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Abstract

This paper outlines the current structure of
network data buffers in FreeBSD and explains
their allocator's initial implementation. The
current common usage patterns of network data
buffers are then examined along with usage
statistics for a few of the allocator's key
supporting APl  routines. Finally, the
improvement of the allocation framework to
better support Symmetric-Multi-Processor (SMP)
systems in FreeBSD 5.x is outlined and an
argument is made to extend the general purpose
allocator to support some of the specifics of
network data buffer allocations.

1 Introduction

The BSD family of operating systems is in part
reputed for the quality of its network subsystem
implementation. The FreeBSD operating system
belongs to the broader BSD family and thus
contains an implementation of network facilities
built on top of a set of data structures still
common to the majority of BSD-derived
systems. As the design goals for more recent
versions of FreeBSD change to better support
SMP hardware, so too must adapt the allocator
used to provide network buffers. In fact, the
general-purpose kernel memory allocator has
been adapted as well and so the question of
whether to continue to provide network data
buffers from a specialized or general-purpose
memory allocator naturally arises.

2 Data Structures

FreeBSD's network data revolves around a data
structure called an Mbuf. The allocated Mbuf
data buffer is fixed in size and so additional
larger buffers are also defined to support larger
packet sizes. The Mbuf and accompanying data
structures have been defined with the idea that
the wusage patterns of network buffers
substantially differ from those of other general-
purpose buffers [1]. Notably, network protocols
all require the ability to construct records widely
varying in size and possibly throughout a longer
period of time.

Not only can records of data be constructed on
the fly (with data appended or prepended to
existing records), but there also exist well-
defined consumer-producer relationships
between network-bound threads executing in
parallel in the kernel. For example, a local
thread performing network inter-process-
communication (IPC) will tend to allocate many
buffers, fill them with data, and enqueue them.
A second local thread performing a read may end
up receiving the record, consuming it (typically
copying out the contents to user space), and
promptly freeing the buffers. A similar
relationship will arise where certain threads

performing receive operations (consuming)
largely just read and free buffers and other
threads  performing  transmit  operations

(producing) largely allocate and write buffers.

The Mbuf and supporting data structures allow
for both the prepending and appending of record
data as well as data-locality for most packets
destined for DMA in the network device driver
(the goal is for entire packet frames from within
records to be stored in single contiguous buffers).
Further justification for the fixed-size buffer
design is provided by the results in Section 4.

2.1 Mbufs

In FreeBSD, an Mbuf is currently 256 Bytes in
size. The structure itself contains a number of
general-purpose fields and an optional internal
data buffer region. The general-purpose fields
vary depending on the type of Mbuf being
allocated.

Every Mbuf contains an m_hdr substructure
which includes a pointer to the next Mbuf, if any,
in an Mbuf chain. The m_hdr also includes a
pointer to the first Mbuf in the next packet or
record's Mbuf chain, a reference to the data
stored or described by the Mbuf, the length of the
stored data, as well as flags and type fields.

In addition to the m_hdr, a standard Mbuf
contains a data region which is (256 Bytes -
sizeof(struct m_hdr)) long. The structure differs



for a packet-header type Mbuf which is typically
the first Mbuf in a packet Mbuf chain.
Therefore, the packet-header Mbuf usually
contains additional generic header data fields
supported by the pkthdr substructure. The pkthdr
substructure contains a reference to the
underlying receiving network interface, the total
packet or record length, a pointer to the packet
header, a couple of fields wused for
checksumming, and a header pointer to a list of
Mbuf meta-data link structures called m_tags.
The additional overhead due to the pkthdr
substructure implies that the internal data region
of the packet-header type Mbuf is (256 Bytes -
sizeof(struct m_hdr) - sizeof(struct pkthdr)) long.

The polymorphic nature of the fixed-size Mbuf
implies simpler allocation, regardless of type, but

not necessarily simpler construction. Notably,
packet-header Mbufs require special
initialization at allocation time that other

ordinary Mbufs do not, and so care must be taken
at allocation time to ensure correct behavior.
Further, while it is theoretically possible to
allocate an ordinary Mbuf and then construct it at
a later time in such a way that it is used as a
packet-header, this behavior is strongly
discouraged. Such attempts rarely lead to clean
code and, more seriously, may lead to leaking of
Mbuf meta-data if the corresponding packet-
header Mbuf's m_tag structures are not properly
allocated and initialized (or properly freed if
we're transforming a packet-header Mbuf to an
ordinary Mbuf).

