
Kernel Programming

September 20, 2003

Apple Computer, Inc.
' 2004 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Computer, Inc.,
with the following exceptions: Any person
is hereby authorized to store documentation
on a single computer for personal use only
and to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple
Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleTalk, Carbon,
Cocoa, FireWire, Keychain, Mac, Mac OS,
Macintosh, Power Mac, Power Macintosh,
and QuickTime are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

Finder, Panther, and Quartz are trademarks
of Apple Computer, Inc.

NeXT, Objective-C, and OPENSTEP are
trademarks of NeXT Software, Inc.,

registered in the United States and other
countries.

DEC is a trademark of Digital Equipment
Corporation.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a trademark of Silicon Graphics,
Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business
Machines Corporation, used under license
therefrom.

SPEC is a trademark of the Standard
Performance Evaluation Corporation
(SPEC).

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this manual,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Chapter 1 About This Document 11

Who Should Read This Document 11
Road Map 11
Other Apple Publications 13
Mach API Reference 13
Information on the Web 13

Chapter 2 Keep Out 15

Why You Should Avoid Programming in the Kernel 15

Chapter 3 Kernel Architecture Overview 17

Darwin 18
Architecture 19

Mach 20
BSD 21
I/O Kit 22

Kernel Extensions 22

Chapter 4 Security Considerations 23

Security Implications of Paging 24
Buffer Overflows and Invalid Input 25
User Credentials 25
Remote Authentication 27

One-Time Pads 27
Time-based authentication 28

Temporary Files 28
/dev/mem and /dev/kmem 29
Key-based Authentication and Encryption 29

Public Key Weaknesses 30
Using Public Keys for Message Exchange 31
Using Public Keys for Identity Verification 32
Using Public Keys for Data Integrity Checking 32
Encryption Summary 32

Console Debugging 33

3
© Apple Computer, Inc. 2004

Code Passing 33

Chapter 5 Performance Considerations 35

Interrupt Latency 35
Locking Bottlenecks 36

Working With Highly Contended Locks 36
Reducing Contention by Decreasing Granularity 37

Code Profiling 37
Using Counters for Code Profiling 38
Lock Profiling 38

Chapter 6 Kernel Programming Style 41

C++ Naming Conventions 41
Basic Conventions 41
Additional Guidelines 42

Standard C Naming Conventions 43
Commonly Used Functions 44
Performance and Stability Tips 45

Performance and Stability Tips 45
Stability Tips 46

Style Summary 47

Chapter 7 Mach Overview 49

Mach Kernel Abstractions 49
Tasks and Threads 50
Ports, Port Rights, Port Sets, and Port Namespaces 51
Memory Management 52
Interprocess Communication (IPC) 54

IPC Transactions and Event Dispatching 54
Message Queues 55
Semaphores 55
Notifications 55
Locks 55
Remote Procedure Call (RPC) Objects 56

Time Management 56

Chapter 8 Memory and Virtual Memory 57

Mac OS X VM Overview 57
Memory Maps Explained 58
Named Entries 59
Universal Page Lists (UPLs) 60
Using Mach Memory Maps 61

C O N T E N T S

4 © Apple Computer, Inc. 2004

Other VM and VM-Related Subsystems 63
Pagers 63
Working Set Detection Subsystem 63
VM Shared Memory Server Subsystem 64

Address Spaces 64
Background Info on PCI Address Translation 65
IOMemoryDescriptor Changes 65
VM System and pmap Changes: 66
Kernel Dependency Changes 66
Summary 67

Allocating Memory in the Kernel 67
Allocating Memory Using Mach Routines 67
Allocating Memory From the I/O Kit 68

Chapter 9 Mach Scheduling and Thread Interfaces 71

Overview of Scheduling 71
Why Did My Thread Priority Change? 72
Using Mach Scheduling From User Applications 73

Using the pthreads API to Influence Scheduling 73
Using the Mach Thread API to Influence Scheduling 74
Using the Mach Task API to Influence Scheduling 75

Kernel Thread APIs 77
Creating and Destroying Kernel Threads 77
SPL and Friends 78
Wait Queues and Wait Primitives 78

Chapter 10 Bootstrap Contexts 81

How Contexts Affect Users 82
How Contexts Affect Developers 83

Chapter 11 I/O Kit Overview 85

Redesigning the I/O Model 85
I/O Kit Architecture 87

Families 87
Drivers 87
Nubs 88
Connection Example 88

For More Information 91

Chapter 12 BSD Overview 93

BSD Facilities 94
Differences between Mac OS X and BSD 95

C O N T E N T S

5
© Apple Computer, Inc. 2004

For Further Reading 96

Chapter 13 File Systems Overview 97

Working With the File System 98
VFS Transition 98

Chapter 14 Network Architecture 99

Review of 4.4BSD Network Architecture 100
NKE Types 100
Modifications to 4.4BSD Networking Architecture 101

Chapter 15 Boundary Crossings 103

Security Considerations 104
Choosing a Boundary Crossing Method 104

Kernel Subsystems 105
Bandwidth and Latency 105

Mach Messaging and Mach Interprocess Communication (IPC) 106
Using Well-Defined Ports 106
Remote Procedure Calls (RPC) 107
Calling RPC From User Applications 109

BSD syscall API 109
BSD ioctl API 109
BSD sysctl API 110

General Information on Adding a sysctl 110
Adding a sysctl Procedure Call 111
Registering a New Top Level sysctl 113
Adding a Simple sysctl 113
Calling a sysctl From User Space 114

Memory Mapping and Block Copying 116
Summary 117

Chapter 16 Synchronization Primitives 119

Semaphores 119
Condition Variables 121
Locks 121

Spinlocks 121
Mutexes 122
Read-Write Locks 124
Spin/Sleep Locks 125

C O N T E N T S

6 © Apple Computer, Inc. 2004

Chapter 17 Miscellaneous Kernel Services 127

Using Kernel Time Abstractions 127
Obtaining Time Information 127
Event and Timer Waits 128

Boot Option Handling 130
Queues 130
Installing Shutdown Hooks 131

Chapter 18 Kernel Extension Overview 133

Implementation of a Kernel Extension (KEXT) 134
Kernel Extension Dependencies 134
Building and Testing Your Extension 135
Debugging Your KEXT 135
Installed KEXTs 136

Chapter 19 Building and Debugging Kernels 139

Adding New Files or Modules 139
Modifying the Configuration Files 139
Modifying the Source Code Files 141

Building Your First Kernel 141
Building an Alternate Kernel Configuration 143
When Things Go Wrong: Debugging the Kernel 143

Setting Debug Flags in Open Firmware 144
Choosing a Debugger 145
Using gdb for Kernel Debugging 145
Using ddb for Kernel Debugging 149

Document Revision History 155

Bibliography Bibliography 157

Glossary 163

Index 173

C O N T E N T S

7
© Apple Computer, Inc. 2004

C O N T E N T S

8 © Apple Computer, Inc. 2004

Tables and Figures

Chapter 3 Kernel Architecture Overview 17

Figure 3-1 Mac OS X architecture 17
Figure 3-2 Darwin and Mac OS X 18
Figure 3-3 Mac OS X kernel architecture 20

Chapter 6 Kernel Programming Style 41

Table 6-1 Commonly used C functions 45

Chapter 9 Mach Scheduling and Thread Interfaces 71

Table 9-1 Thread priority bands 72
Table 9-2 Thread policies 74
Table 9-3 Task roles 76

Chapter 11 I/O Kit Overview 85

Figure 11-1 I/O Kit architecture 89

Chapter 14 Network Architecture 99

Figure 14-1 4.4 BSD network architecture 100
Figure 14-2 NKE architecture 101

Chapter 19 Building and Debugging Kernels 139

Table 19-1 Debugging flags 145
Table 19-2 Switch options in ddb 151

9
© Apple Computer, Inc. 2004

T A B L E S A N D F I G U R E S

10 © Apple Computer, Inc. 2004

The purpose of this document is to provide fundamental high-level information about the Mac
OS X core operating-system architecture. It also provides background for system programmers
and developers of device drivers, file systems, and network extensions. In addition, it goes into
detail about topics of interest to kernel programmers as a whole.

This is not a document on drivers. It covers device drivers at a high level only. It does, however,
cover some areas of interest to driver writers, such as crossing the user-kernel boundary. If you
are writing device drivers, you should primarily read the document Inside Mac OS X: I/O Kit
Fundamentals, but you may still find this document helpful as background reading.

Who Should Read This Document

This document has a wide and diverse audience—specifically, the set of potential system software
developers for Mac OS X, including the following sorts of developers:

■ device-driver writers

■ network-extension writers

■ file-system writers

■ developers of software that modifies file system data on-the-fly

■ system programmers familiar with BSD, Linux, and similar operating systems

■ developers who want to learn about kernel programming

If you fall into one of these categories, you may find this document helpful. It is important to
stress the care needed when writing code that resides in the kernel, however, as noted in “Keep
Out” (page 15).

Road Map

The goal of this document is to describe the various major components of Mac OS X at a conceptual
level, then provide more detailed programming information for developers working in each
major area. It is divided into several parts.

C H A P T E R 1

About This Document

Who Should Read This Document 11
© Apple Computer, Inc. 2004

The first part is a kernel programming overview, which discusses programming guidelines that
apply to all aspects of kernel programming. This includes issues such as security, SMP safety,
style, performance, and the Mac OS X kernel architecture as a whole. This part contains the
chapters “Keep Out” (page 15), “Kernel Architecture Overview” (page 17), “Security
Considerations” (page 23), “Performance Considerations” (page 35), and “Kernel Programming
Style” (page 41).

The next part describes Mach and the bootstrap task, including information about IPC, bootstrap
contexts, ports and port rights, and so on. This includes the chapters “Mach Overview” (page
49), “Memory and Virtual Memory” (page 57), “Mach Scheduling and Thread Interfaces” (page
71), and “Bootstrap Contexts” (page 81).

The third part describes the I/O Kit and BSD. The I/O Kit is described at only a high level, since
it is primarily of interest to driver developers. The BSD subsystem is covered in more detail,
including descriptions of BSD networking and file systems. This includes the chapters “I/O Kit
Overview” (page 85), “BSD Overview” (page 93), “File Systems Overview” (page 97), and
“Network Architecture” (page 99).

The fourth part describes kernel services, including boundary crossings, synchronization, queues,
clocks, timers, shutdown hooks, and boot option handling. This includes the chapters “Boundary
Crossings” (page 103), “Synchronization Primitives” (page 119), and “Miscellaneous Kernel
Services” (page 127).

The fifth part explains how to build and debug the kernel and kernel extensions. This includes
the chapters “Kernel Extension Overview” (page 133) and “Building and Debugging
Kernels” (page 139).

Each part begins with an overview chapter or chapters, followed by chapters that address
particular areas of interest.

The document ends with a glossary of terms used throughout the preceding chapters as well as
a bibliography which provides numerous pointers to other reference materials.

Glossary terms are highlighted in bold when first used. While most terms are defined when they
first appear, the definitions are all in the glossary for convenience. If a term seems familiar, it
probably means what you think it does. If it’s unfamiliar, check the glossary. In any case, all
readers may want to skim through the glossary, in case there are subtle differences between Mac
OS X usage and that of other operating systems.

The goal of this document is very broad, providing a firm grounding in the fundamentals of Mac
OS X kernel programming for developers from many backgrounds. Due to the complex nature
of kernel programming and limitations on the length of this document, however, it is not always
possible to provide introductory material for developers who do not have at least some
background in their area of interest. It is also not possible to cover every detail of certain parts
of the kernel. If you run into problems, you should join the appropriate Darwin discussion list
and ask questions. You can find the lists at http://www.lists.apple.com/.

For this reason, the bibliography contains high-level references that should help familiarize you
with some of the basic concepts that you need to understand fully the material in this document.

This document is, to a degree, a reference document. The introductory sections should be easily
read, and we recommend that you do so in order to gain a general understanding of each topic.
Likewise, the first part of each chapter, and in many cases, of sections within chapters, will be

12 Road Map
© Apple Computer, Inc. 2004

C H A P T E R 1

About This Document

http://www.lists.apple.com/

tailored to providing a general understanding of individual topics. However, you should not
plan to read this document cover to cover, but rather, take note of topics of interest so that you
can refer back to them when the need arises.

Other Apple Publications

This document, Kernel Programming, is part of the Inside Mac OS X series. Be sure to read the first
document in the series, System Overview, if you are not familiar with Mac OS X.

You can obtain other documents in the Inside Mac OS X series (as they become available) using
publish-on-demand. To obtain a printed copy of an Inside Mac OS X document, go to the developer
documentation website at http://developer.apple.com/documentation and follow the links for
hardcopy documents.

Mach API Reference

If you plan to do extensive work inside the Mac OS X kernel, you may find it convenient to have
a complete Mach API reference, since this document only documents the most common and
useful portions of the Mach API. In order to better understand certain interfaces, it may also be
helpful to study the implementations that led up to those used in Mac OS X, particularly to fill
in gaps in understanding of the fundamental principles of the implementation.

Mac OS X is based on the Mach 3.0 microkernel, designed by Carnegie Mellon University, and
later adapted to the Power Macintosh by Apple and the Open Software Foundation Research
Institute (now part of Silicomp). This was known as osfmk, and was part of MkLinux
(http://www.mklinux.org). Later, this and code from OSF’s commercial development efforts
were incorporated into Darwin’s kernel. Throughout this evolutionary process, the Mach APIs
used in Mac OS X diverged in many ways from the original CMU Mach 3 APIs.

You may find older versions of the Mach source code interesting, both to satisfy historical curiosity
and to avoid remaking mistakes made in earlier implementations. MkLinux maintains an active
CVS repository with their recent versions of Mach kernel source code. Older versions can be
obtained through various Internet sites. You can also find CMU Mach white papers by searching
for Mach on the CMU computer science department’s website (http://www.cs.cmu.edu), along
with various source code samples.

