 1 << PG_dirty |
1 << PG_referenced | 1 << PG_arch_1 |
1 << PG_checked);

658 page->flags = flags | (1 << PG_locked);
659 page_cache_get(page);
660 page->index = offset;
661 add_page_to_inode_queue(mapping, page);
662 add_page_to_hash_queue(page, hash);
663 }

657 Clear all page flags

658 Lock the page

659 Take a reference to the page in case it gets freed prematurely

660 Update the index so it is known what file offset this page represents

661 Add the page to the inode queue. This links the page via the page→list to
the clean_pages list in the address_space and points the page→mapping to
the same address_space

662 Add it to the page hash. Pages are hashed based on the address_space and
the inode. It allows pages belonging to an address_space to be found without
having to lineraly search the inode queue

5.3 Shrinking all caches

Function: shrink_caches (mm/vmscan.c)

560 static int shrink_caches(zone_t * classzone, int priority,
unsigned int gfp_mask, int nr_pages)

561 {
562 int chunk_size = nr_pages;
563 unsigned long ratio;

5.3. Shrinking all caches 197

shrink_caches

shrink_icache_memory shrink_dcache_memory kmem_cache_reap refill_inactive shrink_cache

try_to_release_page __delete_from_swap_cache swap_free __free_pages __remove_inode_page swap_out

try_to_free_buffers swap_out_mm mmput

find_vma swap_out_vma

swap_out_pgd

swap_out_pmd

try_to_swap_out

Figure 5.1: shrink_cache

5.3. Shrinking all caches 198

564
565 nr_pages -= kmem_cache_reap(gfp_mask);
566 if (nr_pages <= 0)
567 return 0;
568
569 nr_pages = chunk_size;
570 /* try to keep the active list 2/3 of the size of the cache */
571 ratio = (unsigned long) nr_pages *

nr_active_pages / ((nr_inactive_pages + 1) * 2);
572 refill_inactive(ratio);
573
574 nr_pages = shrink_cache(nr_pages, classzone, gfp_mask, priority);
575 if (nr_pages <= 0)
576 return 0;
577
578 shrink_dcache_memory(priority, gfp_mask);
579 shrink_icache_memory(priority, gfp_mask);
580 #ifdef CONFIG_QUOTA
581 shrink_dqcache_memory(DEF_PRIORITY, gfp_mask);
582 #endif
583
584 return nr_pages;
585 }

560 The parameters are as follows;

classzone is the zone that pages should be freed from

priority determines how much work will be done to free pages

gfp_mask determines what sort of actions may be taken

nr_pages is the number of pages remaining to be freed

565-567 Ask the slab allocator to free up some pages. If enough are freed, the
function returns otherwise nr_pages will be freed from other caches

571-572Move pages from the active_list to the inactive_list with refill_inactive().
The number of pages moved depends on how many pages need to be freed and
to have active_list about two thirds the size of the page cache

574-575 Shrink the page cache, if enough pages are freed, return

578-582 Shrink the dcache, icache and dqcache. These are small objects in them-
selves but the cascading effect frees up a lot of disk buffers

584 Return the number of pages remaining to be freed

5.3. Shrinking all caches 199

Function: try_to_free_pages (mm/vmscan.c)
This function cycles through all pgdats and zones and tries to balance all of

them. It is only called by the buffer manager when it fails to create new buffers or
grow existing ones.

607 int try_to_free_pages(unsigned int gfp_mask)
608 {
609 pg_data_t *pgdat;
610 zonelist_t *zonelist;
611 unsigned long pf_free_pages;
612 int error = 0;
613
614 pf_free_pages = current->flags & PF_FREE_PAGES;
615 current->flags &= ~PF_FREE_PAGES;
616
617 for_each_pgdat(pgdat) {
618 zonelist = pgdat->node_zonelists +

(gfp_mask & GFP_ZONEMASK);
619 error |= try_to_free_pages_zone(

zonelist->zones[0], gfp_mask);
620 }
621
622 current->flags |= pf_free_pages;
623 return error;
624 }

614-615 This clears the PF_FREE_PAGES flag if it is set so that pages freed by
the process will be returned to the global pool rather than reserved for the
process itself

617-620 Cycle through all nodes and zones and call try_to_free_pages() for
each

622-623 Restore the process flags and return the result

Function: try_to_free_pages_zone (mm/vmscan.c)
Try to free SWAP_CLUSTER_MAX pages from the supplied zone.