Sometimes it is both necessary and advantageous
to store packet data within a larger data area.
This is certainly the case for large packets. In
order to accommodate this requirement, the
Mbuf structure provides an optional m_ext
substructure that may be used instead of the
Mbuf's internal data region to describe an
external buffer. In such a scenario, the reference
to the Mbuf's data (in its m_hdr substructure) is
modified to point to a location within the external
buffer, the m_ext header is appropriately filled to
fully describe the buffer, and the M_EXT bit flag
is set within the Mbuf's flags to indicate the
presence of external storage.

2.2 Mbuf External Buffers
FreeBSD's Mbuf allocator provides the shims

required to associate arbitrarily-sized external
buffers with existing Mbufs. The optionally-used

m_ext substructure contains a reference to the
base of the externally-allocated buffer, its size, a
type descriptor, a pointer to an unsigned integer
for reference counting, and a pointer to a caller-
specified free routine along with an optional
pointer to an arbitrarily-typed data structure that
may be passed by the Mbuf code to the specified
free routine.

The caller who defines the External Buffer may
wish to provide an API which allocates an Mbuf
as well as the External Buffer and its reference
counter and takes care of configuring the Mbuf
for use with the specified buffer via the
m_extadd() Mbuf API routine. The m_extadd()
routine allows the caller to immediately specify
the free function reference which will be hooked
into the allocated Mbuf's m_ext descriptor and
called when the Mbuf is freed, in order to
provide the caller with the ability to then free the
buffer itself. Since it is possible to have multiple
Mbufs refer to the same underlying External
Buffer (for shared-data packets), the caller-
provided free routine will only be called when
the last reference to the External Buffer is
released. It should be noted that once the
reference counter is specified by the caller via
m_extadd(), a reference to it is immediately
stored within the Mbuf and further reference
counting is entirely taken care of by the Mbuf
subsystem itself without any additional caller
intervention required.

Reference counting for External Buffers has long
been a sticky issue with regards to the network
buffer facilities in FreeBSD. Traditionally,
FreeBSD's support for reference counting
consisted of providing a large sparse vector for
storing the counters from which there would be a
one-to-one mapping to all possible Clusters
allocated simultaneously (this limit has
traditionally been NMBCLUSTERS).  Thus,
accessing a given Cluster's reference count
consisted of merely indexing into the vector at
the Cluster's corresponding offset. Since the
mapping was one-to-one, this always worked
without collisions. As for other types of External
Buffers, their reference counters were to be
provided by the caller via m_extadd() or auto-
allocated via the general-purpose kernel malloc()
at ultimately higher cost.

Since the traditional implementation, various
possibilities have been considered. FreeBSD 4.x
was modified to allocate counters for all types of



External Buffers from a fast linked list, similar to
how 4.x still allocates Mbufs and Mbuf Clusters.
The advantage of the approach was that it
provided a general solution for all types of
buffers. The disadvantage was that allocating a
counter was required for each allocation
requiring external buffers. Another possible
implementation would mimick the NetBSD [2]
and OpenBSD [10] Projects' clever approach,
which is to interlink Mbufs referring to the same
External Buffer. This was both a reasonably fast
and elegant approach, but would never find its
way to FreeBSD 5.x due to serious complications
that result because of lock ordering (with
potential to lead to deadlock).

The improvements to reference counting made in
later versions of FreeBSD (5.x) are discussed in
sections 5.2 and 5.4.

2.3 Mbuf Clusters

As previously noted, Mbuf Clusters are merely a
general type of External Buffer provided by the
Mbuf subsystem. Clusters are 2048 bytes in size
and are both virtual-address and physical-address
contiguous, large enough to accommodate the
ethernet MTU and allow for direct DMA to occur
to and from the underlying network device.

