
The Linux kernel
Past, Present and Future - the Linux way

Muli Ben-Yehuda

mulix@mulix.org

IBM Haifa Research Labs

The Linux Kernel - HRL 2003 – p.1/20



The Linux Kernel

linux is a free (speech and beer) UNIX like operating
system, developed by thousands of volunteers around
the world - including yours truly

started as a hobby, grew and matured with the years

countless man years went into it, some paid, some for
fun

one of the leading server operating systems today . . .

. . . and one of the leading embedded operating systems

poised to take over the desktop? Hebrew support?

The Linux Kernel - HRL 2003 – p.2/20



The beginning

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)

Date: 25 Aug 91 20:57:08 GMT

Hello everybody out there using minix -

I’m doing a (free) operating system (just a hobby, won’t be big and

professional like gnu) for 386(486) AT clones. This has been brewing

since april, and is starting to get ready. I’d like any feedback on

things people like/dislike in minix, as my OS resembles it somewhat

(same physical layout of the file-system (due to practical reasons)

among other things). I’ve currently ported bash(1.08) and gcc(1.40),

and things seem to work.This implies that I’ll get something practical

within a few months, andI’d like to know what features most people

would want. Any suggestions are welcome, but I won’t promise I’ll

implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes - it’s free of any minix code, and it has a multi-threaded fs.

It is NOT protable (uses 386 task switching etc), and it probably never

will support anything other than AT-harddisks, as that’s

all I have :-(

The Linux Kernel - HRL 2003 – p.3/20



Linux - kernel or system?

Linux is the name given to the Linux kernel by its creator,
Linus Torvalds. In common usage, Linux also refers to the
entire suite of software installed on a machine, including
libraries and end user applications, most of which came
from the GNU project. How do we know which is which? by
context.
As a side note, there are “Linux distributions” that do not
use the Linux kernel, and at least theoretically, the Linux
kernel could be used by other operating systems.

The Linux Kernel - HRL 2003 – p.4/20



How does it work?

UNIX like kernel, exposing POSIX interfaces to user
space (system calls), but only where POSIX isn’t
braindead. We can aford to implement things our own
way if they give substantial performance improvement

complete from-scrach implementation of a monolithic
kernel

emphasis on pragmatic solutions - Linux is not a toy or
research OS! Having said that, we play with it plenty ;-)

most of the kernel is platform independent, supports
many different platforms and hardware flavors

same codebase runs on everything from wrist watches
to super computers

The Linux Kernel - HRL 2003 – p.5/20



How is it developed?

stable branch and experimental branch - right now, 2.4
is stable, 2.5 (now renamed 2.6.0-testX) is experimental

long formal release cycles, but closely adhering to the
“release early, release often” principle for development
snapshots

many people, companies and organizations, each
pushing to have their prefered patches merged. Only
one person can actually merge things - Linus Torvalds,
a benevolet dictator

Linus’s job is to say NO

IBM contributes heavily to Linux development, via the
LTC and OSDL

The Linux Kernel - HRL 2003 – p.6/20



The past

Linux 1.0 - March 1994, i386 only, UP only

Linux 1.2 - March 1995, no longer i386: Alpha, Sparc
and Mips are now supported

Linux 2.0 - June 1996, initial SMP support (guess who
sponsored the work...)

Linux 2.2 - January 1999, many improvments all over
the system. Considered one of the better Linux kernel
trees, many people are still using it.

The Linux Kernel - HRL 2003 – p.7/20



The present

Linux 2.4 is the current stable release tree. It is in wide
usage and obviously works, but has its share of problems
and flaws (obviously, those are fixed in the latest and
greatest, 2.6)

highly divergent vendor trees. The Linux vendors, such
as redhat and SuSE, are under a lot of customer
pressure and thus have a different view of what should
go in the kernels they distribute.

development of the 2.4 kernel tree has ground to an
almost standstill. (Almost) all new development occurs
in the 2.5 kernel.

having said that, most commercial kernel code is still
being written on 2.4 and even 2.2

The Linux Kernel - HRL 2003 – p.8/20



2.6

Linux 2.6

The Linux Kernel - HRL 2003 – p.9/20



VM Changes

the actual ’reverse mappings’ part of Rik van Riel’s
rmap vm was merged. The VM paging algorithm should
be smarter now, and VM behaviour under certain loads
should improve. Slight performance hit due to copying
the pte chains on fork.

what is rmap? rmap allows the VM to know, given a
physical memory page, which processes are using it -
more intelligent decisions on heavy load and swapout.

better behaviour under load, better behaviour on
“enterprise machines”. The kernel booted with 32Gb
and 64Gb of memory on 32 bit machines! (work done
mostly by LTC members)

The Linux Kernel - HRL 2003 – p.10/20



Kernel Preemption

wsers should notice much lower latencies especially in
demanding multimedia applications.