Up-to-date versions of the Mach 3 APIs that Mac OS X provides are described in the Mach API
reference in the kernel sources. The kernel sources can be found in the xnu project on
http://www.opensource.apple.com.

Information on the Web

Apple maintains several websites where developers can go for general and technical information
on Mac OS X.

Other Apple Publications 13
© Apple Computer, Inc. 2004

C H A P T E R 1

About This Document

http://developer.apple.com/documentation
http://www.mklinux.org
http://www.cs.cmu.edu
http://www.opensource.apple.com

■ Apple Developer Connection: Developer Documentation
(http://developer.apple.com/documentation). Features the same documentation that is
installed on Mac OS X, except that often the documentation is more up-to-date. Also includes
legacy documentation.

■ Apple Developer Connection: Mac OS X (http://developer.apple.com/macosx/). Offers
SDKs, release notes, product notes and news, and other resources and information related
to Mac OS X.

■ AppleCare Tech Info Library (http://kbase.info.apple.com/). Contains technical articles,
tutorials, FAQs, technical notes, and other information.

14 Information on the Web
© Apple Computer, Inc. 2004

C H A P T E R 1

About This Document

http://developer.apple.com/documentation
http://developer.apple.com/macosx/
http://kbase.info.apple.com/

This document assumes a broad general understanding of kernel programming concepts. There
are many good introductory operating systems texts. This is not one of them. For more information
on basic operating systems programming, you should consider the texts mentioned in the
bibliography at the end of this document.

Many developers are justifiably cautious about programming in the kernel. A decision to program
in the kernel is not to be taken lightly. Kernel programmers have a responsibility to users that
greatly surpasses that of programmers who write user programs.

Why You Should Avoid Programming in the Kernel

Kernel code must be nearly perfect. A bug in the kernel could cause random crashes, data
corruption, or even render the operating system inoperable. It is even possible for certain errant
operations to cause permanent and irreparable damage to hardware, for example, by disabling
the cooling fan and running the CPU full tilt.

Kernel programming is a black art that should be avoided if at all possible. Fortunately, kernel
programming is usually unnecessary. You can write most software entirely in user space. Even
most device drivers (FireWire and USB, for example) can be written as applications, rather than
as kernel code. A few low-level drivers must be resident in the kernel's address space, however,
and this document might be marginally useful if you are writing drivers that fall into this category.

Despite parts of this document being useful in driver writing, this is not a document about writing
drivers. In Mac OS X, you write device drivers using the I/O Kit. While this document covers
the I/O Kit at a conceptual level, the details of I/O Kit programming are beyond the scope of
this document. Driver writers are encouraged to read Inside Mac OS X: I/O Kit Fundamentals for
detailed information about the I/O Kit.

This document covers most aspects of kernel programming with the exception of device drivers.
Covered topics include scheduling, virtual memory pagers and policies, Mach IPC, file systems,
networking protocol stacks, process and thread management, kernel security, synchronization,
and a number of more esoteric topics.

To summarize, kernel programming is an immense responsibility. You must be exceptionally
careful to ensure that your code does not cause the system to crash, does not provide any
unauthorized user access to someone else’s files or memory, does not introduce remote or local
root exploits, and does not cause inadvertent data loss or corruption.

C H A P T E R 2

Keep Out

Why You Should Avoid Programming in the Kernel 15
© Apple Computer, Inc. 2004

16 Why You Should Avoid Programming in the Kernel
© Apple Computer, Inc. 2004

C H A P T E R 2

Keep Out

Mac OS X provides many benefits to the Macintosh user and developer communities. These
benefits include improved reliability and performance, enhanced networking features, an
object-based system programming interface, and increased support for industry standards.

In creating Mac OS X, Apple has completely re-engineered the Mac OS core operating system.
Forming the foundation of Mac OS X is the kernel. Figure 3-1 (page 17) illustrates the Mac OS
X architecture.

Figure 3-1 Mac OS X architecture

BSDCarbon Cocoa Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment

The kernel provides many enhancements for Mac OS X. These include preemption, memory
protection, enhanced performance, improved networking facilities, support for both Macintosh
(Extended and Standard) and non-Macintosh (UFS, ISO 9660, and so on) file systems,
object-oriented APIs, and more. Two of these features, preemption and memory protection, lead
to a more robust environment.

In Mac OS 9, applications cooperate to share processor time. Similarly, all applications share the
memory of the computer among them. Mac OS 9 is a cooperative multitasking environment.
The responsiveness of all processes is compromised if even a single application doesn’t cooperate.
On the other hand, real-time applications such as multimedia need to be assured of predictable,
time-critical, behavior.

In contrast, Mac OS X is a preemptive multitasking environment. In Mac OS X, the kernel
provides enforcement of cooperation, scheduling processes to share time (preemption). This
supports real-time behavior in applications that require it.

C H A P T E R 3

Kernel Architecture Overview

17
© Apple Computer, Inc. 2004

In Mac OS X, processes do not normally share memory. Instead, the kernel assigns each process
its own address space, controlling access to these address spaces. This control ensures that no
application can inadvertently access or modify another application’s memory (protection). Size
is not an issue; with the virtual memory system included in Mac OS X, each application has access
to its own 4 GB address space.

Viewed together, all applications are said to run in user space, but this does not imply that they
share memory. User space is simply a term for the combined address spaces of all user-level
applications. The kernel itself has its own address space, called kernel space. In Mac OS X, no
application can directly modify the memory of the system software (the kernel).

Although user processes do not share memory by default as in Mac OS 9, communication (and
even memory sharing) between applications is still possible. For example, the kernel offers a rich
set of primitives to permit some sharing of information among processes. These primitives include
shared libraries, frameworks, and POSIX shared memory. Mach messaging provides another
approach, handing memory from one process to another. Unlike Mac OS 9, however, memory
sharing cannot occur without explicit action by the programmer.

Darwin

The Mac OS X kernel is an Open Source project. The kernel, along with other core parts of Mac
OS X are collectively referred to as Darwin. Darwin is a complete operating system based on
many of the same technologies that underlie Mac OS X. However, Darwin does not include
Apple’s proprietary graphics or applications layers, such as Quartz, QuickTime, Cocoa, Carbon,
or OpenGL.

Figure 3-2 (page 18) shows the relationship between Darwin and Mac OS X. Both build upon the
same kernel, but Mac OS X adds Core Services, Application Services and QuickTime, as well as
the Classic, Carbon, Cocoa, and Java (JDK) application environments. Both Darwin and Mac OS
X include the BSD command-line application environment; however, in Mac OS X, use of
environment is not required, and thus it is hidden from the user unless they choose to access it.

Figure 3-2 Darwin and Mac OS X

BSDCocoaCarbon Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment

Darwin technology is based on BSD, Mach 3.0, and Apple technologies. Best of all, Darwin
technology is Open Source technology, which means that developers have full access to the source
code. In effect, Mac OS X third-party developers can be part of the Darwin core system software

18 Darwin
© Apple Computer, Inc. 2004

C H A P T E R 3

Kernel Architecture Overview

development team. Developers can also see how Apple is doing things in the core operating
system and adopt (or adapt) code to use within their own products. Refer to the Apple Public
Source License (APSL) for details.

Because the same software forms the core of both Mac OS X and Darwin, developers can create
low-level software that runs on both Mac OS X and Darwin with few, if any, changes. The only
difference is likely to be in the way the software interacts with the application environment.

Darwin is based on proven technology from many sources. A large portion of this technology is
derived from FreeBSD, a version of 4.4BSD that offers advanced networking, performance,
security, and compatibility features. Other parts of the system software, such as Mach, are based
on technology previously used in Apple’s MkLinux project, in Mac OS X Server, and in technology
acquired from NeXT. Much of the code is platform-independent. All of the core operating-system
code is available in source form.

The core technologies have been chosen for several reasons. Mach provides a clean set of
abstractions for dealing with memory management, interprocess (and interprocessor)
communication (IPC), and other low-level operating-system functions. In today’s rapidly changing
hardware environment, this provides a useful layer of insulation between the operating system
and the underlying hardware.

BSD is a carefully engineered, mature operating system with many capabilities. In fact, most of
today’s commercial UNIX and UNIX-like operating systems contain a great deal of BSD code.
BSD also provides a set of industry-standard APIs.

New technologies, such as the I/O Kit and Network Kernel Extensions (NKEs), have been
designed and engineered by Apple to take advantage of advanced capabilities, such as those
provided by an object-oriented programming model. Mac OS X combines these new technologies
with time-tested industry standards to create an operating system that is stable, reliable, flexible,
and extensible.

Architecture

The foundation layer of Darwin and Mac OS X is composed of several architectural components,
as shown in Figure 3-3 (page 20). Taken together, these components form the kernel environment.

Architecture 19
© Apple Computer, Inc. 2004

C H A P T E R 3

Kernel Architecture Overview

Figure 3-3 Mac OS X kernel architecture

Common services

Kernel
environment

Application environments

Mach

BSDFile system
Networking

NKE

Drivers

I/O Kit

Important
Note that Mac OS X uses the term kernel somewhat differently
than you might expect.

“A kernel, in traditional operating-system terminology, is a small nucleus of software that provides
only the minimal facilities necessary for implementing additional operating-system services.”
— from The Design and Implementation of the 4.4 BSD Operating System, McKusick, Bostic, Karels,
and Quarterman, 1996.

Similarly, in traditional Mach-based operating systems, the kernel refers to the Mach microkernel
and ignores additional low-level code without which Mach does very little.

In Mac OS X, however, the kernel environment contains much more than the Mach kernel itself.
The Mac OS X kernel environment includes the Mach kernel, BSD, the I/O Kit, file systems, and
networking components. These are often referred to collectively as the kernel. Each of these
components is described briefly in the following sections. For further details, refer to the specific
component chapters or to the reference material listed in the bibliography.

Because Mac OS X contains three basic components (Mach, BSD, and the I/O Kit), there are also
frequently as many as three APIs for certain key operations. In general, the API chosen should
match the part of the kernel where it is being used, which in turn is dictated by what your code
is attempting to do. The remainder of this chapter describes Mach, BSD, and the I/O Kit and
outlines the functionality that is provided by those components.

Mach

Mach manages processor resources such as CPU usage and memory, handles scheduling, provides
memory protection, and provides a messaging-centered infrastructure to the rest of the
operating-system layers. The Mach component provides

■ untyped interprocess communication (IPC)

■ remote procedure calls (RPC)

■ scheduler support for symmetric multiprocessing (SMP)

■ support for real-time services

20 Architecture
© Apple Computer, Inc. 2004

C H A P T E R 3

Kernel Architecture Overview

■ virtual memory support

■ support for pagers

■ modular architecture

General information about Mach may be found in the chapter “Mach Overview” (page 49).
Information about scheduling can be found in the chapter “Mach Scheduling and Thread
Interfaces” (page 71). Information about the VM system can be found in “Memory and Virtual
Memory” (page 57).

BSD

Above the Mach layer, the BSD layer provides “OS personality” APIs and services. The BSD
layer is based on the BSD kernel, primarily FreeBSD. The BSD component provides

■ file systems

■ networking (except for the hardware device level)

■ UNIX security model

■ syscall support

■ the BSD process model, including process IDs and signals

■ FreeBSD kernel APIs

■ many of the POSIX APIs

■ kernel support for pthreads (POSIX threads)

The BSD component is described in more detail in the chapter “BSD Overview” (page 93).

Networking

Mac OS X networking takes advantage of BSD’s advanced networking capabilities to provide
support for modern features, such as Network Address Translation (NAT) and firewalls. The
networking component provides

■ 4.4BSD TCP/IP stack and socket APIs

■ support for both IP and DDP (AppleTalk transport)

■ multihoming

■ routing

■ multicast support

■ server tuning

■ packet filtering

■ Mac OS Classic support (through filters)

More information about networking may be found in the chapter “Network Architecture” (page
99).

Architecture 21
© Apple Computer, Inc. 2004

C H A P T E R 3

Kernel Architecture Overview

File Systems

Mac OS X provides support for numerous types of file systems, including HFS, HFS+, UFS, NFS,
ISO 9660, and others. The default file-system type is HFS+; Mac OS X boots (and “roots”) from
HFS+, UFS, ISO, NFS, and UDF. Advanced features of Mac OS X file systems include an enhanced
Virtual File System (VFS) design. VFS provides for a layered architecture (file systems are
stackable). The file system component provides

■ UTF-8 (Unicode) support

■ increased performance over previous versions of Mac OS.

More information may be found in the chapter “File Systems Overview” (page 97).

I/O Kit

The I/O Kit provides a framework for simplified driver development, supporting many categories
of devices.The I/O Kit features an object-oriented I/O architecture implemented in a restricted
subset of C++. The I/O Kit framework is both modular and extensible. The I/O Kit component
provides

■ true plug and play

■ dynamic device management

■ dynamic (“on-demand”) loading of drivers

■ power management for desktop systems as well as portables

■ multiprocessor capabilities

The I/O Kit is described in greater detail in the chapter “I/O Kit Overview” (page 85).

Kernel Extensions

Mac OS X provides a kernel extension mechanism as a means of allowing dynamic loading of
pieces of code into kernel space, without the need to recompile. These pieces of code are known
generically as plug-ins or, in the Mac OS X kernel environment, as kernel extensions or KEXTs.

Because KEXTs provide both modularity and dynamic loadability, they are a natural choice for
any relatively self-contained service that requires access to interfaces that are not exported to
user space. Many of the components of the kernel environment support this extension mechanism,
though they do so in different ways.

For example, some of the new networking features involve the use of network kernel extensions
(NKEs). These are discussed in the chapter “Network Architecture” (page 99).