587 int try_to_free_pages_zone(zone_t *classzone, unsigned int gfp_mask)
588 {
589 int priority = DEF_PRIORITY;
590 int nr_pages = SWAP_CLUSTER_MAX;
591
592 gfp_mask = pf_gfp_mask(gfp_mask);
593 do {
594 nr_pages = shrink_caches(classzone, priority,

5.4. Refilling inactive_list 200

gfp_mask, nr_pages);
595 if (nr_pages <= 0)
596 return 1;
597 } while (--priority);
598
599 /*
600 * Hmm.. Cache shrink failed - time to kill something?
601 * Mhwahahhaha! This is the part I really like. Giggle.
602 */
603 out_of_memory();
604 return 0;
605 }

589 Start with the lowest priority. Statically defined to be 6

590 Try and free SWAP_CLUSTER_MAX pages. Statically defined to be 32

592 pf_gfp_mask() checks the PF_NOIO flag in the current process flags. If no
IO can be performed, it ensures there is no incompatible flags in the GFP
mask

593-597 Starting with the lowest priority and increasing with each pass, call
shrink_caches() until nr_pages has been freed

595-596 If enough pages were freed, return indicating that the work is complete

603 If enough pages could not be freed even at highest priority (where at worst the
full inactive_list is scanned) then check to see if we are out of memory. If
we are, then a process will be selected to be killed

604 Return indicating that we failed to free enough pages

5.4 Refilling inactive_list

Function: refill_inactive (mm/vmscan.c)
Move nr_pages from the active_list to the inactive_list

533 static void refill_inactive(int nr_pages)
534 {
535 struct list_head * entry;
536
537 spin_lock(&pagemap_lru_lock);
538 entry = active_list.prev;
539 while (nr_pages && entry != &active_list) {
540 struct page * page;
541

5.5. Reclaiming pages from the page cache 201

542 page = list_entry(entry, struct page, lru);
543 entry = entry->prev;
544 if (PageTestandClearReferenced(page)) {
545 list_del(&page->lru);
546 list_add(&page->lru, &active_list);
547 continue;
548 }
549
550 nr_pages--;
551
552 del_page_from_active_list(page);
553 add_page_to_inactive_list(page);
554 SetPageReferenced(page);
555 }
556 spin_unlock(&pagemap_lru_lock);
557 }

537 Acquire the lock protecting the LRU list

538 Take the last entry in the active_list

539-555 Move nr_pages or until the active_list is empty

542 Get the struct page for this entry

544-548 Test and clear the referenced flag. If it has been referenced, then it is
moved back to the top of the active_list

550-553 Move one page from the active_list to the inactive_list

554 Mark it referenced so that if it is referenced again soon, it will be promoted
back to the active_list without requiring a second reference

556 Release the lock protecting the LRU list

5.5 Reclaiming pages from the page cache

Function: shrink_cache (mm/vmscan.c)

338 static int shrink_cache(int nr_pages, zone_t * classzone,
unsigned int gfp_mask, int priority)

339 {
340 struct list_head * entry;
341 int max_scan = nr_inactive_pages / priority;
342 int max_mapped = min((nr_pages << (10 - priority)),

max_scan / 10);
343

5.5. Reclaiming pages from the page cache 202

344 spin_lock(&pagemap_lru_lock);
345 while (--max_scan >= 0 &&

(entry = inactive_list.prev) != &inactive_list) {

338 The parameters are as follows;

nr_pages The number of pages to swap out

classzone The zone we are interested in swapping pages out for. Pages not
belonging to this zone are skipped

gfp_mask The gfp mask determining what actions may be taken

priority The priority of the function, starts at DEF_PRIORITY (6) and
decreases to the highest priority of 1

341 The maximum number of pages to scan is the number of pages in the active_list
divided by the priority. At lowest priority, 1/6th of the list may scanned. At
highest priority, the full list may be scanned

342 The maximum amount of process mapped pages allowed is either one tenth
of the max_scan value or nrpages ∗ 210−priority. If this number of pages are
found, whole processes will be swapped out

344 Lock the LRU list

345 Keep scanning until max_scan pages have been scanned or the inactive_list
is empty

346 struct page * page;
347
348 if (unlikely(current->need_resched)) {
349 spin_unlock(&pagemap_lru_lock);
350 __set_current_state(TASK_RUNNING);
351 schedule();
352 spin_lock(&pagemap_lru_lock);
353 continue;
354 }
355

348-354 Reschedule if the quanta has been used up

349 Free the LRU lock as we are about to sleep

350 Show we are still running

351 Call schedule() so another process can be context switched in

352 Re-acquire the LRU lock

5.5. Reclaiming pages from the page cache 203

353 Move to the next page, this has the curious side effect of skipping over one
page. It is unclear why this happens and is possibly a bug