A typical socket storing connection data
references one or more Mbuf chains some of
which usually have attached Mbuf Clusters. On
a send, data is usually copied from userland to
the Mbuf's Cluster (or directly to the Mbuf's
internal data region, if small enough). The Mbuf
chain is sent down through the network stack and
finally handed off to the underlying network
device which takes care of uploading (usually
DMA) the contents directly from the Cluster, or
Mbuf internal data region, to the device. A
typical receive usually involves an interrupt from
a network device which then results in an
interrupt handler being run.  The device's
interrupt handler downloads a frame into a
Cluster attached to an Mbuf and queues the
packet. The traditional FreeBSD implementation
schedules a software interrupt handler to dequeue
the packet (Mbuf chain) and run it through the
stack only to finally buffer the data into the
socket (this is implemented by hooking the now-
manipulated Mbuf chain into the socket's receive
buffer). The usual send and receive data flows
are illustrated in Figure 1.
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Figure 1: Data Flows for Typical
Send & Receive

Several optimizations have been made to
improve performance in certain scenarios.
Notably, a sendfile-buffer, another External
Buffer type, is designed to allow data to be
transferred without requiring the relatively
expensive userland-to-kernel copy. The sendfile
buffer implementation is beyond the scope of this
paper. The curious reader should refer to [3].

3 Implementation in Pre-5.x FreeBSD

The traditional pre-5.x Mbuf allocator, although
simple, had a number of important shortcomings,
all the result of optimizations which only
considered single-processor performance and
ignored the possibility of multi-processor
scalability within the OS kernel.

The FreeBSD 4.x (and prior) network buffer
allocator used global singly-linked lists for
maintaining free Mbufs, Clusters, and reference
counters for External Buffers. = While the
advantages of this approach are simplicity and
speed in the single-processor case, its inability to
reclaim resources and potential to bottleneck in



SMP setups in particular makes it a less
appealing choice for FreeBSD 5.x.

Traditionally, protection needed to be ensured
only from interrupt handlers which could
potentially preempt in-kernel execution. This was
accomplished via optimized interrupt class
masking. All Mbuf and Cluster allocations
requiring the use of the allocator's freelists thus
temporarily masked all network device and stack
interrupts via the splimp() call in FreeBSD 4.x.
The spl*() interface has been deprecated in
FreeBSD 5.x.

4 Usage Patterns

A common argument, when comparing BSD's
Mbuf and Cluster model to other designs such as
for example Linux's SKBs (Socket Buffers, see
[4]) is that BSD's Mbufs result in more wasted
space than SKBs and that SKBs allow for faster
operations by always ensuring to pre-allocate
worst-case amount of headspace prior to their
data regions. The observations presented in this
section aim to dispell these myths.

Linux's SKB is a structure with additional buffer
space allocated at its end according to initial size
requirements. The linear SKB requires the
specification of total buffer length at allocation
time. The suggestion (notably by [4]) is to
allocate additional space at the beginning of the
SKB in order to accommodate any future
headspace that may be required as the SKB is
pushed up or down the stack. For a request of
len bytes, for example, we may wish to actually
allocate len + headspace bytes for the SKB. If
the requested buffer sizes (len) are all relatively
close in magnitude to each other, the variously-
sized SKB allocation requests will result in calls
to the underlying Linux slab allocator for
allocation lengths differing by small amounts.
The allocator's general object caches and slabs
are typically organized according to requested
object size ([5], [8]) and, depending on the
requested length and on how accurate the initial
estimate of required headspace was, may actually
result in a comparable amount of wasted space to
the scenario where a fixed-size Cluster is used.
Wastage is a natural side-effect of using general
purpose caches not designed to store objects of a
given fixed size, but which must accommodate
objects of a wide variety of sizes. The difference
is that in the Linux SKB case, the wastage is not

immediately apparent because it is accounted for
by tradeoffs in the underlying allocator's design.

It is certainly true that for every 2048-Byte
Cluster, the corresponding Mbuf's internal data
region is left unused and thus results in wasted
space. For a Cluster of 2048 bytes, the internal
Mbuf wastage is approximately 6%. This 6%
wastage is however constant regardless of the
accuracy of headspace estimates and selected
object cache, because all Mbufs and Clusters are
allocated from specific Mbuf and Cluster zones
(with  their own object-specific  slabs),
significantly reducing internal fragmentation and
wastage associated with general purpose
schemes. It is also true that for a wide-range of
requested lengths, the unused space left in fixed-
sized Clusters would increase the proportion of
wastage. However, if packet size distributions
are bimodal, then this is much less of an issue
than one may be led to expect.

The second common argument is that the
preallocation of headspace within SKBs leads to
better performance due to not having to "pullup"
an Mbuf chain which may have had a small
Mbuf prepended to it while on its way through
the stack. Indeed, because the BSD model does
not require the initial reservation of space within
the Mbuf (as one is always allowed to prepend
another Mbuf to the chain, if required), should
the stack at any point need to ensure a certain
length of data to be contiguous at the beginning
of the chain, a call to m_pullup() must be made
and may occasionally result in data copying.
However, if the calls to m_pullup() are kept out
of the common case, then the total number of
pullups is small and overall performance does
not suffer. Protocol-specific socket send routines
often also prepend space within the first allocated
Cluster if they know that it will be needed, and
thus significantly reduce the number of calls to
m_pullup() requiring data copying.