The ability to dynamically add a new file-system implementation is based on VFS KEXTs. Device
drivers and device families in the I/O Kit are implemented using KEXTs. KEXTs make
development much easier for developers writing drivers or those writing code to support a new
volume format or networking protocol. KEXTs are discussed in more detail in the chapter “Kernel
Extension Overview” (page 133).

22 Kernel Extensions
© Apple Computer, Inc. 2004

C H A P T E R 3

Kernel Architecture Overview

Kernel-level security can mean many things, depending on what kind of kernel code you are
writing. This chapter points out some common security issues at the kernel or near-kernel level
and where applicable, describes ways to avoid them. These issues are covered in the following
sections:

■ “Security Implications of Paging” (page 24)

■ “Buffer Overflows and Invalid Input” (page 25)

■ “User Credentials” (page 25)

■ “Remote Authentication” (page 27)

■ “Temporary Files” (page 28)

■ “/dev/mem and /dev/kmem” (page 29)

■ “Key-based Authentication and Encryption” (page 29)

■ “Console Debugging” (page 33)

■ “Code Passing” (page 33)

Many of these issues are also relevant for application programming, but are crucial for
programmers working in the kernel. Others are special considerations that application programers
might not expect or anticipate.

Note: The terms cleartext and plaintext both refer to unencrypted text. These terms can generally
be used interchangeably, although in some circles, the term cleartext is restricted to unencrypted
transmission across a network. However, in other circles, the term plaintext (or sometimes plain
text) refers to plain ASCII text (as opposed to HTML or rich text. To avoid any potential confusion,
this chapter will use the term cleartext to refer to unencrypted text.

In order to understand security in Mac OS X, it is important to understand that there are two
security models at work. One of these is the kernel security model, which is based on users,
groups, and very basic per-user and per-group rights. The other is a user-level security model,
which is based on keys, keychains, groups, users, password-based authentication, and a host of
other details that are beyond the scope of this document.

The user level of security contains two basic features that you should be aware of as a kernel
programmer: Security Server and Keychain Manager.

C H A P T E R 4

Security Considerations

23
© Apple Computer, Inc. 2004

The Security Server consists of a daemon and various access libraries for caching permission to
do certain tasks, based upon various means of authentication, including passwords and group
membership. When a program requests permission to do something, the Security Server basically
says “yes” or “no,” and caches that decision so that further requests from that user (for similar
actions within a single context) do not require reauthentication for a period of time.

The Keychain Manager is a daemon that provides services related to the keychain, a central
repository for a user’s encryption/authentication keys. For more high level information on keys,
see “Key-based Authentication and Encryption” (page 29).

The details of the user-level security model use are far beyond the scope of this document.
However, if you are writing an application that requires services of this nature, you should
consider taking advantage of the Security Server and Keychain Manager from the user-space
portion of your application, rather than attempting equivalent services in the kernel. More
information about these services can be found in the Technical Publications section of Apple’s
website (http://developer.apple.com/documentation).

Security Implications of Paging

Paging has long been a major problem for security-conscious programmers. If you are writing a
program that does encryption, the existence of even a small portion of the cleartext of a document
in a backing store could be enough to reduce the complexity of breaking that encryption by orders
of magnitude.

Indeed, many types of data, such as hashes, unencrypted versions of sensitive data, and
authentication tokens, should generally not be written to disk due to the potential for abuse. This
raises an interesting problem. There is no good way to deal with this in user space (unless a
program is running as root). However, for kernel code, it is possible to prevent pages from being
written out to a backing store. This process is referred to as “wiring down” memory, and is
described further in “Memory Mapping and Block Copying” (page 116).

The primary purpose of wired memory is to allow DMA-based I/O. Since hardware DMA
controllers generally do not understand virtual addressing, information used in I/O must be
physically in memory at a particular location and must not move until the I/O operation is
complete. This mechanism can also be used to prevent sensitive data from being written to a
backing store.

Because wired memory can never be paged out (until it is unwired), wiring large amounts of
memory has drastic performance repercussions, particularly on systems with small amounts of
memory. For this reason, you should take care not to wire down memory indiscriminately and
only wire down memory if you have a very good reason to do so.

In Mac OS X, memory may be wired down at the time of allocation. In I/O Kit, you specify
IOMalloc and IOFree to allocate wired memory. In Mach, kmem_alloc_wired (and kmem_free)
can be used. It may also be wired down after allocation. For more information on wired memory,
see “Memory Mapping and Block Copying” (page 116).

24 Security Implications of Paging
© Apple Computer, Inc. 2004

C H A P T E R 4

Security Considerations

http://developer.apple.com/documentation

Buffer Overflows and Invalid Input

Buffer overflows are one of the more common bugs in both application and kernel programming.
The most common cause is failing to allocate space for the NULL character that terminates a
string in C or C++. However, user input can also cause buffer overflows if fixed-size input buffers
are used and appropriate care is not taken to prevent overflowing these buffers.

The most obvious protection, in this case, is the best one. Either don’t use fixed-length buffers
or add code to reject input that overflows the buffer. The implementation details in either case
depend on the type of code you are writing.

Other types of invalid input can be somewhat harder to handle, however. As a general rule, you
should be certain that switch statements have a default case unless you have listed every legal
value for the width of the type.

A common mistake is assuming that listing every possible value of an enum type provides
protection. An enum is generally implemented as either a char or an int internally. A careless
or malicious programmer could easily pass any value to a kernel function, including those not
explicitly listed in the type, simply by using a different prototype that defines the parameter as,
for example, an int.

Another common mistake is to assume that you can dereference a pointer passed to your function
by another function. You should always check for null pointers before dereferencing them.
Starting a function with

int do_something(bufptr *bp, int flags) {
 char *token = bp->b_data;

is the surest way to guarantee that someone else will pass in a null buffer pointer, either
maliciously or because of programmer error. In a user program, this is annoying. In a file system,
it is devastating.

Security is particularly important for kernel code that draws input from a network. Assumptions
about packet size are frequently the cause of security problems. Always watch for packets that
are too big and handle them in a reasonable way. Likewise, always verify checksums on packets.
This can help you determine if a packet was modified, damaged, or truncated in transit, though
it is far from foolproof. If the validity of data from a network is of vital importance, you should
use remote authentication, signing, and encryption mechanisms such as those described in
“Remote Authentication” (page 27) and “Key-based Authentication and Encryption” (page 29).

User Credentials

As described in the introduction to this chapter, Mac OS X has two different means of
authenticating users. The user-level security model (including the Keychain Manager and the
Security Server) is beyond the scope of this document. The kernel security model, however, is
of greater interest to kernel developers, and is much more straightforward than the user-level
model.

The kernel security model is based on relatively simple credentials that are passed around within
the kernel to identify the user and group of the calling process’s owner.

Buffer Overflows and Invalid Input 25
© Apple Computer, Inc. 2004

C H A P T E R 4

Security Considerations

These user credentials used in the kernel are stored in a variable of type struct ucred.

This structure has four fields:

■ cr_ref—reference count (used internally)

■ cr_uid—user ID

■ cr_ngroups—number of groups in cr_groups

■ cr_groups[NGROUPS]—list of groups to which the user belongs

This structure has an internal reference counter to prevent unintentionally freeing the memory
associated with it while it is still in use. For this reason, you should not indiscriminately copy
this object but should instead either use crdup to duplicate it or use crcopy to duplicate it and
(potentially) free the original. You should be sure to crfree any copies you might make. You
can also create a new, empty ucred structure with crget.

The prototypes for these functions follow:

■ struct ucred *crdup(struct ucred *cr)

■ struct ucred *crcopy(struct ucred *cr)

■ struct ucred *crget(void)

■ void crfree(struct ucred *cr)

One of the most important things to remember when working with credentials is that they are
per process, not per context. This is important because a process may not be running as the
console user. Two examples of this are processes started from an ssh session (since ssh runs in
the startup context) and setuid programs (which run as a different user in the same login context).

It is crucial to be aware of these issues. If you are communicating with a setuid root GUI
application in a user’s login context, and if you are executing another application or are reading
sensitive data, you probably want to treat it as if it had the same authority as the console user,
not the authority of the effective user ID caused by running setuid. This is particularly
problematic when dealing with programs that run as setuid root if the console user is not in
the admin group. Failure to perform reasonable checks can lead to major security holes down
the road.

However, this is not a hard and fast rule. Sometimes it is not obvious whether to use the credentials
of the running process or those of the console user. In such cases, it is often reasonable to have
a helper application show a dialog box on the console to require interaction from the console
user. If this is not possible, a good rule of thumb is to assume the lesser of the privileges of the
current and console users, as it is almost always better to have kernel code occasionally fail to
provide a needed service than to provide that service unintentionally to an unauthorized user
or process.

It is generally easier to determine the console user from a user space application than from kernel
space code. Thus, you should generally do such checks from user space. If that is not possible,
however, the variable console_user (maintained by the VFS subsystem) will give you the uid
of the last owner of /dev/console (maintained by a bit of code in the chown system call). This
is certainly not an ideal solution, but it does provide the most likely identity of the console user.
Since this is only a “best guess,” however, you should use this only if you cannot do appropriate
checking in user space.

26 User Credentials
© Apple Computer, Inc. 2004

C H A P T E R 4

Security Considerations

Remote Authentication

This is one of the more difficult problems in computer security: the ability to identify someone
connecting to a computer remotely. One of the most secure methods is the use of public key
cryptography, which is described in more detail in “Key-based Authentication and
Encryption” (page 29). However, many other means of authentication are possible, with varying
degrees of security.

Some other authentication schemes include:

■ blind trust

■ IP-only authentication

■ password (shared secret) authentication

■ combination of IP and password authentication

■ one-time pads (challenge-response)

■ time-based authentication

Most of these are obvious, and require no further explanation. However, one-time pads and
time-based authentication may be unfamiliar to many people outside security circles, and are
thus worth mentioning in more detail.

One-Time Pads

Based on the concept of “challenge-response” pairs, one-time pad (OTP) authentication requires
that both parties have an identical list of pairs of numbers, words, symbols, or whatever, sorted
by the first item. When trying to access a remote system, the remote system prompts the user
with a challenge. The user finds the challenge in the first column, then sends back the matching
response. Alternatively, this could be an automated exchange between two pieces of software.

For maximum security, no challenge should ever be issued twice. For this reason, and because
these systems were initially implemented with a paper pad containing challenge-response, or
CR pairs, such systems are often called one-time pads.

The one-time nature of OTP authentication makes it impossible for someone to guess the
appropriate response to any one particular challenge by a brute force attack (by responding to
that challenge repeatedly with different answers). Basically, the only way to break such a system,
short of a lucky guess, is to actually know some portion of the contents of the list of pairs.

For this reason, one-time pads can be used over insecure communication channels. If someone
snoops the communication, they can obtain that challenge-response pair. However, that
information is of no use to them, since that particular challenge will never be issued again. (It
does not even reduce the potential sample space for responses, since only the challenges must
be unique.)

Remote Authentication 27
© Apple Computer, Inc. 2004

C H A P T E R 4

Security Considerations

Time-based authentication

This is probably the least understood means of authentication, though it is commonly used by
such technologies as SecurID. The concept is relatively straightforward. You begin with a
mathematical function that takes a small number of parameters (two, for example) and returns
a new parameter. A good example of such a function is the function that generates the set of
Fibonacci numbers (possibly truncated after a certain number of bits, with arbitrary initial seed
values).

Take this function, and add a third parameter, t, representing time in units of k seconds. Make
the function be a generating function on t, with two seed values, a and b, where

f(x,y) = (x + y) MOD (2 32)

g(t) = a, 0 t k

g(t) = b, k t 2k

g(t) = f (g(log
k
t -2),g(log

k
t -1))

In other words, every k seconds, you calculate a new value based on the previous two and some
equation. Then discard the oldest value, replacing it with the second oldest value, and replace
the second oldest value with the value that you just generated.

As long as both ends have the same notion of the current time and the original two numbers,
they can then calculate the most recently generated number and use this as a shared secret. Of
course, if you are writing code that does this, you should use a closed form of this equation, since
calculating Fibonacci numbers recursively without additional storage grows at O(2^(t/k)),
which is not practical when t is measured in years and k is a small constant measured in seconds.

The security of such a scheme depends on various properties of the generator function, and the
details of such a function are beyond the scope of this document. For more information, you
should obtain an introductory text on cryptography,. such as Bruce Schneier’s Applied Cryptography.

Temporary Files

Temporary files are a major source of security headaches. If a program does not set permissions
correctly and in the right order, this can provide a means for an attacker to arbitrarily modify or
read these files. The security impact of such modifications depends on the contents of the files.

Temporary files are of much less concern to kernel programmers, since most kernel code does
not use temporary files. Indeed, kernel code should generally not use files at all. However, many
people programming in the kernel are doing so to facilitate the use of applications that may use
temporary files. As such, this issue is worth noting.

The most common problem with temporary files is that it is often possible for a malicious third
party to delete the temporary file and substitute a different one with relaxed permissions in its
place. Depending on the contents of the file, this could range from being a minor inconvenience
to being a relatively large security hole, particularly if the file contains a shell script that is about
to be executed with the permissions of the program’s user.

28 Temporary Files
© Apple Computer, Inc. 2004

C H A P T E R 4

Security Considerations

/dev/mem and /dev/kmem

One particularly painful surprise to people doing security programming in most UNIX or
UNIX-like environments is the existence of /dev/mem and /dev/kmem. These device files allow
the root user to arbitrarily access the contents of physical memory and kernel memory,
respectively. There is absolutely nothing you can do to prevent this. From a kernel perspective,
root is omnipresent and omniscient. If this is a security concern for your program, then you
should consider whether your program should be used on a system controlled by someone else
and take the necessary precautions.