356 page = list_entry(entry, struct page, lru);
357
358 BUG_ON(!PageLRU(page));
359 BUG_ON(PageActive(page));
360
361 list_del(entry);
362 list_add(entry, &inactive_list);
363
364 /*
365 * Zero page counts can happen because we unlink the pages
366 * _after_ decrementing the usage count..
367 */
368 if (unlikely(!page_count(page)))
369 continue;
370
371 if (!memclass(page_zone(page), classzone))
372 continue;
373
374 /* Racy check to avoid trylocking when not worthwhile */
375 if (!page->buffers &&

(page_count(page) != 1 || !page->mapping))
376 goto page_mapped;
377
3

356 Get the struct page for this entry in the LRU

358-359 It is a bug if the page either belongs to the active_list or is currently
marked as active

361-362 Move the page to the top of the inactive_list so that if the page is
skipped, it will not be simply examined a second time

368-369 If the page count has already reached 0, skip over it. This is possible if
another process has just unlinked the page and is waiting for something like
IO to complete before removing it from the LRU

371-372 Skip over this page if it belongs to a zone we are not currently interested
in

375-376 If the page is mapped by a process, then goto page_mapped where the
max_mapped is decremented and next page examined. If max_mapped reaches
0, process pages will be swapped out

5.5. Reclaiming pages from the page cache 204

382 if (unlikely(TryLockPage(page))) {
383 if (PageLaunder(page) && (gfp_mask & __GFP_FS)) {
384 page_cache_get(page);
385 spin_unlock(&pagemap_lru_lock);
386 wait_on_page(page);
387 page_cache_release(page);
388 spin_lock(&pagemap_lru_lock);
389 }
390 continue;
391 }

Page is locked and the launder bit is set. In this case, wait until the IO is
complete and then try to free the page

382-383 If we could not lock the page, the PG_launder bit is set and the GFP
flags allow the caller to perform FS operations, then...

384 Take a reference to the page so it does not disappear while we sleep

385 Free the LRU lock

386 Wait until the IO is complete

387 Release the reference to the page. If it reaches 0, the page will be freed

388 Re-acquire the LRU lock

390 Move to the next page

392
393 if (PageDirty(page) &&

is_page_cache_freeable(page) && page->mapping) {
402 int (*writepage)(struct page *);
403
404 writepage = page->mapping->a_ops->writepage;
405 if ((gfp_mask & __GFP_FS) && writepage) {
406 ClearPageDirty(page);
407 SetPageLaunder(page);
408 page_cache_get(page);
409 spin_unlock(&pagemap_lru_lock);
410
411 writepage(page);
412 page_cache_release(page);
413
414 spin_lock(&pagemap_lru_lock);
415 continue;
416 }
417 }

5.5. Reclaiming pages from the page cache 205

This handles the case where a page is dirty, is not mapped by any process has
no buffers and is backed by a file or device mapping. The page is cleaned and will
be removed by the previous block of code during the next pass through the list.

393 PageDirty checks the PG_dirty bit, is_page_cache_freeable() will return
true if it is not mapped by any process and has no buffers

404 Get a pointer to the necessary writepage() function for this mapping or device

405-416 This block of code can only be executed if a writepage() function is
available and the GFP flags allow file operations

406-407 Clear the dirty bit and mark that the page is being laundered

408 Take a reference to the page so it will not be freed unexpectedly

409 Unlock the LRU list

411 Call the writepage function

412 Release the reference to the page

414-415 Re-acquire the LRU list lock and move to the next page

424 if (page->buffers) {
425 spin_unlock(&pagemap_lru_lock);
426
427 /* avoid to free a locked page */
428 page_cache_get(page);
429
430 if (try_to_release_page(page, gfp_mask)) {
431 if (!page->mapping) {
438 spin_lock(&pagemap_lru_lock);
439 UnlockPage(page);
440 __lru_cache_del(page);
441
443 page_cache_release(page);
444
445 if (--nr_pages)
446 continue;
447 break;
448 } else {
454 page_cache_release(page);
455
456 spin_lock(&pagemap_lru_lock);
457 }
458 } else {
460 UnlockPage(page);

5.5. Reclaiming pages from the page cache 206

461 page_cache_release(page);
462
463 spin_lock(&pagemap_lru_lock);
464 continue;
465 }
466 }

Page has buffers associated with it that must be freed.