Some real-world statistics on packet size
distributions and m_pullup() usage are presented
below.

4.1 Packet Size Distributions

As mentioned above, using fixed-size small and
large buffers (Mbufs and larger External Buffers
such as Clusters) is appropriate when most of the
packets are either large or small.



Packet size distributions tend to be bimodal. A
typical packet size distribution collected on a
NAT gateway machine running FreeBSD is
shown in Figure 2.
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Figure 2: Packet Size Distribution For Typical NAT Gateway

4.2 API Usage Statistics

The number of m_pullup() calls resulting in data  Additionally, the same set of statistics reveal that
copying may affect the effectiveness of the Mbuf  the number of calls to m_gercl() (to allocate both
model. The results in Figure 3 show APl usage an Mbuf and a Cluster atomically) is much

statistics for m_pullup(). greater than the number of calls to m_clget() (to
allocate a single Cluster when an Mbuf is already
m_pullup() | m_clget() m_getcl() available). The results shown are from a system

where the sosend() code was modified to use
m_getcl() whenever possible and take advantage
of the new allocator's Packet cache (see section
5.4).
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Figure 3: Number of Calls to Various API
Routines for Several Days of Uptime (no INET6)



5 FreeBSD 5.x and Beyond: Integrating
Network Buffer Allocation in UMA

A primary goal of FreeBSD 5.x is multi-
processor scalability. The ability to run kernel
code in parallel from different process contexts
offers some exciting possibilities with regards to
scalability. Whereas the previous Mbuf-specific
allocator performed very adequately in the
single-processor scenario, it was not designed
with multi-processor scalability in mind, and so
as the number of processors is increased, it has
the potential to bottleneck high network
performance. The primary purpose of the new
allocator was, therefore, to allow network buffer
allocations to scale as the number of CPUs is
increased  while  maintaining  comparable
performance for the single-processor case which
is still extremely common in today's server
configurations.

The development that led to the present-day
network buffer allocator in FreeBSD was
essentially done in two steps. The first step
(from now on referred to as mballoc) consisted in
the rewriting of the network buffer-specific
(Mbuf and Mbuf Cluster) allocator to better
handle scalability in an SMP setup. The second
and latest step (from now on referred to as
mbuma) is a merging of those initial efforts with
a new Universal Memory Allocation (UMA)
framework initially developed by Jeff Roberson
for the FreeBSD Project. While the initial effort
to write an SMP-friendly Mbuf allocator was
succesful, the most recent change significantly
minimizes code duplication and instead extends
UMA to handle network buffer allocations with
requirements initially intended for Mbuf and
Mbuf Cluster specific allocations, while only
minimally interfering with general purpose UMA
allocations.

5.1 Facilities in 5.x and Later

FreeBSD 5.x provides several facilities for
ensuring mutual exclusion within the kernel.
Their implementation details are beyond the
scope of this paper (for a good description see

[6]).

The mutex locks currently provided by FreeBSD
require sleep-blocking through the scheduler at
worst and a bus-locked or serialized instruction
at best. The cost of a non-pipelined or serializing
or, even worse (on older processors), bus-locked

instruction can be much higher than that of a
typical and easily pipelined instruction,
particularly on architectures with long pipelines
(Refer to Intel [7], for example).

In addition to sleepable mutex locks, FreeBSD
5.x provides a spinlock which also requires an
atomic instruction in the best case and spinning
with a hard interrupt disable in the worst case. A
way to ensure mutual exclusion local to a single
CPU also exists and consists of a basic critical
section which, unless nested, currently requires a
hard interrupt disable.

There is currently ongoing work on optimizing
the common case of a critical section to a simple
and easily pipelined interlock against the
executing CPU which would defer the hard
interrupt disable to a first occurance of an
interrupt. Along with this work and FreeBSD 5.x
scheduler's ability to temporarily pin down a
thread to a CPU (an operation which should also
only involve a simple pipelined interlock on the
executing processor), per-CPU structures such as
those involved in a common-case UMA
allocation can be made lock-less and therefore
faster in the common case.