Key-based Authentication and Encryption

Key-based authentication and encryption are ostensibly some of the more secure means of
authentication and encryption, and can exist in many forms. The most common forms are based
upon a shared secret. The DES, 3DES (triple-DES), IDEA, twofish, and blowfish ciphers are
examples of encryption schemes based on a shared secret. Passwords are an example of an
authentication scheme based on a shared secret.

The idea behind most key-based encryption is that you have an encryption key of some arbitrary
length that is used to encode the data, and that same key is used in the opposite manner (or in
some cases, in the same manner) to decode the data.

The problem with shared secret security is that the initial key exchange must occur in a secure
fashion. If the integrity of the key is compromised during transmission, the data integrity is lost.
This is not a concern if the key can be generated ahead of time and placed at both transport
endpoints in a secure fashion. However, in many cases, this is not possible or practical because
the two endpoints (be they physical devices or system tasks) are controlled by different people
or entities. Fortunately, an alternative exists, known as zero-knowledge proofs.

The concept of a zero-knowledge proof is that two seemingly arbitrary key values, x and y, are
created, and that these values are related by some mathematical function ƒ in such a way that

ƒ(ƒ(a,k1),k2) = a

That is, applying a well-known function to the original cleartext using the first key results in
ciphertext which, when that same function is applied to the ciphertext using the second key
returns the original data. This is also reversible, meaning that

ƒ(ƒ(a,k2),k1) = a

If the function f is chosen correctly, it is extremely difficult to derive x from y and vice-versa,
which would mean that there is no function that can easily transform the ciphertext back into
the cleartext based upon the key used to encode it.

An example of this is to choose the mathematical function to be

f(a,k)=((a*k) MOD 256) + ((a*k)/256)

where a is a byte of cleartext, and k is some key 8 bits in length. This is an extraordinarily weak
cipher, since the function f allows you to easily determine one key from the other, but it is
illustrative of the basic concept.

/dev/mem and /dev/kmem 29
© Apple Computer, Inc. 2004

C H A P T E R 4

Security Considerations

Pick k1 to be 8 and k2 to be 32. So for a=73, (a * 8)=584. This takes two bytes, so add the bits
in the high byte to the bits of the low byte, and you get 74. Repeat this process with 32. This gives
you 2368. Again, add the bits from the high byte to the bits of the low byte, and you have 73
again.

This mathematical concept (with very different functions), when put to practical use, is known
as public key (PK) cryptography, and forms the basis for RSA and DSA encryption.

Public Key Weaknesses

Public key encryption can be very powerful when used properly. However, it has a number of
inherent weaknesses. A complete explanation of these weaknesses is beyond the scope of this
document. However, it is important that you understand these weaknesses at a high level to
avoid falling into some common traps. Some commonly mentioned weakness of public key
cryptography include:

■ Trust model for key exchange

■ Pattern sensitivity

■ Short data weakness

Trust Models

The most commonly discussed weakness of public key cryptography is the initial key exchange
process itself. If someone manages to intercept a key during the initial exchange, he or she could
instead give you his or her own public key and intercept messages going to the intended party.
This is known as a man-in-the-middle attack.

For such services as ssh, most people either manually copy the keys from one server to another
or simply assume that the initial key exchange was successful. For most purposes, this is sufficient.

In particularly sensitive situations, however, this is not good enough. For this reason, there is a
procedure known as key signing. There are two basic models for key signing: the central authority
model and the web of trust model.

The central authority model is straightforward. A central certifying agency signs a given key,
and says that they believe the owner of the key is who he or she claims to be. If you trust that
authority, then by association, you trust keys that the authority claims are valid.

The web of trust model is somewhat different. Instead of a central authority, individuals sign
keys belonging to other individuals. By signing someone’s key, you are saying that you trust
that the person is really who he or she claims to be and that you believe that the key really belongs
to him or her. The methods you use for determining that trust will ultimately impact whether
others trust your signatures to be valid.

There are many different ways of determining trust, and thus many groups have their own rules
for who should and should not sign someone else’s key. Those rules are intended to make the
trust level of a key depend on the trust level of the keys that have signed it.

The line between central authorities and web of trust models is not quite as clear-cut as you might
think, however. Many central authorities are hierarchies of authorities, and in some cases, they
are actually webs of trust among multiple authorities. Likewise, many webs of trust may include

30 Key-based Authentication and Encryption
© Apple Computer, Inc. 2004

C H A P T E R 4

Security Considerations

centralized repositories for keys. While those repositories don’t provide any certification of the
keys, they do provide centralized access. Finally, centralized authorities can easily sign keys as
part of a web of trust.

There are many websites that describe webs of trust and centralized certification schemes. A
good general description of several such models can be found at
http://world.std.com/~cme/html/web.html.

Sensitivity to Patterns and Short Messages

Existing public key encryption algorithms do a good job at encrypting semi-random data. They
fall short when encrypting data with certain patterns, as these patterns can inadvertently reveal
information about the keys. The particular patterns depend on the encryption scheme.
Inadvertently hitting such a pattern does not allow you to determine the private key. However,
they can reduce the search space needed to decode a given message.

Short data weakness is closely related to pattern sensitivity. If the information you are encrypting
consists of a single number, for example the number 1, you basically get a value that is closely
related mathematically to the public key. If the intent is to make sure that only someone with the
private key can get the original value, you have a problem.

In other words, public key encryption schemes generally do not encrypt all patterns equally well.
For this reason (and because public key cryptography tends to be slower than single key
cryptography), public keys are almost never used to encrypt end-user data. Instead, they are
used to encrypt a session key. This session key is then used to encrypt the actual data using a
shared secret mechanism such as 3DES, AES, blowfish, and so on.

Using Public Keys for Message Exchange

Public key cryptography can be used in many ways. When both keys are private, it can be used
to send data back and forth. However this use is no more useful than a shared secret mechanism.
In fact, it is frequently weaker, for the reasons mentioned earlier in the chapter. Public key
cryptography becomes powerful when one key is made public.

Assume that Ernie and Bert want to send coded messages. Ernie gives Bert his public key.
Assuming that the key was not intercepted and replaced with someone else’s key, Bert can now
send data to Ernie securely, because data encrypted with the public key can only be decrypted
with the private key (which only Ernie has).

Bert uses this mechanism to send a shared secret. Bert and Ernie can now communicate with
each other using a shared secret mechanism, confident in the knowledge that no third party has
intercepted that secret. Alternately, Bert could give Ernie his public key, and they could both
encrypt data using each other’s public keys, or more commonly by using those public keys to
encrypt a session key and encrypting the data with that session key.

Key-based Authentication and Encryption 31
© Apple Computer, Inc. 2004

C H A P T E R 4

Security Considerations

http://world.std.com/~cme/html/web.html

Using Public Keys for Identity Verification

Public key cryptography can also be used for verification of identity. Kyle wants to know if
someone on the Internet who claims to be Stan is really Stan. A few months earlier, Stan handed
Kyle his public key on a floppy disk. Thus, since Kyle already has Stan’s public key (and trusts
the source of that key), he can now easily verify Stan’s identity.

To achieve this, Kyle sends a cleartext message and asks Stan to encrypt it. Stan encrypts it with
his private key. Kyle then uses Stan’s public key to decode the ciphertext. If the resulting cleartext
matches, then the person on the other end must be Stan (unless someone else has Stan’s private
key).

Using Public Keys for Data Integrity Checking

Finally, public key cryptography can be used for signing. Ahmed is in charge of meetings of a
secret society called the Stupid Acronym Preventionists club. Abraham is a member of the club
and gets a TIFF file containing a notice of their next meeting, passed on by way of a fellow member
of the science club, Albert. Abraham is concerned, however, that the notice might have come
from Bubba, who is trying to infiltrate the SAPs.

Ahmed, however, was one step ahead, and took a checksum of the original message and encrypted
the checksum with his private key, and sent the encrypted checksum as an attachment. Abraham
used Ahmed’s public key to decrypt the checksum, and found that the checksum did not match
that of the actual document. He wisely avoided the meeting. Isaac, however, was tricked into
revealing himself as a SAP because he didn’t remember to check the signature on the message.

The moral of this story? One should always beware of geeks sharing TIFFs—that is, if the security
of some piece of data is important and if you do not have a direct, secure means of communication
between two applications, computers, people, and so on, you must verify the authenticity of any
communication using signatures, keys, or some other similar method. This may save your data
and also save face.

Encryption Summary

Encryption is a powerful technique for keeping data secure if the initial key exchange occurs in
a secure fashion. One means for this is to have a public key, stored in a well-known (and trusted)
location. This allows for one-way encrypted communication through which a shared secret can
be transferred for later two-way encrypted communication.

You can use encryption not only for protecting data, but also for verifying the authenticity of
data by encrypting a checksum. You can also use it to verify the identity of a client by requiring
that the client encrypt some random piece of data as proof that the client holds the appropriate
encryption key.

Encryption, however, is not the final word in computer security. Because it depends on having
some form of trusted key exchange, additional infrastructure is needed in order to achieve total
security in environments where communication can be intercepted and modified.

32 Key-based Authentication and Encryption
© Apple Computer, Inc. 2004

C H A P T E R 4

Security Considerations

Console Debugging

WARNING
Failure to follow this advice can unintentionally expose
security-critical information.

In traditional UNIX and UNIX-like systems, the console is owned by root. Only root sees console
messages. For this reason, print statements in the kernel are relatively secure.

In Mac OS X, any user can run the Console application. This represents a major departure from
other UNIX-like systems. While it is never a good idea to include sensitive information in kernel
debugging statements, it is particularly important not to do so in Mac OS X. You must assume
that any information displayed to the console could potentially be read by any user on the system
(since the console is virtualized in the form of a user-viewable window).

Printing any information involving sensitive data, including its location on disk or in memory,
represents a security hole, however slight, and you should write your code accordingly. Obviously
this is of less concern if that information is only printed when the user sets a debugging flag
somewhere, but for normal use, printing potentially private information to the console is strongly
discouraged.

You must also be careful not to inadvertently print information that you use for generating
password hashes or encryption keys, such as seed values passed to a random number generator.

This is, by necessity, not a complete list of information to avoid printing to the console. You must
use your own judgement when deciding whether a piece of information could be valuable if seen
by a third party, and then decide if it is appropriate to print it to the console.

Code Passing

There are many ways of passing executable code into the kernel from user space. For the purposes
of this section, executable code is not limited to compiled object code. It includes any instructions
passed into the kernel that significantly affect control flow. Examples of passed-in executable
code range from simple rules such as the filtering code uploaded in many firewall designs to
bytecode uploads for a SCSI card.

If it is possible to execute your code in user space, you should not even contemplate pushing
code into the kernel. For the rare occasion where no other reasonable solution exists, however,
you may need to pass some form of executable code into the kernel. This section explains some
of the security ramifications of pushing code into the kernel and the level of verification needed
to ensure consistent operation.

Here are some guidelines to minimize the potential for security holes:

1. No raw object code.

Direct execution of code passed in from user space is very dangerous. Interpreted languages
are the only reasonable solution for this sort of problem, and even this is fraught with
difficulty. Traditional machine code can’t be checked sufficiently to ensure security compliance.

Console Debugging 33
© Apple Computer, Inc. 2004

C H A P T E R 4

Security Considerations

2. Bounds checking.

Since you are in the kernel, you are responsible for making sure that any uploaded code does
not randomly access memory and does not attempt to do direct hardware access. You would
normally make this a feature of the language itself, restricting access to the data element on
which the bytecode is operating.

3. Termination checking.

With very, very few exceptions, the language chosen should be limited to code that can be
verified to terminate, and you should verify accordingly. If your driver is stuck in a tightly
rolled loop, it is probably unable to do its job, and may impact overall system performance
in the process. A language that does not allow (unbounded) loops (for example, allowing
for but not while or goto could be one way to ensure termination.

4. Validity checking.

Your bytecode interpreter would be responsible for checking ahead for any potentially invalid
operations and taking appropriate punitive actions against the uploaded code. For example,
if uploaded code is allowed to do math, then proper protection must be in place to handle
divide by zero errors.

5. Sanity checking.

You should verify that the output is something remotely reasonable, if possible. It is not
always possible to verify that the output is correct, but it is generally possible to create rules
that prevent egregiously invalid output.

For example, a network filter rule should output something resembling packets. If the
checksums are bad, or if other information is missing or corrupt, clearly the uploaded code
is faulty, and appropriate actions should be taken. It would be highly inappropriate for Mac
OS X to send out bad network traffic.

In general, the more restrictive the language set, the lower the security risk. For example,
interpreting simple network routing policies is less likely to be a security problem than interpreting
packet rewriting rules, which is less likely to be an issue than running Java bytecode in the kernel.
As with anything else, you must carefully weigh the potential benefits against the potential
drawbacks and make the best decision given the information available.

34 Code Passing
© Apple Computer, Inc. 2004

C H A P T E R 4

Security Considerations

Performance is a key aspect of any software system. Nowhere is this more true than in the kernel,
where small performance problems tend to be magnified by repeated execution. For this reason,
it is extremely important that your code be as efficient as possible.

This chapter discusses the importance of low interrupt latency and fine-grained locking and tells
you how to determine what portions of your code would benefit most from more efficient design.

Interrupt Latency

In Mac OS X, you will probably never need to write code that runs in an interrupt context. In
general, only motherboard hardware requires this. However, in the unlikely event that you do
need to write code in an interrupt context, interrupt latency should be a primary concern.

Interrupt latency refers to the delay between an interrupt being generated and an interrupt
handler actually beginning to service that interrupt. In practice, the worst case interrupt latency
is closely tied to the amount of time spent in supervisor mode (also called kernel mode) with
interrupts off while handling some other interrupt. Low interrupt latency is necessary for
reasonable overall performance, particularly when working with audio and video. In order to
have reasonable soft real-time performance (for example, performance of multimedia applications),
the interrupt latency caused by every device driver must be both small and bounded.