425 Release the LRU lock as we may sleep

428 Take a reference to the page

430 Call try_to_release_page() which will attempt to release the buffers asso-
ciated with the page. Returns 1 if it succeeds

431-447 Handle where the release of buffers succeeded

431-448 If the mapping is not filled, it is an anonymous page which must be
removed from the page cache

438-440 Take the LRU list lock, unlock the page, delete it from the page cache
and free it

445-446 Update nr_pages to show a page has been freed and move to the next
page

447 If nr_pages drops to 0, then exit the loop as the work is completed

449-456 If the page does have an associated mapping then simply drop the refer-
ence to the page and re-acquire the LRU lock

459-464 If the buffers could not be freed, then unlock the page, drop the reference
to it, re-acquire the LRU lock and move to the next page

467
468 spin_lock(&pagecache_lock);
469
473 if (!page->mapping || !is_page_cache_freeable(page)) {
474 spin_unlock(&pagecache_lock);
475 UnlockPage(page);
476 page_mapped:
477 if (--max_mapped >= 0)
478 continue;
479
484 spin_unlock(&pagemap_lru_lock);
485 swap_out(priority, gfp_mask, classzone);
486 return nr_pages;
487 }

5.5. Reclaiming pages from the page cache 207

468 From this point on, pages in the swap cache are likely to be examined which
is protected by the pagecache_lock which must be now held

473-487 An anonymous page with no buffers is mapped by a process

474-475 Release the page cache lock and the page

477-478 Decrement max_mapped. If it has not reached 0, move to the next page

484-485 Too many mapped pages have been found in the page cache. The LRU lock
is released and swap_out() is called to begin swapping out whole processes

493 if (PageDirty(page)) {
494 spin_unlock(&pagecache_lock);
495 UnlockPage(page);
496 continue;
497 }

493-497 The page has no references but could have been dirtied by the last process
to free it if the dirty bit was set in the PTE. It is left in the page cache and
will get laundered later. Once it has been cleaned, it can be safely deleted

498
499 /* point of no return */
500 if (likely(!PageSwapCache(page))) {
501 __remove_inode_page(page);
502 spin_unlock(&pagecache_lock);
503 } else {
504 swp_entry_t swap;
505 swap.val = page->index;
506 __delete_from_swap_cache(page);
507 spin_unlock(&pagecache_lock);
508 swap_free(swap);
509 }
510
511 __lru_cache_del(page);
512 UnlockPage(page);
513
514 /* effectively free the page here */
515 page_cache_release(page);
516
517 if (--nr_pages)
518 continue;
519 break;
520 }

500-503 If the page does not belong to the swap cache, it is part of the inode queue
so it is removed

5.6. Swapping Out Process Pages 208

504-508 Remove it from the swap cache as there is no more references to it

511 Delete it from the page cache

512 Unlock the page

515 Free the page

517-518 Decrement the nr_page and move to the next page if it is not 0

519 If it reaches 0, the work of the function is complete

521 spin_unlock(&pagemap_lru_lock);
522
523 return nr_pages;
524 }

521-524 Function exit. Free the LRU lock and return the number of pages left to
free

5.6 Swapping Out Process Pages

swap_out

swap_out_mm mmput

find_vma swap_out_vma

swap_out_pgd

swap_out_pmd

try_to_swap_out

Figure 5.2: Call Graph: swap_out

5.6. Swapping Out Process Pages 209

Function: swap_out (mm/vmscan.c)
This function linearaly searches through every processes page tables trying to

swap out SWAP_CLUSTER_MAX number of pages. The process it starts with is
the swap_mm and the starting address is mm→swap_address

296 static int swap_out(unsigned int priority, unsigned int gfp_mask,
zone_t * classzone)

297 {
298 int counter, nr_pages = SWAP_CLUSTER_MAX;
299 struct mm_struct *mm;
300
301 counter = mmlist_nr;
302 do {
303 if (unlikely(current->need_resched)) {
304 __set_current_state(TASK_RUNNING);
305 schedule();
306 }
307
308 spin_lock(&mmlist_lock);
309 mm = swap_mm;
310 while (mm->swap_address == TASK_SIZE || mm == &init_mm) {
311 mm->swap_address = 0;
312 mm = list_entry(mm->mmlist.next,

struct mm_struct, mmlist);
313 if (mm == swap_mm)
314 goto empty;
315 swap_mm = mm;
316 }
317
318 /* Make sure the mm doesn’t disappear

when we drop the lock.. */
319 atomic_inc(&mm->mm_users);
320 spin_unlock(&mmlist_lock);
321
322 nr_pages = swap_out_mm(mm, nr_pages, &counter, classzone);
323
324 mmput(mm);
325
326 if (!nr_pages)
327 return 1;
328 } while (--counter >= 0);
329
330 return 0;
331
332 empty:

5.6. Swapping Out Process Pages 210

333 spin_unlock(&mmlist_lock);
334 return 0;
335 }

301 Set the counter so the process list is only scanned once

303-306 Reschedule if the quanta has been used up to prevent CPU hogging

308 Acquire the lock protecting the mm list

309 Start with the swap_mm. It is interesting this is never checked to make sure it is
valid. It is possible, albeit unlikely that the mm has been freed since the last
scan and the slab holding the mm_struct released making the pointer totally
invalid. The lack of bug reports might be because the slab never managed to
get freed up and would be difficult to trigger

310-316Move to the next process if the swap_address has reached the TASK_SIZE
or if the mm is the init_mm

311 Start at the beginning of the process space

312 Get the mm for this process

313-314 If it is the same, there is no running processes that can be examined

315 Record the swap_mm for the next pass

319 Increase the reference count so that the mm does not get freed while we are
scanning

320 Release the mm lock

322 Begin scanning the mm with swap_out_mm()

324 Drop the reference to the mm

326-327 If the required number of pages has been freed, return success

328 If we failed on this pass, increase the priority so more processes will be scanned

330 Return failure

Function: swap_out_mm (mm/vmscan.c)
Walk through each VMA and call swap_out_mm() for each one.

256 static inline int swap_out_mm(struct mm_struct * mm, int count,
int * mmcounter, zone_t * classzone)

257 {
258 unsigned long address;
259 struct vm_area_struct* vma;

5.6. Swapping Out Process Pages 211

260
265 spin_lock(&mm->page_table_lock);
266 address = mm->swap_address;
267 if (address == TASK_SIZE || swap_mm != mm) {
268 /* We raced: don’t count this mm but try again */
269 ++*mmcounter;
270 goto out_unlock;
271 }
272 vma = find_vma(mm, address);
273 if (vma) {
274 if (address < vma->vm_start)
275 address = vma->vm_start;
276
277 for (;;) {
278 count = swap_out_vma(mm, vma, address,

count, classzone);
279 vma = vma->vm_next;
280 if (!vma)
281 break;
282 if (!count)
283 goto out_unlock;
284 address = vma->vm_start;
285 }
286 }
287 /* Indicate that we reached the end of address space */
288 mm->swap_address = TASK_SIZE;
289
290 out_unlock:
291 spin_unlock(&mm->page_table_lock);
292 return count;
293 }

265 Acquire the page table lock for this mm

266 Start with the address contained in swap_address

267-271 If the address is TASK_SIZE, it means that a thread raced and scanned
this process already. Increase mmcounter so that swap_out_mm() knows to go
to another process

272 Find the VMA for this address

273 Presuming a VMA was found then

274-275 Start at the beginning of the VMA

5.6. Swapping Out Process Pages 212

277-285 Scan through this and each subsequent VMA calling swap_out_vma() for
each one. If the requisite number of pages (count) is freed, then finish scanning
and return

288 Once the last VMA has been scanned, set swap_address to TASK_SIZE so
that this process will be skipped over by swap_out_mm() next time

Function: swap_out_vma (mm/vmscan.c)
Walk through this VMA and for each PGD in it, call swap_out_pgd().

227 static inline int swap_out_vma(struct mm_struct * mm,
struct vm_area_struct * vma,
unsigned long address, int count,
zone_t * classzone)

228 {
229 pgd_t *pgdir;
230 unsigned long end;
231
232 /* Don’t swap out areas which are reserved */
233 if (vma->vm_flags & VM_RESERVED)
234 return count;
235
236 pgdir = pgd_offset(mm, address);
237
238 end = vma->vm_end;
239 BUG_ON(address >= end);
240 do {
241 count = swap_out_pgd(mm, vma, pgdir,

address, end, count, classzone);
242 if (!count)
243 break;
244 address = (address + PGDIR_SIZE) & PGDIR_MASK;
245 pgdir++;
246 } while (address && (address < end));
247 return count;
248 }

233-234 Skip over this VMA if the VM_RESERVED flag is set. This is used by
some device drivers such as the SCSI generic driver

236 Get the starting PGD for the address

238 Mark where the end is and BUG it if the starting address is somehow past the
end

240 Cycle through PGD’s until the end address is reached

5.6. Swapping Out Process Pages 213

241 Call swap_out_pgd() keeping count of how many more pages need to be freed

242-243 If enough pages have been freed, break and return

244-245 Move to the next PGD and move the address to the next PGD aligned
address