5.2 Mballoc: an Mbuf-Specific SMP-Aware
Allocator

The first major step in the development of an
SMP-aware Mbuf allocator consisted in a major
re-write of the existing Mbuf-specific allocator
(described in Section 3).

The advantages of a Mbuf-specific allocator were
more significant at the implementation time of
mballoc over two years ago. At that time, the
existing general-purpose memory and zone
allocators were themselves not SMP-aware and
used heavily contended global structures.
Therefore, the move to per-CPU allocation
buckets for at least Mbuf and Cluster allocations
was significant for what concerns the SMP
efforts at the time, although its true scalability
advantages remained (although today much less
so) on the unwinding of the kernel BGL (Big
Giant Lock), a lock forcing synchronization on
kernel entry points until the underlying structures
have been finer-grain locked.

The mballoc allocator implemented slab-like
structures which it called buckets, as well as both
global and per-CPU caches of buckets for Mbufs



and Mbuf Clusters. Since UMA itself
implements similar structures, but with additional
flexibility -- such as the ability to reclaim
resources following large demand spikes --
additional work on an Mbuf-specific allocator
such as mballoc would be retired only if UMA
could be extended to properly support Mbuf and
Cluster allocations which are significantly
different from other system structures.

Therefore, the primary goal of the second
development effort which resulted in mbuma
(described in section 5.4) was to provide new
functionality to the Mbuf system, in particular
resource reclamation, while minimizing code
duplication, providing a better architecture, and
while not significantly sacrificing overall
network performance.

5.3 The UMA Framework

In order to better understand the extensions and
changes made to UMA to adequately support
network buffer allocations, it is important to
conceptually understand UMA's original design.
In particular, the relationships amongst objects
within the UMA framework are a key component
to understanding how to efficiently setup UMA
Zones.

UMA is in its simplest form an implementation
of a Slab allocator (see [8]). In addition to
providing a low-level slab allocator, UMA
additionally provides per-CPU caches as well an
intermediate bucket-cache layer separating the
per-CPU caches from the backing slab cache for
a given object type.

Most objects allocated from UMA come from
what are called UMA Zones. In fact, the only
current exception are certain types of general-
purpose kernel malloc() allocations which bypass
the UMA Zone structure (and associated bucket
caches) and directly access UMA's backing slab
structures containing references to allocated
pages. A UMA Zone is thus created for a
specific type of object with a specific size such
as, for example, a Socket. Allocations for
Sockets will then occur from the created Socket
Zone and should result, in the common case, in a
simple allocation from a per-CPU cache.

The per-CPU caches for all Zones are currently
protected by a common set of per-CPU mutex
locks. As described in section 5.1, mutex locks
can be quite expensive even in the common case
and work is being done to evaluate whether
replacing them with an optimized critical section
and short-term CPU-pinning of threads will
result in noticeable performance improvement.
The UMA Zone itself is protected by a per-Zone
mutex lock. Since the common case allocations
are supposed to occur from per-CPU caches,
contention on the Zone lock is not a major
concern.

Additionally, the UMA Zone provides access to
two pairs of function pointers to which the caller
is free to hook custom functions. The first pair is
the constructor/destructor pair (ctor/dtor) and the
second is the initializer/finalizer (init/fini) pair.
Together, the ctor/dtor and init/fini pairs allow
the caller to preemptively configure objects as
they make their way through the allocator's
caches. UMA ensures that no UMA-related
locks are held when the ctor/dtor or init/fini are
called.

The initializer is called to optionally configure an
object as it is first allocated and placed within a
slab cache within the Zone. The finalizer is
called when the object is finally freed from the
slab cache and its underlying page is handed
back to the Virtual-Memory (VM) subsystem.
Thus, the objects that reside within the Zone
(whether in the slabs or buckets) are all custom
configured prior to entering or leaving the
caches.

The constructor is called on the object once it has
left one of the Zone's caches and is about to be
handed off to the caller. Finally, the destructor is
called on the object as it is returned by the caller
and prior to it entering any of the Zone's caches.

The ctor/dtor and init/fini facilities allow the
caller to optionally allocate additional structures
and cache objects in already preconfigured or
partially configured states thus minimizing the
common case allocation which merely results in
a constructor (but not initializer) call or the
common case free which merely results in a
destructor (but not finalizer) call.