Mac OS X takes great care to bound and minimize interrupt latency for built-in drivers. It does
this primarily through the use of interrupt service threads (also known as I/O service threads).

When Mac OS X takes an interrupt, the low-level trap handlers call up to a generic interrupt
handling routine that clears the pending interrupt bit in the interrupt controller and calls a
device-specific interrupt handler. That device-specific handler, in turn, sends a message to an
interrupt service thread to notify it that an interrupt has occurred, and then the handler returns.
When no further interrupts are pending, control returns to the currently executing thread.

The next time the interrupt service thread is scheduled, it checks to see if an interrupt has occurred,
then services the interrupt. As the name suggests, this actually is happening in a thread context,
not an interrupt context. This design causes two major differences from traditional operating
system design:

■ Interrupt latency is near zero, since the code executing in an interrupt context is very small.

C H A P T E R 5

Performance Considerations

Interrupt Latency 35
© Apple Computer, Inc. 2004

■ It is possible for an interrupt to occur while a device driver is executing. This means that
traditional (threaded) device drivers can be preempted and must use locking or other similar
methods to protect any shared data (although they need to do so anyway to work on
computers with multiple processors).

This model is crucial to the performance of Mac OS X. You should not attempt to circumvent
this design by doing large amounts of work in an interrupt context. Doing so will be detrimental
to the overall performance of the system.

Locking Bottlenecks

It is difficult to communicate data between multiple threads or between thread and interrupt
contexts without using locking or other synchronization. This locking protects your data from
getting clobbered by another thread. However, it also has the unfortunate side effect of being a
potential bottleneck.

In some types of communication (particularly n-way), locking can dramatically hinder performance
by allowing only one thing to happen at a time. Read-write locks, discussed in “Synchronization
Primitives” (page 119), can help alleviate this problem in the most common situation where
multiple clients need to be able to read information but only rarely need to modify that data.

However, there are many cases where read-write locks are not helpful. This section discusses
some possible problems and ways of improving performance within those constraints.

Working With Highly Contended Locks

When many threads need to obtain a lock (or a small number of threads need to obtain a lock
frequently), this lock is considered highly contended. Highly contended locks frequently represent
faulty code design, but they are sometimes unavoidable. In those cases, the lock tends to become
a major performance bottleneck.

Take, for example, the issue of many-to-many communication that must be synchronized through
a common buffer. While some improvement can be gained by using read-write locks instead of
an ordinary mutex, the issue of multiple writers means that read-write locks still perform badly.

One possible solution for this many-to-many communication problem is to break the lock up
into multiple locks. Instead of sharing a single buffer for the communication itself, make a shared
buffer that contains accounting information for the communication (for example, a list of buffers
available for reading). Then assign each individual buffer its own lock. The readers might then
need to check several locations to find the right data, but this still frequently yields better
performance, since writers must only contend for a write lock while modifying the accounting
information.

Another solution for many-to-many communications is to eliminate the buffer entirely and
communicate using message passing, sockets, IPC, RPC, or other methods.

Yet another solution is to restructure your code in a way that the locking is unnecessary. This is
often much more difficult. One method that is often helpful is to take advantage of flags and
atomic increments, as outlined in the next paragraph. For simplicity, a single-writer, single-reader
example is presented, but it is possible to extend this idea to more complicated designs.

36 Locking Bottlenecks
© Apple Computer, Inc. 2004

C H A P T E R 5

Performance Considerations

Take a buffer with some number of slots. Keep a read index and a write index into that buffer.
When the write index and read index are the same, there is no data in the buffer. When writing,
clear the next location. Then do an atomic increment on the pointer. Write the data. End by setting
a flag at that new location that says that the data is valid.

Note that this solution becomes much more difficult when dealing with multiple readers and
multiple writers, and as such, is beyond the scope of this section.

Reducing Contention by Decreasing Granularity

One of the fundamental properties of locks is granularity. The granularity of a lock refers to the
amount of code or data that it protects. A lock that protects a large block of code or a large amount
of data is referred to as a coarse-grained lock, while a lock that protects only a small amount of
code or data is referred to as a fine-grained lock. A coarse-grained lock is much more likely to
be contended (needed by one thread while being held by another) than a more finely grained
lock.

There are two basic ways of decreasing granularity. The first is to minimize the amount of code
executed while a lock is held. For example, if you have code that calculates a value and stores it
into a table, don’t take the lock before calling the function and release it after the function returns.
Instead, take the lock in that piece of code right before you write the data, and release it as soon
as you no longer need it.

Of course, reducing the amount of protected code is not always possible or practical if the code
needs to guarantee consistency where the value it is writing depends on other values in the table,
since those values could change before you obtain the lock, requiring you to go back and redo
the work.

It is also possible to reduce granularity by locking the data in smaller units. In the above example,
you could have a lock on each cell of the table. When updating cells in the table, you would start
by determining the cells on which the destination cell depends, then lock those cells and the
destination cell in some fixed order. (To avoid deadlock, you must always either lock cells in the
same order or use an appropriate try function and release all locks on failure.)

Once you have locked all the cells involved, you can then perform your calculation and release
the locks, confident that no other thread has corrupted your calculations. However, by locking
on a smaller unit of data, you have also reduced the likelihood of two threads needing to access
the same cell.

A slightly more radical version of this is to use read-write locks on a per-cell basis and always
upgrade in a particular order. This is, however, rather extreme, and difficult to do correctly.

Code Profiling

Code profiling means determining how often certain pieces of code are executed. By knowing
how frequently a piece of code is used, you can more accurately gauge the importance of
optimizing that piece of code. There are a number of good tools for profiling user space
applications. However, code profiling in the kernel is a very different beast, since it isn’t reasonable
to attach to it like you would a running process. (It is possible by using a second computer, but
even then, it is not a trivial task.)

Code Profiling 37
© Apple Computer, Inc. 2004

C H A P T E R 5

Performance Considerations

This section describes two useful ways of profiling your kernel code: counters and lock profiling.
Any changes you make to allow code profiling should be done only during development. These
are not the sort of changes that you want to release to end users.

Using Counters for Code Profiling

The first method of code profiling is with counters. To profile a section of code with a counter,
you must first create a global variable whose name describes that piece of code and initialize it
to zero. You then add something like

#ifdef PROFILING
 foo_counter++;#endif

in the appropriate piece of code. If you then define PROFILING, that counter is created and
initialized to zero, then incremented each time the code in question is executed.

One small snag with this sort of profiling is the problem of obtaining the data. This can be done
in several ways. The simplest is probably to install a sysctl, using the address of foo_counter
as an argument. Then, you could simply issue the sysctl command from the command line and
read or clear the variable. Adding a sysctl is described in more detail in “BSD sysctl API” (page
110).

In addition to using sysctl, you could also obtain the data by printing its value when unloading
the module (in the case of a KEXT) or by using a remote debugger to attach to the kernel and
directly inspecting the variable. However, a sysctl provides the most flexibility. With a sysctl,
you can sample the value at any time, not just when the module is unloaded. The ability to
arbitrarily sample the value makes it easier to determine the importance of a piece of code to one
particular action.

If you are developing code for use in the I/O Kit, you should probably use your driver’s
setProperties call instead of a sysctl.

Lock Profiling

Lock profiling is another useful way to find the cause of code inefficiency. Lock profiling can
give you the following information:

■ how many times a lock was taken

■ how long the lock was held on average

■ how often the lock was unavailable

Put another way, this allows you to determine the contention of a lock, and in so doing, can help
you to minimize contention by code restructuring.

There are many different ways to do lock profiling. The most common way is to create your own
lock calls that increment a counter and then call the real locking functions. When you move from
debugging into a testing cycle before release, you can then replace the functions with defines to
cause the actual functions to be called directly. For example, you might write something like this:

extern struct timeval time;

38 Code Profiling
© Apple Computer, Inc. 2004

C H A P T E R 5

Performance Considerations

boolean_t mymutex_try(mymutex_t *lock) {
 int ret;
 ret=mutex_try(lock->mutex);
 if (ret) {
 lock->tryfailcount++;
 }
 return ret;
}

void mymutex_lock(mymutex_t *lock) {
 if (!(mymutex_try(lock))) {
 mutex_lock(lock->mutex);
 }
 lock->starttime = time.tv_sec;
}
void mymutex_unlock(mymutex_t *lock) {
 lock->lockheldtime += (time.tv_sec - lock->starttime);
 lock->heldcount++;
 mutex_unlock(lock->mutex);
}

This routine has accuracy only to the nearest second, which is not particularly accurate. Ideally,
you want to keep track of both time.tv_sec and time.tv_usec and roll the microseconds into
seconds as the number gets large.

From this information, you can obtain the average time the lock was held by dividing the total
time held by the number of times it was held. It also tells you the number of times a lock was
taken immediately instead of waiting, which is a valuable piece of data when analyzing contention.

As with counter-based profiling, after you have written code to record lock use and contention,
you must find a way to obtain that information. A sysctl is a good way of doing this, since it is
relatively easy to implement and can provide a “snapshot” view of the data structure at any
point in time. For more information on adding a sysctl, see “BSD sysctl API” (page 110).

Another way to do lock profiling is to use the built-in ETAP (Event Trace Analysis Package).
This package consists of additional code designed for lock profiling. However, since this requires
a kernel recompile, it is generally not recommended.

Code Profiling 39
© Apple Computer, Inc. 2004

C H A P T E R 5

Performance Considerations

40 Code Profiling
© Apple Computer, Inc. 2004

C H A P T E R 5

Performance Considerations

As described in “Keep Out” (page 15), programming in the kernel is fraught with hazards that
can cause instability, crashes, or security holes. In addition to these issues, programming in the
kernel has the potential for compatibility problems. If you program only to the interfaces discussed
in this document or other Apple documents, you will avoid the majority of these.

However, even limiting yourself to documented interfaces does not protect you from a handful
of pitfalls. The biggest potential problem that you face is namespace collision, which occurs when
your function, variable, or class name is the same as someone else’s. Since this makes one kernel
extension or the other fail to load correctly (in a non-deterministic fashion), Apple has established
function naming conventions for C and C++ code within the kernel. These are described in
“Standard C Naming Conventions” (page 43) and “C++ Naming Conventions” (page 41),
respectively.

In addition to compatibility problems, kernel extensions that misbehave can also dramatically
decrease the system’s overall performance or cause crashes. Some of these issues are described
in “Performance and Stability Tips” (page 45). For more thorough coverage of performance and
stability, you should also read the chapters “Security Considerations” (page 23) and “Performance
Considerations” (page 35).

C++ Naming Conventions

Basic I/O Kit C++ naming conventions are defined in the document Inside Mac OS X: Writing an
I/O Kit Device Driver. This section refines those conventions in ways that should make them more
useful to you as a programmer.

Basic Conventions

The primary conventions are as follows:

■ Use the Java-style reverse DNS naming convention, substituting underscores for periods.
For example, com_apple_foo.

■ Avoid the following reserved prefixes:

❏ OS

C H A P T E R 6

Kernel Programming Style

C++ Naming Conventions 41
© Apple Computer, Inc. 2004

❏ os

❏ IO

❏ io

❏ Apple

❏ apple

❏ AAPL

❏ aapl

This ensures that you will not collide with classes created by other companies or with future
classes added to the operating system by Apple. It does not protect you from other projects
created within your company, however, and for this reason, some additional guidelines are
suggested.

Additional Guidelines

These additional guidelines are intended to minimize the chance of accidentally breaking your
own software and to improve readability of code by developers. This is particularly of importance
for open source projects.

■ Begin each function name within a class with the name of the class. For example, if the class
is com_apple_iokit_pickle, and the function would be eat, you should name the function
pickle_eat. This makes it easier to see class associations, particularly when called from
other files.

■ Name classes based on project names. For example, if you are working on project Schlassen,
and one of its classes was pickle, you would name the class
com_apple_iokit_schlassen_pickle.

■ Name classes hierarchically if your organization is large. For example, if Apple’s marketing
department were working on the Schlassen project, then they might name the class
com_apple_iokit_marketing_schlassen_pickle. If they had another project that was in
the BSD layer that interfaced with this one, then that BSD extension’s class could be
com_apple_bsd_marketing_schlassen_pickle.

■ If you anticipate that the last part of the class name may be the same as the last part of another
class name, consider beginning each function name with a larger portion of the class name.
For example, you might have bsd_pickle_eat and iokit_pickle_eat.

These are only suggested guidelines. Your company or organization should adopt its own set of
guidelines within the constraints of the basic conventions described in the previous section. These
guidelines should provide a good starting point.

42 C++ Naming Conventions
© Apple Computer, Inc. 2004

C H A P T E R 6

Kernel Programming Style

Standard C Naming Conventions

The naming conventions for C++ have been defined for some time in the document Inside Mac
OS X: Writing an I/O Kit Device Driver. However, no conventions have been given for standard
C code. Because standard C has an even greater chance of namespace collision than C++, it is
essential that you follow these guidelines when writing C code for use in the kernel.

Because C does not have the benefit of classes, it is much easier to run into a naming conflict
between two functions. For this reason, the following conventions are suggested:

■ Declare all functions and (global) variables static where possible to prevent them from being
seen in the global namespace. If you need to share these across files within your KEXT, you
can achieve a similar effect by declaring them __private_extern__.

■ Each function name should use Java-style reverse DNS naming. For example, if your company
is apple.com, you should begin each function with com_apple_.

■ Follow the reverse DNS name with the name of your project. For example, if you work at
Apple and were working on project Schlassen, you would start each function name with
com_apple_iokit_schlassen_.