247 Return the remaining number of pages to be freed

Function: swap_out_pgd (mm/vmscan.c)
Step through all PMD’s in the supplied PGD and call swap_out_pmd()

197 static inline int swap_out_pgd(struct mm_struct * mm,
struct vm_area_struct * vma, pgd_t *dir,
unsigned long address, unsigned long end,
int count, zone_t * classzone)

198 {
199 pmd_t * pmd;
200 unsigned long pgd_end;
201
202 if (pgd_none(*dir))
203 return count;
204 if (pgd_bad(*dir)) {
205 pgd_ERROR(*dir);
206 pgd_clear(dir);
207 return count;
208 }
209
210 pmd = pmd_offset(dir, address);
211
212 pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK;
213 if (pgd_end && (end > pgd_end))
214 end = pgd_end;
215
216 do {
217 count = swap_out_pmd(mm, vma, pmd, address, end, count,
classzone);
218 if (!count)
219 break;
220 address = (address + PMD_SIZE) & PMD_MASK;
221 pmd++;
222 } while (address && (address < end));
223 return count;
224 }

202-203 If there is no PGD, return

5.6. Swapping Out Process Pages 214

204-208 If the PGD is bad, flag it as such and return

210 Get the starting PMD

212-214 Calculate the end to be the end of this PGD or the end of the VMA been
scanned, whichever is closer

216-222 For each PMD in this PGD, call swap_out_pmd(). If enough pages get
freed, break and return

223 Return the number of pages remaining to be freed

Function: swap_out_pmd (mm/vmscan.c)
For each PTE in this PMD, call try_to_swap_out(). On completion, mm→swap_address

is updated to show where we finished to prevent the same page been examined soon
after this scan.

158 static inline int swap_out_pmd(struct mm_struct * mm,
struct vm_area_struct * vma, pmd_t *dir,
unsigned long address, unsigned long end,
int count, zone_t * classzone)

159 {
160 pte_t * pte;
161 unsigned long pmd_end;
162
163 if (pmd_none(*dir))
164 return count;
165 if (pmd_bad(*dir)) {
166 pmd_ERROR(*dir);
167 pmd_clear(dir);
168 return count;
169 }
170
171 pte = pte_offset(dir, address);
172
173 pmd_end = (address + PMD_SIZE) & PMD_MASK;
174 if (end > pmd_end)
175 end = pmd_end;
176
177 do {
178 if (pte_present(*pte)) {
179 struct page *page = pte_page(*pte);
180
181 if (VALID_PAGE(page) && !PageReserved(page)) {
182 count -= try_to_swap_out(mm, vma,

address, pte,

5.6. Swapping Out Process Pages 215

page, classzone);
183 if (!count) {
184 address += PAGE_SIZE;
185 break;
186 }
187 }
188 }
189 address += PAGE_SIZE;
190 pte++;
191 } while (address && (address < end));
192 mm->swap_address = address;
193 return count;
194 }

163-164 Return if there is no PMD

165-169 If the PMD is bad, flag it as such and return

171 Get the starting PTE

173-175 Calculate the end to be the end of the PMD or the end of the VMA,
whichever is closer

177-191 Cycle through each PTE

178 Make sure the PTE is marked present

179 Get the struct page for this PTE

181 If it is a valid page and it is not reserved then ...

182 Call try_to_swap_out()

183-186 If enough pages have been swapped out, move the address to the next
page and break to return

189-190 Move to the next page and PTE

192 Update the swap_address to show where we last finished off

193 Return the number of pages remaining to be freed

Function: try_to_swap_out (mm/vmscan.c)
This function tries to swap out a page from a process. It is quite a large function

so will be dealt with in parts. Broadly speaking they are

• Function preamble, ensure this is a page that should be swapped out

• Remove the page and PTE from the page tables

5.6. Swapping Out Process Pages 216

• Handle the case where the page is already in the swap cache

• Handle the case where the page is dirty or has associated buffers

• Handle the case where the page is been added to the swap cache

47 static inline int try_to_swap_out(struct mm_struct * mm,
struct vm_area_struct* vma,
unsigned long address,
pte_t * page_table,
struct page *page,
zone_t * classzone)

