
The Design and Implementation of
syscalltrack

http://syscalltrack.sf.net

Muli Ben-Yehuda

mulix@mulix.org

IBM Haifa Research Labs

Linux Study Group, HRL, Nov 2003 – p.1/26



TOC

General Overview - What Is syscalltrack?

Architecture Overview

syscalltrack’s Kernel Modules

The Hijacker Module

The Rules Module

Communication With User-Space

Code Auto-Generation

Problems In Kernel Space

syscalltrack’s Configuration Utility - sct_config

The Configuration File

Linux Study Group, HRL, Nov 2003 – p.2/26



Topics (Cont.)

The Tree Parser

Handling Errors

Interesting Bugs and Technical Issues

The Problems With Hijacking System Calls

Handling Structure Parameters

System Call Multiplexing

The Future

The Authors

Linux Study Group, HRL, Nov 2003 – p.3/26



General Overview - What Is syscalltrack?

syscalltrack is a free software project, composed of
Kernel modules and user utilities to allow filtering,
logging and altering the invocation of system calls.

syscalltrack was created to answer the question “which
process did that?”, complementing strace’s “what did
that process do?”.

Currently supports filtering, logging, suspending or
killing a process and failing a system call.

Kernel 2.4.X fully supported, support for 2.6.X is a work
in progress.

Linux Study Group, HRL, Nov 2003 – p.4/26



Architecture Overview

2 kernel modules:
A module to hijack system calls (sct_hijack).
A module to perform the actual filtering, and
communicating with user space (sct_rules).

A rules library (sct_rules), composing the filtering and
action logic.

A communications library (sct_ctrl_lib) allows
user-processes to configure the module.

User-mode utility parses the configuration file, validates
the rules, and then deletes all existing rules in the
module, and injects the new ones.

Lots of tests - stress, regression, functionality.

Various useful utilities (sctlog, sctrace, etc).
Linux Study Group, HRL, Nov 2003 – p.5/26



syscalltrack’s Kernel Modules

syscalltrack contains 2 kernel modules - ’sct_hijack.o’
and ’sct_rules.o’.

The former handles system call ’hijacking’ (that is,
replacing a system call with another function). The
latter does the filtering and takes appropriate action,
and handles communication with user space.

The split into two modules is done to to seperate
mechanism (system call hijacking) from specifics
(syscalltrack’s filtering and actions) and to avoid race
conditions inherent to the use of modules in this
capacity. More about this later.

Linux Study Group, HRL, Nov 2003 – p.6/26



The Hijacker Module

This module exports syscall hijacking functions:
int hijack_syscall_before(int syscall_id, func_ptr function);

int hijack_syscall_after(int syscall_id, func_ptr function);

int release_syscall_before(int syscall_id);

int release_syscall_after(int syscall_id);

Pointers to hijack stubs are inserted into the kernel’s
system call table, ’sys_call_table’, instead of the pointer
to the original system call. .

Once a hijacked system call is called, the hijack stub
will call a ’before hook’, the original syscall, and then an
’after hook’.

For kernel 2.6, the hijack module is no longer a
seperate module but rather built into the kernel.

Linux Study Group, HRL, Nov 2003 – p.7/26



The Filtering Module

This module (sct_rules.o) accepts user-control
messages, to add rules to a given syscall, delete a rule,
print the rules, etc.

When a system call is invoked, the before or after hook
for this syscall is executed. This function matches the
call’s parameter and environment against all rules for
this syscall, and if a match is found, an action is
performed.

Linux Study Group, HRL, Nov 2003 – p.8/26



The Filtering Module (Cont.)

For each system call, 2 sets of rules are kept - ’before’
rules, and ’after’ rules.

’before’ rules are checked right before invoking the
system call. Thus, they could be used to disallow the
syscall from being executed, or even alter parameters
sent to the system call.

’after’ rules are checked right after the syscall returns,
and before returning to the user. They allow checking
and logging the syscall’s return value, altering this
return value, and so on.

Linux Study Group, HRL, Nov 2003 – p.9/26



Communication With User-Space

Communications with user-space is currently done by
reading and writing from a special device file. Each
supported command has its own ’constant’, and a
single function then accepts these commands and
handles them.

We implemented our own protocol for these messages,
including serialization of binary data and other fun stuff.
We are (lazily) evaluating other options that do not
involve reinventing a wheel, such as netlink or relayfs.

Linux Study Group, HRL, Nov 2003 – p.10/26



Code Auto-Generation

Many functions in both kernel modules look very similar,
and vary mostly by name/id of the system call they
handle, and the parameters this system call receives.