■ Use hierarchical names if you anticipate multiple projects with similar names coming from
different parts of your company or organization.

■ Use macro expansion to save typing, for example PROJECT_eat could expand to
com_apple_iokit_schlassen_pickle_eat.

■ If you anticipate that the last part of a function name may be the same as the last part of
another function name (for example, PROJECT1_eat and PROJECT2_eat), you should change
the names to avoid confusion (for example, PROJECT1_eatpickle and PROJECT2_eatburger).

■ Avoid the following reserved prefixes:

❏ OS

❏ os

❏ IO

❏ io

❏ Apple

❏ apple

❏ AAPL

❏ aapl

■ Avoid conflicting with any names already in the kernel, and do not use prefixes similar to
those of existing kernel functions that you may be working with.

■ Never begin a function name with an underscore (_).

■ Under no circumstances should you use common names for your functions without prefixing
them with the name of your project in some form. These are some examples of unacceptable
names:

Standard C Naming Conventions 43
© Apple Computer, Inc. 2004

C H A P T E R 6

Kernel Programming Style

getuseridentity❏

❏ get_user_info

❏ print

❏ find

❏ search

❏ sort

❏ quicksort

❏ merge

❏ console_log

In short, picking any name that you would normally pick for a function is generally a bad idea,
because every other developer writing code is likely to pick the same name for his or her function.

Occasional conflicts are a fact of life. However, by following these few simple rules, you should
be able to avoid the majority of common namespace pitfalls.

Commonly Used Functions

One of the most common problems faced when programming in the kernel is use of “standard”
functions—things like printf or bcopy. Many commonly used standard C library functions are
implemented in the kernel. In order to use them, however, you need to include the appropriate
prototypes, which may be different from the user space prototypes for those functions, and which
generally have different names when included from kernel code.

In general, any non–I/O Kit header that you can safely include in the kernel is located in
xnu/bsd/sys or xnu/osfmk/mach, although there are a few specialized headers in other places
like libkern and libsa. Normal headers (those in /usr/include) cannot be used in the kernel.

Table 5-1 (page 44) lists some commonly used C functions, variables, and types, and gives the
location of their prototypes.

Table 6-1 Commonly used C functions

Header pathFunction name

<sys/systm.h>printf

<sys/buf.h>Buffer cache functions (bread, bwrite, and brelse)

<sys/dirent.h>Directory entries

<sys/errno.h>Error numbers

<sys/kernel.h>Kernel special variables

44 Commonly Used Functions
© Apple Computer, Inc. 2004

C H A P T E R 6

Kernel Programming Style

Header pathFunction name

<sys/lock.h>Spinlocks

<sys/malloc.h>malloc

<sys/queue.h>Queues

<sys/rand.h>Random number generator

<sys/systm.h>bzero, bcopy, copyin, and copyout

<sys/system.h>timeout and untimeout

<sys/time.h>Various time functions

<sys/types.h>

<mach/mach_types.h>

Standard type declarations

<sys/ucred.h>User credentials

<sys/utsname.h>OS and system information

If the standard C function you are trying to use is not in one of these files, chances are the function
is not supported for use within the kernel, and you need to implement your code in another way.

Performance and Stability Tips

This section includes some basic tips on performance and stability. You should read the sections
on security and performance for additional information. These tips cover only style issues, not
general performance or stability issues.

Performance and Stability Tips

Programming in the kernel is subject to a number of restrictions that do not exist in application
programming. The first and most important is the stack size. The kernel has a limited amount
of space allocated for thread stacks, which can cause problems if you aren’t aware of the limitation.
This means the following:

■ Recursion must be bounded (to no more than a few levels).

■ Recursion should be rewritten as iterative routines where possible.

■ Large stack variables (function local) are dangerous. Do not use them. This also applies to
large local arrays.

■ Dynamically allocated variables are preferred (using malloc or equivalent) over local variables
for objects more than a few bytes in size.

■ Functions should have as few arguments as possible.

❏ Pass pointers to structures, not the broken out elements.

Performance and Stability Tips 45
© Apple Computer, Inc. 2004

C H A P T E R 6

Kernel Programming Style

❏ Don’t use arguments to avoid using global or class variables.

❏ Do name global variables in a way that protects you from collision.

■ C++ functions should be declared static.

■ Functions not obeying these rules can cause a kernel panic, or in extreme cases, do not even
compile.

In addition to issues of stack size, you should also avoid doing anything that would generate
unnecessary load such as polling a device or address. A good example is the use of mutexes
rather than spinlocks. You should also structure your locks in such a way to minimize contention
and to minimize hold times on the most highly contended locks.

Also, since unused memory (and particularly wired memory) can cause performance degradation,
you should be careful to deallocate memory when it is no longer in use, and you should never
allocate large regions of wired memory. This may be unavoidable in some applications, but
should be avoided whenever possible and disposed of at the earliest possible opportunity.
Allocating large contiguous blocks of memory at boot time is almost never acceptable, because
it cannot be released.

Finally, the kernel takes a speed penalty whenever floating-point math is used in the kernel, as
floating-point registers are only maintained when they are in use. Additional code is also required
to use floating-point in the kernel. Where possible, you should avoid doing floating-point math
in the kernel. It is not forbidden, but is strongly discouraged.

Stability Tips

■ Don’t sleep while holding resources (locks, for example). While this is not forbidden, it is
strongly discouraged to avoid deadlock.

■ Be careful to allocate and free memory with matching calls. For example, do not use allocation
routines from the I/O Kit and deallocation routines from BSD. Likewise, do not use
IOMallocContiguous with IOFreePageable.

■ Use reference counts to avoid freeing memory that is still in use elsewhere. Be sure to
deallocate memory when its reference count reaches zero, but not before.

■ Lock objects before operating on them, even to change reference counts.

■ Never dereference pointers without verifying that they are not NULL. In particular, never do
this:
int foo = *argptr;

unless you have already verified that argptr cannot possibly be NULL.

■ Test code in sections and try to think up likely edge cases for calculations.

■ Never assume that your code will be run only on big endian processors.

■ Never assume that the size of an instance of a type will never change. Always use sizeof if
you need this information.

■ Never assume that a pointer will always be the same size as an int or long.

46 Performance and Stability Tips
© Apple Computer, Inc. 2004

C H A P T E R 6

Kernel Programming Style

Style Summary

Kernel programming style is very much a matter of personal preference, and it is not practical
to programmatically enforce the guidelines in this chapter. However, we strongly encourage you
to follow these guidelines to the maximum extent possible. These guidelines were created based
on frequent problems reported by developers writing code in the kernel. No one can force you
to use good style in your programming, but if you do not, you do so at your own peril.

Style Summary 47
© Apple Computer, Inc. 2004

C H A P T E R 6

Kernel Programming Style

48 Style Summary
© Apple Computer, Inc. 2004

C H A P T E R 6

Kernel Programming Style

The fundamental services and primitives of the Mac OS X kernel are based on Mach 3.0. Apple
has modified and extended Mach to better meet Mac OS X functional and performance goals.

Mach 3.0 was originally conceived as a simple, extensible, communications microkernel. It is
capable of running as a stand–alone kernel, with other traditional operating-system services such
as I/O, file systems, and networking stacks running as user-mode servers.

However, in Mac OS X, Mach is linked with other kernel components into a single kernel address
space. This is primarily for performance; it is much faster to make a direct call between linked
components than it is to send messages or do remote procedure calls (RPC) between separate
tasks. This modular structure results in a more robust and extensible system than a monolithic
kernel would allow, without the performance penalty of a pure microkernel.

Thus in Mac OS X, Mach is not primarily a communication hub between clients and servers.
Instead, its value consists of its abstractions, its extensibility, and its flexibility. In particular,
Mach provides

■ object-based APIs with communication channels (for example, ports) as object references

■ highly parallel execution, including preemptively scheduled threads and support for SMP

■ a flexible scheduling framework, with support for real-time usage

■ a complete set of IPC primitives, including messaging, RPC, synchronization, and notification

■ support for large virtual address spaces, shared memory regions, and memory objects backed
by persistent store

■ proven extensibility and portability, for example across instruction set architectures and in
distributed environments

■ security and resource management as a fundamental principle of design; all resources are
virtualized

Mach Kernel Abstractions

Mach provides a small set of abstractions that have been designed to be both simple and powerful.
These are the main kernel abstractions:

C H A P T E R 7

Mach Overview

Mach Kernel Abstractions 49
© Apple Computer, Inc. 2004

■ Tasks. The units of resource ownership; each task consists of a virtual address space, a port
right namespace, and one or more threads. (Similar to a process.)

■ Threads. The units of CPU execution within a task.

■ Address space. In conjunction with memory managers, Mach implements the notion of a
sparse virtual address space and shared memory.

■ Memory objects. The internal units of memory management. Memory objects include named
entries and regions; they are representations of potentially persistent data that may be mapped
into address spaces.

■ Ports. Secure, simplex communication channels, accessible only via send and receive
capabilities (known as port rights).

■ IPC. Message queues, remote procedure calls, notifications, semaphores, and lock sets.

■ Time. Clocks, timers, and waiting.

At the trap level, the interface to most Mach abstractions consists of messages sent to and from
kernel ports representing those objects. The trap-level interfaces (such as
mach_msg_overwrite_trap) and message formats are themselves abstracted in normal usage
by the Mach Interface Generator (MIG). MIG is used to compile procedural interfaces to the
message-based APIs, based on descriptions of those APIs.

Tasks and Threads

Mac OS X processes and POSIX threads (pthreads) are implemented on top of Mach tasks and
threads, respectively. A thread is a point of control flow in a task. A task exists to provide resources
for the threads it contains. This split is made to provide for parallelism and resource sharing.

A thread

■ is a point of control flow in a task.

■ has access to all of the elements of the containing task.

■ executes (potentially) in parallel with other threads, even threads within the same task.

■ has minimal state information for low overhead.

A task

■ is a collection of system resources. These resources, with the exception of the address space,
are referenced by ports. These resources may be shared with other tasks if rights to the ports
are so distributed.

■ provides a large, potentially sparse address space, referenced by virtual address. Portions of
this space may be shared through inheritance or external memory management.

■ contains some number of threads.

Note that a task has no life of its own—only threads execute instructions. When it is said that
“task Y does X,” what is really meant is that “a thread contained within task Y does X.”

50 Tasks and Threads
© Apple Computer, Inc. 2004

C H A P T E R 7

Mach Overview

A task is a fairly expensive entity. It exists to be a collection of resources. All of the threads in a
task share everything. Two tasks share nothing without an explicit action (although the action
is often simple) and some resources (such as port receive rights) cannot be shared between two
tasks at all.

A thread is a fairly lightweight entity. It is fairly cheap to create and has low overhead to operate.
This is true because a thread has little state information (mostly its register state). Its owning task
bears the burden of resource management. On a multiprocessor computer, it is possible for
multiple threads in a task to execute in parallel. Even when parallelism is not the goal, multiple
threads have an advantage in that each thread can use a synchronous programming style, instead
of attempting asynchronous programming with a single thread attempting to provide multiple
services.

A thread is the basic computational entity. A thread belongs to one and only one task that defines
its virtual address space. To affect the structure of the address space or to reference any resource
other than the address space, the thread must execute a special trap instruction that causes the
kernel to perform operations on behalf of the thread or to send a message to some agent on behalf
of the thread. In general, these traps manipulate resources associated with the task containing
the thread. Requests can be made of the kernel to manipulate these entities: to create them, delete
them, and affect their state.

Mach provides a flexible framework for thread–scheduling policies. Early versions of Mac OS X
support both time-sharing and fixed-priority policies. A time-sharing thread’s priority is raised
and lowered to balance its resource consumption against other time-sharing threads.

Fixed-priority threads execute for a certain quantum of time, and then are put at the end of the
queue of threads of equal priority. Setting a fixed priority thread’s quantum level to infinity
allows the thread to run until it blocks, or until it is preempted by a thread of higher priority.
High priority real-time threads are usually fixed priority.

Mac OS X also provides time constraint scheduling for real-time performance. This scheduling
allows you to specify that your thread must get a certain time quantum within a certain period
of time.

Mach scheduling is described further in “Mach Scheduling and Thread Interfaces” (page 71).

Ports, Port Rights, Port Sets, and Port Namespaces

With the exception of the task’s virtual address space, all other Mach resources are accessed
through a level of indirection known as a port. A port is an endpoint of a unidirectional
communication channel between a client who requests a service and a server who provides the
service. If a reply is to be provided to such a service request, a second port must be used. This is
comparable to a (unidirectional) pipe in UNIX parlance.

In most cases, the resource that is accessed by the port (that is, named by it) is referred to as an
object. Most objects named by a port have a single receiver and (potentially) multiple senders.
That is, there is exactly one receive port, and at least one sending port, for a typical object such
as a message queue.

Ports, Port Rights, Port Sets, and Port Namespaces 51
© Apple Computer, Inc. 2004

C H A P T E R 7

Mach Overview

The service to be provided by an object is determined by the manager that receives the request
sent to the object. It follows that the kernel is the receiver for ports associated with kernel-provided
objects and that the receiver for ports associated with task-provided objects is the task providing
those objects.

For ports that name task-provided objects, it is possible to change the receiver of requests for
that port to a different task, for example by passing the port to that task in a message. A single
task may have multiple ports that refer to resources it supports. For that matter, any given entity
can have multiple ports that represent it, each implying different sets of permissible operations.
For example, many objects have a name port and a control port (sometimes called the privileged
port). Access to the control port allows the object to be manipulated; access to the name port
simply names the object so that you can obtain information about it or perform other
non-privileged operations against it.