A typical Zone setup is shown in Figure 4.
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Figure 4: A Typical UMA Zone

5.4 Extending UMA to Accommodate
Common-Case Usage

An approach to configuring Mbuf and Cluster
allocations via UMA using the unmodified UMA
framework would consist in the creation of at
least two Zones. The first Zone would provide
the system with Mbufs. The second Zone would
provide the required 2K Clusters. There would
be no init/fini for either Zone. The ctor/dtor for
the Mbuf Zone would involve initializing Mbuf
header information for the constructor, and
possibly freeing an External Buffer for the
destructor. The Cluster Zone would only require
a constructor responsible for initializing a
reference counter and hooking the Cluster to an
Mbuf who's reference would have to be provided
through the constructor.

Figure 5 shows a possible setup for network

buffer allocation using the original UMA
implementation.
m_‘raet() m_getcl() a
MbufZone Cluster Zone
A A

—

Figure 5: Mbuf & Cluster Allocation Setup
Within Original UMA



Although the obvious approach is
straightforward, it lacks support for the very
common scenario where both an Mbuf and a
Cluster are required at the same time (see section
4, API usage). Support for an atomic Mbuf and
Cluster allocation was added in the Mbuf
allocation API in FreeBSD 5.x in the form of
m_getcl(). The existing m_clget() (also known as
MCLGET()) which only allocates a Cluster and
attaches it to an already allocated Mbuf is
becoming much less common than the new
m_getcl(). Therefore, it would make sense to
provide a cache of Mbufs with pre-attached
Clusters and thus allow faster atomic Mbuf and
Cluster allocations.

In order to accomplish a Packet (Mbuf with
Cluster attached) cache, two approaches were
implemented and considered. The first consisted
of overlaying small single-bucket per-CPU
caches on top of two or more existing Zones and
filling the overlayed Packet caches from the
existing Mbuf and Cluster Zones. The per-CPU
caches are accompanied by their own ctor/dtor
pair along with a  back-allocator/back
deallocator pair which is called to replenish or
drain the caches when required. However, early
performance testing, in particular as FreeBSD
code was modified to use m_getcl() (atomic
Mbuf and Cluster allocate) where permitted,
indicated that larger Packet caches tend to
perform better because they allow, on average,
more Packet allocations to occur from the cache.
The need for larger caches meant that either
buckets could be artificially grown large or that a
cache of multiple buckets would be better suited
for Packets.

The second approach, which is the adopted
approach, consists in a more pronounced slab to
bucket-cache interface. In this solution, the
traditional UMA Zone is made to only hold the
general and per-CPU bucket caches. The slab
cache itself is defined and held in a separate
structure called a Keg. The Keg structure now
holds the slab cache and handles back-end (VM)
allocations. The traditional UMA Zone then
becomes a single Zone, now called the Master
Zone, backed by a single back-end Keg. The
Packet Zone is then implemented as a Secondary
Zone to the Mbuf Zone. Therefore, there are
caches for Mbufs, Clusters, and Packets, and the
cache sizes are scaled by UMA according to
demand. That is, UMA may decide to allocate
additional buckets, if needed, and grow Zone

caches. The slab cache for Mbufs is shared
between the Mbuf Master Zone and the Packet
Secondary Zone.

The applications of this solution may extend
beyond merely Mbufs and Clusters. In fact, it is
worth investigating whether other commonly-
used variations of Mbufs, such as for example
Mbufs with pre-attached Sendfile Buffers, or pre-
allocated m_tag metadata for TrustedBSD
support [9], deserve their own Secondary Zone
caches as well. This, and other similar
investigations, are left as future work (section
5.7).

A second problem with the obvious UMA Zone
setup is addressing the reference counting issue
for Mbuf Clusters. There are a couple of ways to
address reference counting within the UMA
framework. The first is to hook custom back-end
allocation and deallocation routines to the UMA
Zone and force Mbuf Clusters to come from a
separate virtual address map which would be pre-
allocated on startup according to the traditional
NMBCLUSTERS compile-time or boot-time
tunable. The solution then consists of providing
a sparse mapping of Clusters to reference
counters by virtual address and thus each Cluster,
upon indexing into the sparse map, would be able
to retrieve its reference counter (as in mballoc).
The sparse map works because Clusters would
come from their own virtual address map and
thus ensure a very simple way to index into a
sparse array of counters. Unfortunately, the idea
implies that the maximum number of Mbuf
Clusters would still need to be specified at
compile or boot-time.