Instead of writing a lot of similar functions using
copy/paste, a perl script generates the code for these
functions. It does that by a combination of template files
with macros, data types mappings and hard-coded
constructs.

This approach made sense in the early days of the
project, where we were tasked with writing (and
modifying!) over 200 such stubs for the different
syscalls. Nowdays, with the integration of the hijack
module into kernel 2.6, we are evaluating other options.

Linux Study Group, HRL, Nov 2003 – p.11/26



Kernel Fun - Module Unload Race

When a module has one of its functions executed, or in
the execution stack of a process/interrupt handler,
unloading the module could crash the system - its code
page is still in use, and yet might be re-allocated by the
kernel for other purposes.

Thus, a module writer must make sure that no active
invocations of its functions exist when the module is
unloaded, using for example MOD_INC_USE_COUNT.

However, doing this from within the module is inherently
racy.

Solution? integrate the hijack module into the core
kernel.

Linux Study Group, HRL, Nov 2003 – p.12/26



Kernel Fun - SMP And Re-Entrancy

A process executing a system call might go to sleep,
allowing another process to execute this system call. In
SMP systems, even if a process does not go to sleep,
its code might be executed in parallel in another
process.

To avoid races (and data structures corruption) inherent
to such situations, data structures must be carefully
protected, using semaphores (around sections that
might sleep), spin-locks (around non-sleeping sections,
to handle SMP machines) etc.

Linux Study Group, HRL, Nov 2003 – p.13/26



Kernel Fun - Locking

However, over-use of locks would slow the kernel:
either by forcing serial execution in cases where an
SMP machine could actually work in parallel, or by
introducing redundant overhead (locking and unlocking
adds extra overhead).

Due to “let’s do it simple now and optimize later”
mentality, syscalltrack has a huge semaphore,
“tracker_sem”, that serializes the filtering of different
system calls. Getting rid of it is a prequisite before the
1.0 release (but requires a redesign of some of the
most sensitive code...).

Linux Study Group, HRL, Nov 2003 – p.14/26



syscalltrack’s Configuration - sct_config

’sct_config’ is a C++ program that allows configuring the
module. It is made of a parser (to read and understand
a config file) and a commands generator (to generate
data for commands for the kernel module).

’sct_config’ is written using a combination of top-down
and recursive-decent parsing.

’sct_config’ may be used to perform other control
operations - deleting all active rules, or printing them to
the system’s log file.

Linux Study Group, HRL, Nov 2003 – p.15/26



The Configuration File

The configuration file contains a list of rules. A rule might
look like this:
rule

{

syscall_name = unlink

rule_name = passwd_unlink_rule

filter_expression {PARAMS[1] == "passwd" }

action {

type = LOG

log_format {syscall:%pid[%comm]:%sid_%sname(%params)

(rule %ruleid)}

}

}

Linux Study Group, HRL, Nov 2003 – p.16/26



The Tree Parser

’sct_config’ reads the configuration file to memory and
passes it to a parser.

The parser parses the configuration file and for each
keyword it recognizes, such as ’rule’, ’syscall_name’ or
’filter_expression’, it calls a parser for that keyword’s
value.
The value can be a simple token, such as ’before’, or a
complex token such as the entire rule’s contents or a
filter expression, like
PID != 1 && PARAMS[1] in ("boo", "bee", "bah")

The parser should one day be written using compiler
construction tools, such as lex and yacc. It was fun to
write by hand, but it’s a pain in the neck to maintain and
extend.

Linux Study Group, HRL, Nov 2003 – p.17/26



Error Handling

Since ’sct_config’ is our user interface, it is imperative
that it reports errors to the user clearly and concisely
and not drown him in useless debugging data.

Each function that encounters an error throws an
exception with as much context information as it has.
What line of the file was the error on, what was the
token that caused the error, etc.

Once thrown, an exception travels upwards in the call
chain until a suitable exception handler is found. An
exception handler could add information only it has to
the exception and re-throw it, or it could report it to the
user.

Linux Study Group, HRL, Nov 2003 – p.18/26



Interesting Bugs and Technical Issues

Development of kernel modules (and even user-mode
code) tends to expose various system bugs and "design
obstacles". syscalltrack, being a non-standard project,
seems to reveal quite a few of those.

We’ll illustrate a few of the more interesting/annoying
ones here, to give one an impression.

There were probably quite a few others, which we
thankfully managed to suppress.