Tasks have permissions to access ports in certain ways (send, receive, send-once); these are called
port rights. A port can be accessed only via a right. Ports are often used to grant clients access
to objects within Mach. Having the right to send to the object’s IPC port denotes the right to
manipulate the object in prescribed ways. As such, port right ownership is the fundamental
security mechanism within Mach. Having a right to an object is to have a capability to access or
manipulate that object.

Port rights can be copied and moved between tasks via IPC. Doing so, in effect, passes capabilities
to some object or server.

One type of object referred to by a port is a port set. As the name suggests, a port set is a set of
port rights that can be treated as a single unit when receiving a message or event from any of the
members of the set. Port sets permit one thread to wait on a number of message and event sources,
for example in work loops.

Traditionally in Mach, the communication channel denoted by a port was always a queue of
messages. However, Mac OS X supports additional types of communication channels, and these
new types of IPC object are also represented by ports and port rights. See the section “Interprocess
Communication (IPC)” (page 54), for more details about messages and other IPC types.

Ports and port rights do not have systemwide names that allow arbitrary ports or rights to be
manipulated directly. Ports can be manipulated by a task only if the task has a port right in its
port namespace. A port right is specified by a port name, an integer index into a 32-bit port
namespace. Each task has associated with it a single port namespace.

Tasks acquire port rights when another task explicitly inserts them into its namespace, when
they receive rights in messages, by creating objects that return a right to the object, and via Mach
calls for certain special ports (mach_thread_self, mach_task_self, and mach_reply_port.)

Memory Management

As with most modern operating systems, Mach provides addressing to large, sparse, virtual
address spaces. Runtime access is made via virtual addresses that may not correspond to locations
in physical memory at the initial time of the attempted access. Mach is responsible for taking a
requested virtual address and assigning it a corresponding location in physical memory. It does
so through demand paging.

52 Memory Management
© Apple Computer, Inc. 2004

C H A P T E R 7

Mach Overview

A range of a virtual address space is populated with data when a memory object is mapped into
that range. All data in an address space is ultimately provided through memory objects. Mach
asks the owner of a memory object (a pager) for the contents of a page when establishing it in
physical memory and returns the possibly modified data to the pager before reclaiming the page.
Mac OS X includes two built-in pagers—the default pager and the vnode pager.

The default pager handles nonpersistent memory, known as anonymous memory. Anonymous
memory is zero-initialized, and it exists only during the life of a task. The vnode pager maps files
into memory objects. Mach exports an interface to memory objects to allow their contents to be
contributed by user-mode tasks. This interface is known as the External Memory Management
Interface, or EMMI.

The memory management subsystem exports virtual memory handles known as named entries
or named memory entries. Like most kernel resources, these are denoted by ports. Having a
named memory entry handle allows the owner to map the underlying virtual memory object or
to pass the right to map the underlying object to others. Mapping a named entry in two different
tasks results in a shared memory window between the two tasks, thus providing a flexible method
for establishing shared memory.

Beginning in Mac OS X 10.1, the EMMI system was enhanced to support “portless” EMMI. In
traditional EMMI, two Mach ports were created for each memory region, and likewise two ports
for each cached vnode. Portless EMMI, in its initial implementation, replaces this with direct
memory references (basically pointers). In a future release, ports will be used for communication
with pagers outside the kernel, while using direct references for communication with pagers that
reside in kernel space. The net result of these changes is that early versions of portless EMMI do
not support pagers running outside of kernel space. This support is expected to be reinstated in
a future release.

Address ranges of virtual memory space may also be populated through direct allocation (using
vm_allocate). The underlying virtual memory object is anonymous and backed by the default
pager. Shared ranges of an address space may also be set up via inheritance. When new tasks
are created, they are cloned from a parent. This cloning pertains to the underlying memory
address space as well. Mapped portions of objects may be inherited as a copy, or as shared, or
not at all, based on attributes associated with the mappings. Mach practices a form of delayed
copy known as copy-on-write to optimize the performance of inherited copies on task creation.

Rather than directly copying the range, a copy-on-write optimization is accomplished by protected
sharing. The two tasks share the memory to be copied, but with read-only access. When either
task attempts to modify a portion of the range, that portion is copied at that time. This lazy
evaluation of memory copies is an important optimization that permits simplifications in several
areas, notably the messaging APIs.

One other form of sharing is provided by Mach, through the export of named regions. A named
region is a form of a named entry, but instead of being backed by a virtual memory object, it is
backed by a virtual map fragment. This fragment may hold mappings to numerous virtual
memory objects. It is mappable into other virtual maps, providing a way of inheriting not only
a group of virtual memory objects but also their existing mapping relationships. This feature
offers significant optimization in task setup, for example when sharing a complex region of the
address space used for shared libraries.

Memory Management 53
© Apple Computer, Inc. 2004

C H A P T E R 7

Mach Overview

Interprocess Communication (IPC)

Communication between tasks is an important element of the Mach philosophy. Mach supports
a client/server system structure in which tasks (clients) access services by making requests of
other tasks (servers) via messages sent over a communication channel.

The endpoints of these communication channels in Mach are called ports, while port rights denote
permission to use the channel. The forms of IPC provided by Mach include

■ message queues

■ semaphores

■ notifications

■ lock sets

■ remote procedure calls (RPCs)

The type of IPC object denoted by the port determines the operations permissible on that port,
and how (and whether) data transfer occurs.

Important
The IPC facilities in Mac OS X are in a state of transition. In early
versions of the system, not all of these IPC types may be
implemented.

There are two fundamentally different Mach APIs for raw manipulation of ports—the mach_ipc
family and the mach_msg family. Within reason, both families may be used with any IPC object;
however, the mach_ipc calls are preferred in new code. The mach_ipc calls maintain state
information where appropriate in order to support the notion of a transaction. The mach_msg
calls are supported for legacy code but deprecated; they are stateless.

IPC Transactions and Event Dispatching

When a thread calls mach_ipc_dispatch, it repeatedly processes events coming in on the
registered port set. These events could be an argument block from an RPC object (as the results
of a client’s call), a lock object being taken (as a result of some other thread’s releasing the lock),
a notification or semaphore being posted, or a message coming in from a traditional message
queue.

These events are handled via callouts from mach_msg_dispatch. Some events imply a transaction
during the lifetime of the callout. In the case of a lock, the state is the ownership of the lock. When
the callout returns, the lock is released. In the case of remote procedure calls, the state is the
client’s identity, the argument block, and the reply port. When the callout returns, the reply is
sent.

When the callout returns, the transaction (if any) is completed, and the thread waits for the next
event. The mach_ipc_dispatch facility is intended to support work loops.

54 Interprocess Communication (IPC)
© Apple Computer, Inc. 2004

C H A P T E R 7

Mach Overview

Message Queues

Originally, the sole style of interprocess communication in Mach was the message queue. Only
one task can hold the receive right for a port denoting a message queue. This one task is allowed
to receive (read) messages from the port queue. Multiple tasks can hold rights to the port that
allow them to send (write) messages into the queue.

A task communicates with another task by building a data structure that contains a set of data
elements and then performing a message-send operation on a port for which it holds send rights.
At some later time, the task with receive rights to that port will perform a message-receive
operation.

A message may consist of some or all of the following:

■ pure data

■ copies of memory ranges

■ port rights

■ kernel implicit attributes, such as the sender’s security token

The message transfer is an asynchronous operation. The message is logically copied into the
receiving task, possibly with copy-on-write optimizations. Multiple threads within the receiving
task can be attempting to receive messages from a given port, but only one thread can receive
any given message.

Semaphores

Semaphore IPC objects support wait, post, and post all operations. These are counting semaphores,
in that posts are saved (counted) if there are no threads currently waiting in that semaphore’s
wait queue. A post all operation wakes up all currently waiting threads.

Notifications

Like semaphores, notification objects also support post and wait operations, but with the addition
of a state field. The state is a fixed-size, fixed-format field that is defined when the notification
object is created. Each post updates the state field; there is a single state that is overwritten by
each post.

Locks

A lock is an object that provides mutually exclusive access to a critical section. The primary
interfaces to locks are transaction oriented (see “IPC Transactions and Event Dispatching” (page
54)). During the transaction, the thread holds the lock. When it returns from the transaction, the
lock is released.

Interprocess Communication (IPC) 55
© Apple Computer, Inc. 2004

C H A P T E R 7

Mach Overview

Remote Procedure Call (RPC) Objects

As the name implies, an RPC object is designed to facilitate and optimize remote procedure calls.
The primary interfaces to RPC objects are transaction oriented (see “IPC Transactions and Event
Dispatching” (page 54))

When an RPC object is created, a set of argument block formats is defined. When an RPC (a send
on the object) is made by a client, it causes a message in one of the predefined formats to be
created and queued on the object, then eventually passed to the server (the receiver). When the
server returns from the transaction, the reply is returned to the sender. Mach tries to optimize
the transaction by executing the server using the client’s resources; this is called thread migration.

Time Management

The traditional abstraction of time in Mach is the clock, which provides a set of asynchronous
alarm services based on mach_timespec_t. There are one or more clock objects, each defining a
monotonically increasing time value expressed in nanoseconds. The real-time clock is built in,
and is the most important, but there may be other clocks for other notions of time in the system.
Clocks support operations to get the current time, sleep for a given period, set an alarm (a
notification that is sent at a given time), and so forth.

The mach_timespec_t API is deprecated in Mac OS X. The newer and preferred API is based on
timer objects that in turn use AbsoluteTime as the basic data type. AbsoluteTime is a
machine-dependent type, typically based on the platform-native time base. Routines are provided
to convert AbsoluteTime values to and from other data types, such as nanoseconds. Timer objects
support asynchronous, drift-free notification, cancellation, and premature alarms. They are more
efficient and permit higher resolution than clocks.

56 Time Management
© Apple Computer, Inc. 2004

C H A P T E R 7

Mach Overview

This chapter describes allocating memory and the low-level routines for modifying memory
maps in the kernel. It also describes a number of commonly used interfaces to the virtual memory
system. It does not describe how to make changes in paging policy or add additional pagers.
Mac OS X does not support external pagers, although much of the functionality can be achieved
in other ways, some of which are covered at a high level in this chapter. The implementation
details of these interfaces are subject to change, however, and are thus left undocumented.

With the exception of the section “Allocating Memory in the Kernel” (page 67), this chapter is
of interest only if you are writing file systems or are modifying the virtual memory system itself.

Mac OS X VM Overview

The VM system used in Mac OS X is a descendent of Mach VM, which was created at Carnegie
Mellon University in the 1980s. To a large extent, the fundamental design is the same, although
some of the details are different, particularly when enhancing the VM system. It does, however,
support the ability to request certain paging behavior through the use of universal page lists
(UPLs). See “Universal Page Lists (UPLs)” (page 60) for more information.

The design of Mach VM centers around the concept of physical memory being a cache for virtual
memory.

At its highest level, Mach VM consists of address spaces and ways to manipulate the contents
of those address spaces from outside the space. These address spaces are sparse and have a notion
of protections to limit what tasks can access their contents.

At a lower level, the object level, virtual memory is seen as a collection of VM objects and memory
objects, each with a particular owner and protections. These objects can be modified with object
calls that are available both to the task and (via the back end of the VM) to the pagers.

The calls available to an application include vm_map and vm_allocate, which can be used to map
file data or anonymous memory into the address space. This is possible only because the address
space is initially sparse. In general, an application can either map a file into its address space
(through file mapping primitives, abstracted by BSD) or it can map an object (after being passed
a handle to that object). In addition, a task can change the protections of the objects in its address
space and can share those objects with other tasks.

C H A P T E R 8

Memory and Virtual Memory

Mac OS X VM Overview 57
© Apple Computer, Inc. 2004

In addition to the mapping and allocation aspects of virtual memory, the VM system contains a
number of other subsystems. These include the back end (pagers) and the shared memory
subsystem. There are also other subsystems closely tied to VM, including the VM shared memory
server. These are described in “Other VM and VM-Related Subsystems” (page 63).

The VM object is internal to the virtual memory system, and includes basic information about
accessing the memory. The memory object is provided by the pager. The contents of the memory
associated with that memory object can be retrieved from disk or some other backing store by
exchanging messages with the memory object. Implicitly, each VM object is associated with a
given pager through its memory object.

VM objects are cached with system pages (RAM), which can be any power of two multiple of
the hardware page size. In the Mac OS X kernel, system pages are the same size as hardware
pages. Each system page is represented in a given address space by a map entry. Each map entry
has its own protection and inheritance. A given map entry can have an inheritance of shared,
copy, or none. If a page is marked shared in a given map, child tasks share this page for reading
and writing. If a page is marked copy, child tasks get a copy of this page (using copy-on-write).
If a page is marked none, the child’s page is left unallocated.

VM objects are managed by the machine-independent VM system, with the underlying virtual
to physical mappings handled by the machine-dependent pmap system. The pmap system actually
handles page tables, translation lookaside buffers, segments, and so on, depending on the design
of the underlying hardware.

When a VM object is duplicated (for example, the data pages from a process that has just called
fork), a shadow object is created. A shadow object is initially empty, and contains a reference
to another object. When the contents of a page are modified, the page is copied from the parent
object into the shadow object and then modified. When reading data from a page, if that page
exists in the shadow object, the page listed in the shadow object is used. If the shadow object has
no copy of that page, the original object is consulted. A series of shadow objects pointing to
shadow objects or original objects is known as a shadow chain.

Shadow chains can become arbitrarily long if an object is heavily reused in a copy-on-write
fashion. However, since fork is frequently followed by exec, which replaces all of the material
being shadowed, long chains are rare. Further, Mach automatically garbage collects shadow
objects, removing any intermediate shadow objects whose pages are no longer referenced by any
(nondefunct) shadow object. It is even possible for the original object to be released if it no longer
contains pages that are relevant to the chain.