code which is SMP safe should mostly be preempt safe.
But, there are still cases where preemption must be
temporarily disabled where we do not. These areas
occur in places where per-CPU data is used.

several subsystems are not known to be preempt safe -
be careful when enabling preempt.

if you get “xxx exited with preempt count=n” messages
in syslog, don’t panic, these are non fatal, but are
somewhat unclean. (Something is taking a lock, and
exiting without unlocking)

The Linux Kernel - HRL 2003 – p.11/20



Scheduler Improvements

Ingo Molnar reworked the process scheduler to use an
O(1) algorithm.

users should notice no changes with low loads, and
increased scalability with large numbers of processes,
especially on large SMP systems.

utilities for changing behaviour of the scheduler (binding
processes to CPUs etc). http://tech9.net/rml/schedutils.

sched_yield() and yield() can now make you sleep for a
long time.

2.5 adds system calls for manipulating a task’s
processor affinity: sched_getaffinity() and
sched_setaffinity()

work on the scheduler, especially in the area of
interactive performance, is on-going

The Linux Kernel - HRL 2003 – p.12/20



Threading improvements

lots of work went into threading improvements. Some of
the features of this work are:

generic pid allocator (arbitrary number of PIDs with
no slowdown, unified pidhash).
POSIX thread signals stuff (atomic signals, shared
signals, etc.)
threaded coredumping support
sys_exit() speedups (O(1) exit)
generic, improved futexes

users should notice is a significant speedup in basic
thread operations this is true even for old-threading
userspace libraries such as LinuxThreads.

Native Posix Threading Library (NPTL). A userspace
threading library utilizing the new threading
improvements.

The Linux Kernel - HRL 2003 – p.13/20



IO subsystem

considerable throughput improvements over 2.4 due to
much reworking of the block and the memory
management layers.

assorted changes throughout the block layer meant
various block device drivers had a large scale cleanup
whilst being updated to newer APIs.

O_DIRECT improvements, size and alignment of data
per device, not filesystem.

block devices can now access up to 16TB on 32-bit
architectures, and up to 8EB on 64bit architectures.

AIO is now included in the kernel, but seems to offer no
substantial benefits?

The Linux Kernel - HRL 2003 – p.14/20



OProfile

A system wide performance profiler has been included in
2.5. With this option compiled in, you’ll get an oprofilefs
filesystem which you can mount, that the userspace utilities
talk to. The userspace utilities for this are very young, and
still being developed. You can find out more at
http://oprofile.sourceforge.net/oprofile-2.5.html
Oprofile is pretty useful, from experience. It allows you to
profile both userspace applications and the kernel (hence
the “system wide” moniker).

The Linux Kernel - HRL 2003 – p.15/20



what is UML?

User Mode Linux (UML, hereafter) is a port of Linux (the
kernel) to run as a program inside Linux (the system).
Instead of working directly with the hardware, UML uses the
host’s system call interface in place of the hardware.
Surprisingly enough, it actually works.

The Linux Kernel - HRL 2003 – p.16/20



what is it good for?

testing and debugging kernel patches, without requiring
a reboot

private servers on shared hosts

experimenting with system administration scenarios

teaching operating systems ;-)

UML clusters...

(when UML-win32 comes of age) running Linux on
windows machine - tapping into unused resources at
night

The Linux Kernel - HRL 2003 – p.17/20



how does it work?

A UML process executes a system call instruction (int
0x80)

via ptrace, the tracing thread is woken up

the tracing thread annuls the system call on behalf of
the UML process, and then forces the kernel to execute
the system call

the system call is executed, and when it is done, the
tracing thread is woken up again

the tracing thread manipulates the UML process state
to think it completed the system call

the UML process continues

The Linux Kernel - HRL 2003 – p.18/20



more info

The Linux kernel:

http://www.kernel.org

Understanding the Linux Kernel, by Bovet and Cesati,
2nd edition

the linux-kernel mailing list -
http://marc.theaimsgroup.com/?l=linux-kernel

the kernelnewbies community -
http://www.kernelnewbies.org

What’s new in 2.6:

http://www.codemonkey.org.uk/post-halloween-2.5.txt

User Mode Linux:

http://user-mode-linux.sf.net
The Linux Kernel - HRL 2003 – p.19/20



Q, A, M and T?

The Linux Kernel - HRL 2003 – p.20/20


	The Linux Kernel
	The beginning
	Linux - kernel or system?
	How does it work?
	How is it developed?
	The past
	The present
	2.6
	VM Changes
	Kernel Preemption
	Scheduler Improvements
	Threading improvements
	IO subsystem
	OProfile
	what is UML?
	what is it good for?
	how does it work?
	more info
	Q, A, M and T?