Linux Study Group, HRL, Nov 2003 – p.19/26



Hijacking System Calls

There is no mechanism in Linux’s kernel to hijack
system calls, due to political reasons. Thus, hijacking
them is done using various less-than-elegant
techniques.

The method we use means you locate the system call
table - a table of pointers to all syscalls, mapped by
syscall ID - copy a pointer to your own table, and
replace the original pointer with a pointer to your “hijack
stub” function.

In 2.4, the system call table (sys_call_table) is exporter
for modules to use, so there was no need for searching
the kernel’s memory directly. For 2.6, we refused to go
searching in kernel memory, and instead moved the
hijack module into the kernel, neatly sidestepping the
propblem.

Linux Study Group, HRL, Nov 2003 – p.20/26



Hijacking System Calls (Cont.)

Of-course, you eventually should invoke the original system
call, with the original parameters, or else the system breaks
in most peculiar manners. It did...

Linux Study Group, HRL, Nov 2003 – p.21/26



Handling Structure Parameters

Some syscalls accept pointers to structures as
parameters. Since they are complex parameters, we
needed a method to filter based on a specific field in a
struct.

The simplest way to do this was translating a struct into
a vector, with each struct field as an item in that vector.
’sct_config’ translates struct type + field name into an
index.

The kernel module translates the struct into a vector,
and uses that vector for later matching operations.

This approach makes type-casting impossible. The
debate is still out on how to support type-casting.

Linux Study Group, HRL, Nov 2003 – p.22/26



System Call Multiplexing

Some "system calls" are actually multiplexers for
several functions. For example, ’socketcall’ is a
multiplexer for all socket-related functions: socket,
accept, connect, listen, shutdown, recv, send.

Handling those required special handling, since we
wanted to expose the muxed functions (not the muxing
syscall) to users.

Our solution was to encode the function ID inside the
syscall ID, and have the kernel module break the
number down, and apply rules to sub-functions, rather
then to the syscall itself.

For that to work, we needed to copy the kernel’s mux
syscall and make our own copy, that calls our functions,
instead of the original system call.

Linux Study Group, HRL, Nov 2003 – p.23/26



The Future...

Syscalltrack could divert to quite a few directions in the
future, as our hearts desire.

For instance, we intend to add support for altering the
contents of parameters before invoking a syscall. This
has quite a few usages, e.g. "fixing" programs for which
we don’t have the source, or injecting faults into
programs and seeing how they cope with them, etc.

We could write an API that allows other modules to
register rules that invoke callbacks in their functions -
though this would definitely cause political wars in the
kernel - unless we explicitly state this interface is
GPLed - so we will.

Linux Study Group, HRL, Nov 2003 – p.24/26



The Future (Cont.)

Perhaps even externalising system call activation into
user-space, to allow for easier development of various
types of features, and debugging them in user-space.

Muli is playing with the idea (well, not his - its "stolen")
of writing a module that sits on top of syscalltrack,
learns patterns of use of the system, and later alerts if
these patterns change. It has been done, but it’s still a
neat idea.

Linux Study Group, HRL, Nov 2003 – p.25/26



CREDITS

By alphabetical last name order:

Orna Agmon <agmon@tx.technion.ac.il>

Muli Ben-Yehuda <mulix@mulix.org>

Gilad Ben-Yossef <gilad@benyossef.com>

Shlomi Fish <shlomif@vipe.technion.ac.il>

guy keren <choo@actcom.co.il>

Itai Segall <spapuk@t2.technion.ac.il>

Amir Shalem <amir@boom.org.il>

Eli Shemer <apparitio@linuxmafia.org>

Lior Ronen <LiorR@radlan.com>

Ori Fine <Ori.Fine@comverse.com>

David Landsberg <d_landsberg@yahoo.com>

Linux Study Group, HRL, Nov 2003 – p.26/26


	TOC
	Topics (Cont.)
	General Overview - What Is syscalltrack?
	Architecture Overview
	syscalltrack's Kernel Modules
	The Hijacker Module
	The Filtering Module
	The Filtering Module (Cont.)
	Communication With User-Space
	Code Auto-Generation
	Kernel Fun - Module Unload Race
	Kernel Fun - SMP And Re-Entrancy
	Kernel Fun - Locking
	syscalltrack's Configuration - sct_config
	The Configuration File
	The Tree Parser
	Error Handling
	Interesting Bugs and Technical Issues
	Hijacking System Calls
	Hijacking System Calls (Cont.)
	Handling Structure Parameters
	System Call Multiplexing
	The Future...
	The Future (Cont.)
	CREDITS