Instead, the adopted solution consists of altering
the UMA framework to allow the creation of
Zones with a special Reference-Counter flag that
ensures that the underlying object slabs contain
space for object reference counters.  The
reference counter can then be looked up from the
Cluster constructor by referring to the allocated
Cluster's underlying slab structure. The slab
itself may be looked up via a hash table or
through a hidden slab reference within the
underlying page structure. An implication of the
adopted solution is that the NMBCLUSTERS as
a compile-time or boot-time option can finally be
removed and replaced instead with a variable that
is runtime-tunable by the System Administrator.
The applications of this solution may also extend
beyond merely Clusters.



The final but easily solved problem with the
UMA Zone setup is that since some of the
constructors are asked to allocate additional
memory, there is a possibility that the memory
allocation may fail. In fact, this is a more general
problem and the solution is to allow for
constructors and initializers to fail by indicating
failure to the mainline UMA code. Thus, a failed
constructor or initializer will be permitted to
force allocation failure by returning NULL to the
caller. Finally, the applications of this solution,
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Keginit:None
Kegfini:None

like for the other above-described solutions, may
also extend beyond merely Mbufs and Clusters.

The FreeBSD Network Buffer implementation

within this modified framework is shown in
Figure 6.

m_clget()

ClusterZone
(Master Zone)
Contains bucket-caches

of Clusters (2K Bytes) of
potentially varying sizes. [#4—

Looked up by Cluster
ctor
(onClusterallocation)

ctor: Cluster ctor
dtor:None

Zoneinit:None
Zonefini:None

Reference
Counters
within

h

Slabs

ClusterKeg

Contains slab-caches of
Clusters (2K Bytes)

Keginit:None
Kegfini:None

Figure 6: The mbuma Zone Setup

5.5 Performance Considerations

An important advantage of the modified network
buffer allocation scheme is its ability to recover
unused memory resources following, for
example, a large spike in network-related
activity. Neither the network buffer allocator in
FreeBSD 4.x (and earlier) nor mballoc in earlier
FreeBSD 5.x implemented memory reclamation

and instead kept all freed Mbuf and Clusters
cached for fast future allocation. While large
caches are undoubtedly beneficial for common-
case allocations during future equally heavy
network activity, overall system performance is
not merely affected by the system's ability to
provide fast network buffer allocations.

Unreclaimed memory leads to an increase in
swapping even though network activity may have



returned to normal. Figure 7 shows the total
number of pages swapped out on a FreeBSD 5.x
machine over time. The graph compares mballoc
(stock FreeBSD 5.x) to mbuma and shows how
each affects swap use following a large network
spike exhausting a maximum number of Mbuf

Clusters. The superior response of mbuma is in
this case entirely due to UMA's ability to hand
unused pages from its caches back to the VM
system, if required.

Total Humber of Pages Swapped Out Ouer Time
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Figure 7: mballoc & mbuma Swap Usage Following Network Spike
(the top line shows mballoc results, the lower line shows mbuma results)

An  additionally  important  performance
consideration is mbuma's ability to handle high
packet throughput, in particular relative to the
stock implementation in present-day FreeBSD
5.x. Netperf[11] performance data for both TCP
and UDP stream tests is shown in Figure §.

The data in Figure 8 was collected on a two-
machine setup with a gigabit-Ethernet connection
serving the link. The first machine was
configured to send packets with netperf and was
running FreeBSD 4.x which is considered to
provide network buffers optimally in a single-
processor setup.  The second machine ran
FreeBSD 5.x (both the stock and the patched

mbuma versions), was SMP (dual-processor),
contained an Intel 1000 (FreeBSD’s em driver)
controller, and was configured as the netperf
receiver for all tests.

Unfortunately, the controller on the sender side
was attached to a 32-bit PCI bus, which likely
significantly influenced throughput. Despite this
limitation, the tests reveal that throughput was
about equivalent to present-day FreeBSD 5.x
without modification, notably differing in small
magnitudes, likely due to the allocators
replenishing their caches at different times
throughout execution.

It should be noted that further throughput
performance testing may reveal more interesting



results and should be performed, in particular
with faster network controller configurations

(such as

Ethernet  controllers).

on-board high-bandwidth gigabit

Due to hardware

availability requirements, this was left as future

work.

Netperf TCP Stream Tests: Relative Comparison of Stock -CURRENT and mbuma
(/- 2.5% with 99% conf.)