48 {
49 pte_t pte;
50 swp_entry_t entry;
51
52 /* Don’t look at this pte if it’s been accessed recently. */
53 if ((vma->vm_flags & VM_LOCKED) ||

ptep_test_and_clear_young(page_table)) {
54 mark_page_accessed(page);
55 return 0;
56 }
57
58 /* Don’t bother unmapping pages that are active */
59 if (PageActive(page))
60 return 0;
61
62 /* Don’t bother replenishing zones not under pressure.. */
63 if (!memclass(page_zone(page), classzone))
64 return 0;
65
66 if (TryLockPage(page))
67 return 0;

53-56 If the page is locked (for tasks like IO) or the PTE shows the page has been
accessed recently then clear the referenced bit and call mark_page_accessed()
to make the struct page reflect the age. Return 0 to show it was not swapped
out

59-60 If the page is on the active_list, do not swap it out

63-64 If the page belongs to a zone we are not interested in, do not swap it out

66-67 If the page could not be locked, do not swap it out

74 flush_cache_page(vma, address);
75 pte = ptep_get_and_clear(page_table);

5.6. Swapping Out Process Pages 217

76 flush_tlb_page(vma, address);
77
78 if (pte_dirty(pte))
79 set_page_dirty(page);
80

74 Call the architecture hook to flush this page from all CPU’s

75 Get the PTE from the page tables and clear it

76 Call the architecture hook to flush the TLB

78-79 If the PTE was marked dirty, mark the struct page dirty so it will be
laundered correctly

86 if (PageSwapCache(page)) {
87 entry.val = page->index;
88 swap_duplicate(entry);
89 set_swap_pte:
90 set_pte(page_table, swp_entry_to_pte(entry));
91 drop_pte:
92 mm->rss--;
93 UnlockPage(page);
94 {
95 int freeable =

page_count(page) - !!page->buffers <= 2;
96 page_cache_release(page);
97 return freeable;
98 }
99 }

Handle the case where the page is already in the swap cache

87-88 Fill in the index value for the swap entry. swap_duplicate() verifies the
swap identifier is valid and increases the counter in the swap_map if it is

90 Fill the PTE with information needed to get the page from swap

92 Update RSS to show there is one less page

93 Unlock the page

95 The page is free-able if the count is currently 2 or less and has no buffers

96 Decrement the reference count and free the page if it reaches 0

97 Return if the page was freed or not

5.6. Swapping Out Process Pages 218

115 if (page->mapping)
116 goto drop_pte;
117 if (!PageDirty(page))
118 goto drop_pte;
124 if (page->buffers)
125 goto preserve;

115-116 If the page has an associated mapping, simply drop it and it will be caught
during another scan of the page cache later

117-118 If the page is clean, it is safe to simply drop it

124-125 If it has associated buffers due to a truncate followed by a page fault, then
re-attach the page and PTE to the page tables as it can’t be handled yet

126
127 /*
128 * This is a dirty, swappable page. First of all,
129 * get a suitable swap entry for it, and make sure
130 * we have the swap cache set up to associate the
131 * page with that swap entry.
132 */
133 for (;;) {
134 entry = get_swap_page();
135 if (!entry.val)
136 break;
137 /* Add it to the swap cache and mark it dirty
138 * (adding to the page cache will clear the dirty
139 * and uptodate bits, so we need to do it again)
140 */
141 if (add_to_swap_cache(page, entry) == 0) {
142 SetPageUptodate(page);
143 set_page_dirty(page);
144 goto set_swap_pte;
145 }
146 /* Raced with "speculative" read_swap_cache_async */
147 swap_free(entry);
148 }
149
150 /* No swap space left */
151 preserve:
152 set_pte(page_table, pte);
153 UnlockPage(page);
154 return 0;
155 }

5.6. Swapping Out Process Pages 219

134 Allocate a swap entry for this page

135-136 If one could not be allocated, break out where the PTE and page will be
re-attached to the process page tables

141 Add the page to the swap cache

142 Mark the page as up to date in memory

143 Mark the page dirty so that it will be written out to swap soon

144 Goto set_swap_pte which will update the PTE with information needed to
get the page from swap later

147 If the add to swap cache failed, it means that the page was placed in the swap
cache already by a readahead so drop the work done here

152 Reattach the PTE to the page tables

153 Unlock the page

154 Return that no page was freed

Index

__add_to_page_cache, 199
__alloc_pages, 12
__free_block, 88
__free_page, 27
__free_pages, 20
__free_pages_ok, 20
__get_dma_pages, 25
__get_free_page, 25
__get_free_pages, 25
__insert_vm_struct, 131
__kmem_cache_alloc (SMP Case),