-CURRENT stock (SMP) mbuma (SMFP)
Send/Recv Socket | Send Message |Elapsed Time
Size [Bytes) Size [Bytes) (secs) Throughput (10%6 bps} | Throughput (1046 hps)
57 344 4,096 £0.01 24147 230.73
57 344 8,192 £0.01 2r9.35 26508
57 344 32,768 60.01 284,96 28416
32,768 4,086 £0.01 258.93 24613
32,768 5,152 £0.01 27335 27267
32,768 32,768 £0.01 280.07 27872

Netperf UDP Stream Tests: Relative Comparison of Stock —-CURRENT and mbuma
(+/- 5.0% with 99% conf.)

-CURRENT stock {SMP) mbuma (SMP)
[Send'Recene) {Send'Recene)
Socket Size [Bytes) |[Message Size (Bytes] |Elapsed Time (secs) | Throughput (1046 bps) | Throughput {106 hps)
32768 B4 50.01 21.25/6.685 21.28/7.69
32 768 1,024 B0.01 255.06 fBE.19 254.05 /5538
32 768 1,472 50.01 318.45 /95.45 320,38 /97 BB

Figure 8: Netperf TCP and UDP Stream Test (Relative Comparison)

5.6 Future Work

As previously mentioned, there is current
ongoing work on replacing the common-case
UMA allocation with code that merely requires a
simple critical section, where the critical section
itself does not typically require a hard interrupt
disable. Whether this proves to be significantly
superior to per-CPU mutex locks remains to be
seen, but current evidence regarding the cost of
acquiring a mutex lock seems to suggest that it
will be.

Additionally, it would be worth considering
whether other types of External Buffers (besides
for Clusters) would benefit from the UMA Keg
approach, with a Secondary Zone configuration.

Similarly, Mbufs with pre-attached m_tags for
TrustedBSD [9] extensions might benefit from a
Secondary Zone configuration as well. However,
one should be careful to not segment the Mbuf
Keg too much, as there is a parallel between
cache fragmentation and having pre-initialized
objects available in UMA’s caches.

For what concerns space wastage within Mbufs
when External Buffers are used, it is worth
investigating the implementation of the so-called
mini-Mbuf, a smaller Mbuf without an internal
data region used merely to refer to an External
Buffer of a given type. The idea of the mini-
Mbuf was first brought to the author’s attention
by Jeffrey Hsu, who noted that mini-Mbufs



would likely result in less wasted space when
External Buffers are used.

For what concerns network performance, it
would be worth investigating the scalability of
mbuma versus that of FreeBSD 4.x as the
number of CPUs is varied in an SMP
configuration. In particular, this evaluation
should occur once most of the Giant lock if
unwound off the FreeBSD 5.x network stacks.

Finally, it would be interesting to consider the
implementation of Jumbo Buffers for large MTU
support for gigabit-Ethernet controllers.  In
particular, integration with UMA is highly
desirable, as a Secondary Zone could be
configured for Jumbo Buffers as well.

6 Conclusion & Acknowledgements

FreeBSD 5.x’s development continues today but
with the advent of most recent changes,
scalability and performance will soon again
become the ultimate priority of the FreeBSD
developer.

In order to facilitate the task of tuning and
optimizing, from both organizational and
framework perspectives, it is imperative to
design a clean architecture. The purpose of the
work presented in this paper was therefore not to
only make network buffer allocations more SMP-
friendly (in the scalability sense), but to also
eliminate code and concept duplication and
provide a clean and better understood network
buffer allocation framework.

This balance of achieving solid performance
while maintaining a consistent design has been
the goal of many of the present and past BSD
projects and is the single most important
motivation for the work presented in this paper.

The author would like to thank the BSD
communities for their lofty aspirations, the
FreeBSD SMPng team (all those involved with
FreeBSD 5.x’s development in one way or
another), and in particular Jeff Roberson for
implementing a fine general-purpose memory
allocation framework for FreeBSD 5.x and
offering valuable suggestions during early
mbuma attempts.  Robert Watson (McAfee
Research, TrustedBSD, FreeBSD Core Team)
and Andrew Gallatin (FreeBSD Project,

Myricom, Inc.) deserve special mention for their
help with performance analysis. Jeffrey Hsu
(DragonFlyBSD Project, FreeBSD Project) also
deserves a special mention for taking the time to
discuss issues pertaining to this work on
numerous occasions and making many important
recommendations.

Finally, the author would like to thank his friends
and family, who have offered him the possibility
of that fine balance in everyday life, who through
their presence and support have deeply
influenced the way the author lives, and without
whom this work would never have been
conceivable.
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