77
__kmem_cache_alloc (UP Case), 76
__kmem_cache_free, 84
__kmem_cache_shrink, 56
__kmem_cache_shrink_locked, 56
__lru_cache_del, 196
__mmdrop, 111
__vma_link, 135
__vma_link_file, 136
__vma_link_list, 136
__vma_link_rb, 136
__vmalloc, 30
_alloc_pages, 11

activate_lock, 197
activate_page_nolock, 197
add_page_to_active_list, 195
add_page_to_inactive_list, 195
add_to_page_cache, 198
address_space, 112
alloc_area_pmd, 34
alloc_area_pte, 35
alloc_mm, 105
alloc_one_pte, 154
alloc_page, 25
alloc_pages, 9
allocate_mm, 105

arch_get_unmapped_area, 117, 130

BREAK_GFP_ORDER_HI, 89
BREAK_GFP_ORDER_LO, 89

cache_cache, 100
CACHE_NAMELEN, 89
calc_vm_flags, 118
can_vma_merge, 140
cc_data, 92
cc_entry, 93
ccupdate_t, 97
CHECK_PAGE, 84
clock_searchp, 59
contig_page_data, 11
copy_mm, 106
copy_one_pte, 155
cpu_vm_mask, 105
cpucache, 92

def_flags, 105
DEFAULT_MAX_MAP_COUNT, 117
del_page_from_active_list, 196
del_page_from_inactive_list, 196
do_anonymous_page, 182
do_ccupdate_local, 97, 98
do_mmap_pgoff, 115
do_mremap, 141
do_munmap, 155
do_no_page, 179
do_page_fault, 167
do_swap_page, 184
drain_cpu_caches, 99

enable_all_cpucaches, 93
enable_cpucache, 93, 94
exit_mmap, 109, 164
expand, 16, 18

220

5.6. Swapping Out Process Pages 221

find_vma, 125
find_vma_intersection, 128
find_vma_prepare, 133
find_vma_prev, 127
free_area_pmd, 39
free_area_pte, 40
free_block, 87
free_pages, 20, 26

g_cpucache_up, 93
get_one_pte, 153
get_unmapped_area, 129
get_vm_area, 31
get_zeroed_page, 26
gfp_mask, 11

handle_mm_fault, 176
handle_pte_fault, 177

INIT_MM, 106
init_mm, 106

kfree, 91
kmalloc, 90
kmem_cache, 100
kmem_cache_alloc, 76
kmem_cache_alloc_batch, 82
kmem_cache_alloc_head, 79
kmem_cache_alloc_one, 79
kmem_cache_alloc_one_tail, 80
kmem_cache_create, 43
kmem_cache_destroy, 58
kmem_cache_estimate, 53
kmem_cache_free, 83
kmem_cache_free_one, 86
kmem_cache_grow, 67, 68
kmem_cache_init, 100, 101
kmem_cache_init_objs, 74
kmem_cache_reap, 60
kmem_cache_shrink, 54
kmem_cache_sizes_init, 88
kmem_cache_slabmgmt, 65
kmem_find_general_cachep, 67
kmem_freepages, 102
kmem_getpages, 101
kmem_slab_destroy, 73

kmem_tune_cpucache, 93, 95
kswapd, 190
kswapd_balance, 193
kswapd_balance_pgdat, 193
kswapd_can_sleep, 192
kswapd_can_sleep_pgdat, 192
kswapd_init, 190

locked_vm, 105
lru_cache_add, 194
lru_cache_del, 195

mark_page_accessed, 197
max_map_count, 117
mm_alloc, 106
mm_drop, 109
mm_init, 105, 109
mmap_sem, 105
mmdrop, 110
mmlist, 105
mmput, 109, 110
move_one_page, 153
move_page_tables, 151
move_vma, 146

page_cache_get, 198
page_cache_release, 198
ptep_get_and_clear, 42

REAP_SCANLEN, 59
refill_inactive, 203
rmqueue, 16
rss, 105

SET_PAGE_CACHE, 71
SET_PAGE_SLAB, 71
shrink_cache, 204
shrink_caches, 199
slab_break_gfp_order, 89
smp_function_all_cpus, 98
STATS_INC_GROWN, 71
swap_out, 212
swap_out_mm, 213
swap_out_pgd, 216
swap_out_pmd, 217
swap_out_vma, 215

5.6. Swapping Out Process Pages 222

sys_mmap2, 115
sys_mremap, 140

total_vm, 105
try_to_free_pages, 202
try_to_free_pages_zone, 202
try_to_swap_out, 218

unmap_fixup, 160

vfree, 36
vma_link, 134
vma_merge, 137
vmalloc, 28
vmalloc_area_pages, 33
vmfree_area_pages, 39