Memory Maps Explained

Each Mach task has its own memory map. In Mach, this memory map takes the form of an ordered
doubly linked list. As described in “Mac OS X VM Overview” (page 57), each of these objects
contains a list of pages and shadow references to other objects.

In general, you should never need to access a memory map directly unless you are modifying
something deep within the VM system. The vm_map_entry structure contains task-specific
information about an individual mapping along with a reference to the backing object. In essence,
it is the glue between an VM object and a VM map.

While the details of this data structure are beyond the scope of this document, a few fields are
of particular importance.

58 Memory Maps Explained
© Apple Computer, Inc. 2004

C H A P T E R 8

Memory and Virtual Memory

The field is_submap is a Boolean value that tells whether this map entry is a normal VM object
or a submap. A submap is a collection of mappings that is part of a larger map. Submaps are
often used to group mappings together for the purpose of sharing them among multiple Mach
tasks, but they may be used for many purposes. What makes a submap particularly powerful is
that when several tasks have mapped a submap into their address space, they can see each other’s
changes, not only to the contents of the objects in the map, but to the objects themselves. This
means that as additional objects are added to or deleted from the submap, they appear in or
disappear from the address spaces of all tasks that share that submap.

The field behavior controls the paging reference behavior of a specified range in a given map.
This value changes how pageins are clustered. Possible values are VM_BEHAVIOR_DEFAULT,
VM_BEHAVIOR_RANDOM, VM_BEHAVIOR_SEQUENTIAL, and VM_BEHAVIOR_RSEQNTL, for default,
random, sequential, or reverse-sequential pagein ordering.

The protection and max_protection fields control the permissions on the object. The protection
field indicates what rights the task currently has for the object, while the max_protection field
contains the maximum access that the current task can obtain for the object.

You might use the protection field when debugging shared memory. By setting the protection
to be read-only, any inadvertent writes to the shared memory would cause an exception. However,
when the task actually needs to write to that shared region, it could increase its permissions in
the protection field to allow writes.

It would be a security hole if a task could increase its own permissions on a memory object
arbitrarily, however. In order to preserve a reasonable security model, the task that owns a
memory object must be able to limit the rights granted to a subordinate task. For this reason, a
task is not allowed to increase its protection beyond the permissions granted in max_protection.

Possible values for protection and max_protection are described in detail in
xnu/osfmk/mach/vm_prot.h.

Finally, the use_pmap field indicates whether a submap’s low-level mappings should be shared
among all tasks into which the submap is mapped. If the mappings are not shared, then the
structure of the map is shared among all tasks, but the actual contents of the pages are not.

For example, shared libraries are handled with two submaps. The read-only shared code section
has use_pmap set to true. The read-write (nonshared) section has use_pmap set to false, forcing
a clean copy of the library’s DATA segment to be mapped in from disk for each new task.

Named Entries

The Mac OS X VM system provides an abstraction known as a named entry. A named entry is
nothing more than a handle to a shared object or a submap.

Shared memory support in Mac OS X is achieved by sharing objects between the memory maps
of various tasks. Shared memory objects must be created from existing VM objects by calling
vm_allocate to allocate memory in your address space and then calling
mach_make_memory_entry_64 to get a handle to the underlying VM object.

Named Entries 59
© Apple Computer, Inc. 2004

C H A P T E R 8

Memory and Virtual Memory

The handle returned by mach_make_memory_entry_64 can be passed to vm_map to map that
object into a given task’s address space. The handle can also be passed via IPC or other means
to other tasks so that they can map it into their address spaces. This provides the ability to share
objects with tasks that are not in your direct lineage, and also allows you to share additional
memory with tasks in your direct lineage after those tasks are created.

The other form of named entry, the submap, is used to group a set of mappings. The most common
use of a submap is to share mappings among multiple Mach tasks. A submap can be created
with vm_region_object_create.

What makes a submap particularly powerful is that when several tasks have mapped a submap
into their address space, they can see each other’s changes to both the data and the structure of
the map. This means that one task can map or unmap a VM object in another task’s address space
simply by mapping or unmapping that object in the submap.

Universal Page Lists (UPLs)

A universal page list, or UPL, is a data structure used when communicating with the virtual
memory system. UPLs can be used to change the behavior of pages with respect to caching,
permissions, mapping, and so on. UPLs can also be used to push data into and pull data from
VM objects. The term is also often used to refer to the family of routines that operate on UPLs.
The flags used when dealing with UPLs are described in osfmk/mach/memory_object_types.h.

The life cycle of a UPL looks like this:

1. A UPL is created based on the contents of a VM object. This UPL includes information about
the pages within that object.

2. That UPL is modified in some way.

3. The changes to the UPL are either committed (pushed back to the VM system) or aborted,
with ubc_upl_commit or ubc_upl_abort, respectively.

If you have a control handle for a given VM object (which generally means that you are inside a
pager), you can use vm_object_upl_request to get a UPL for that object. Otherwise, you must
use the vm_map_get_upl call. In either case, you are left with a handle to the UPL.

When a pagein is requested, the pager receives a list of pages that are locked against the object,
with certain pages set to not valid. The pager must either write data into those pages or must
abort the transaction to prevent invalid data in the kernel. Similarly in pageout, the kernel must
write the data to a backing store or abort the transaction to prevent data loss. The pager may also
elect to bring additional pages into memory or throw additional pages out of memory at its
discretion.

Because pagers can be used both for virtual memory and for memory mapping of file data, when
a pageout is requested, the data may need to be freed from memory, or it may be desirable to
keep it there and simply flush the changes to disk. For this reason, the flag UPL_CLEAN_IN_PLACE
exists to allow a page to be flushed to disk but not removed from memory.

When a pager decides to page in or out additional pages, it must determine which pages to move.
A pager can request all of the dirty pages by setting the RETURN_ONLY_DIRTY flag. It can also
request all pages that are not in memory using the RETURN_ONLY_ABSENT flag.

60 Universal Page Lists (UPLs)
© Apple Computer, Inc. 2004

C H A P T E R 8

Memory and Virtual Memory

There is a slight problem, however. If a given page is marked as BUSY in the UPL, a request for
information on that page would normally block. If the pager is doing prefetching or preflushing,
this is not desirable, since it might be blocking on itself or on some other pager that is blocked
waiting for the current transaction to complete. To avoid such deadlock, the UPL mechanism
provides the UPL_NOBLOCK flag. This is frequently used in the anonymous pager for requesting
free memory.

The flag QUERY_OBJECT_TYPE can be used to determine if an object is physically contiguous and
to get other properties of the underlying object.

The flag UPL_PRECIOUS means that there should be only one copy of the data. This prevents
having a copy both in memory and in the backing store. However, this breaks the adjacency of
adjacent pages in the backing store, and is thus generally not used to avoid a performance hit.

The flag SET_INTERNAL is used by the BSD subsystem to cause all information about a UPL to
be contained in a single memory object so that it can be passed around more easily. It can only
be used if your code is running in the kernel’s address space.

Since this handle can be used for multiple small transactions (for example, when mapping a file
into memory block-by-block), the UPL API includes functions for committing and aborting
changes to only a portion of the UPL. These functions are upl_commit_range and
upl_abort_range, respectively.

To aid in the use of UPLs for handling multi-part transactions, the upl_commit_range and
upl_abort_range calls have a flag that causes the UPL to be freed when there are no unmodified
pages in the UPL. If you use this flag, you must be very careful not to use the UPL after all ranges
have been committed or aborted.

Finally, the function vm_map_get_upl is frequently used in file systems. It gets the underlying
VM object associated with a given range within an address space. Since this returns only the first
object in that range, it is your responsibility to determine whether the entire range is covered by
the resulting UPL and, if not, to make additional calls to get UPLs for other objects. Note that
while the vm_map_get_upl call is against an address space range, most UPL calls are against a
vm_object.

Using Mach Memory Maps

WARNING
This section describes the low-level API for dealing with Mach
VM maps. These maps cannot be modified in this way from a
kernel extension. These functions are not available for use in a
KEXT. They are presented strictly for use within the VM system
and other parts of Mach. If you are not doing in-kernel
development, you should be using the methods described in the
chapter “Boundary Crossings” (page 103).

From the context of the kernel (not from a KEXT), there are two maps that you will probably
need to deal with. The first is the kernel map. Since your code is executing in the kernel’s address
space, no additional effort is needed to use memory referenced in the kernel map. However, you
may need to add additional mappings into the kernel map and remove them when they are no
longer needed.

Using Mach Memory Maps 61
© Apple Computer, Inc. 2004

C H A P T E R 8

Memory and Virtual Memory

The second map of interest is the memory map for a given task. This is of most interest for code
that accepts input from user programs, for example a sysctl or a Mach RPC handler. In nearly
all cases, convenient wrappers provide the needed functionality, however.

The low-level VM map API includes the following functions:

kern_return_t vm_map_copyin(vm_map_t src_map, vm_offset_t src_addr,
 vm_size_t len, boolean_t src_destroy,
 vm_map_copy_t *copy_result);

kern_return_t vm_map_copyout(vm_map_t map, vm_offset_t *addr, /* Out */
 register vm_map_copy_t copy);

kern_return_t vm_map_copy_overwrite(vm_map_t dst_map,
 vm_offset_t dst_address,vm_map_copy_t copy,
 boolean_t interruptible, pmap_t pmap);

void vm_map_copy_discard(vm_map_copy_t copy);

void vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 vm_prot_t access_type, boolean_t user_wire);

void vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 boolean_t user_wire);

The function vm_map_copyin copies data from an arbitrary (potentially non–kernel) memory
map into a copy list and returns the copy list pointer in copy_result. If something goes wrong
and you need to throw away this intermediate object, it should be freed with
vm_map_copy_discard.

In order to actually get the data from the copy list, you need to overwrite a memory object in the
kernel’s address space with vm_map_copy_overwrite. This overwrites an object with the contents
of a copy list. For most purposes, the value passed for interruptible should be FALSE, and
pmap should be NULL.

Copying data from the kernel to user space is exactly the same as copying data from user space,
except that you pass kernel_map to vm_map_copyin and pass the user map to
vm_map_copy_overwrite. In general, however, you should avoid doing this, since you could
end up with a task’s memory being fragmented into lots of tiny objects, which is undesirable.

Do not use vm_map_copyout when copying data into an existing user task’s address map. The
function vm_map_copyout is used for filling an unused region in an address map. If the region
is allocated, then vm_map_copyout does nothing. Because it requires knowledge of the current
state of the map, it is primarily used when creating a new address map (for example, if you are
manually creating a new process). For most purposes, you do not need to use vm_map_copyout.

The functions vm_map_wire and vm_map_unwire can be used to wire and unwire portions of an
address map. If you set the argument user_wire to TRUE, then the page can be unwired from
user space. This should be set to FALSE if you are about to use the memory for I/O or for some
other operation that cannot tolerate paging. In vm_map_wire, the argument access_type indicates
the types of accesses that should not be allowed to generate a page fault. In general, however,
you should be using vm_wire to wire memory.

As mentioned earlier, this information is presented strictly for use in the heart of the kernel. You
should not use anything in this section from a kernel extension.

62 Using Mach Memory Maps
© Apple Computer, Inc. 2004

C H A P T E R 8

Memory and Virtual Memory

Other VM and VM-Related Subsystems

There are two additional VM subsystems: pagers and the working set detection subsystem. In
addition, the VM shared memory server subsystem is closely tied to (but is not part of) the VM
subsystem. This section describes these three VM and VM-related subsystems.

Pagers

Mac OS X has three basic pagers: the vnode pager, the default pager (or anonymous pager), and
the device pager. These are used by the VM system to actually get data into the VM objects that
underlie named entries. Pagers are linked into the VM system through a combination of a subset
of the old Mach pager interface and UPLs.

The default pager is what most people think of when they think of a VM system. It is responsible
for moving normal data into and out of the backing store. In addition, there is a facility known
as the dynamic pager that sits on top of the default pager and handles the creation and deletion
of backing store files. These pager files are filled with data in clusters (groups of pages).

When the total fullness of the paging file pool reaches a high–water mark, the default pager asks
the dynamic pager to allocate a new store file. When the pool drops below its low water mark,
the VM system selects a pager file, moves its contents into other pager files, and deletes it from
disk.

The vnode pager has a 1:1 (onto) mapping between objects in VM space and open files (vnodes).
It is used for memory mapped file I/O. The vnode pager is generally hidden behind calls to BSD
file APIs.

The device pager allows you to map non–general-purpose memory with the cache characteristics
required for that memory (WIMG). Non–general–purpose memory includes physical addresses
that are mapped onto hardware other than main memory—for example, PCI memory, frame
buffer memory, and so on. The device pager is generally hidden behind calls to various I/O Kit
functions.

Working Set Detection Subsystem

To improve performance, Mac OS X has a subsystem known as the working set detection
subsystem. This subsystem is called on a VM fault; it keeps a profile of the fault behavior of each
task from the time of its inception. In addition, just before a page request, the fault code asks this
subsystem which adjacent pages should be brought in, and then makes a single large request to
the pager.

Since files on disk tend to have fairly good locality, and since address space locality is largely
preserved in the backing store, this provides a substantial performance boost. Also, since it is
based upon the application’s previous behavior, it tends to pull in pages that would probably
have otherwise been needed later. This occurs for all pagers.

Other VM and VM-Related Subsystems 63
© Apple Computer, Inc. 2004

C H A P T E R 8

Memory and Virtual Memory

The working set code works well once it is established. However, without help, its performance
would be the baseline performance until a profile for a given application has been developed.
To overcome this, the first time that an application is launched in a given user context, the initial
working set required to start the application is captured and stored in a file. From then on, when
the application is started, that file is used to seed the working set.

These working set files are established on a per-user basis. They are stored in
/var/vm/app_profile and are only accessible by the super-user (and the kernel).

VM Shared Memory Server Subsystem

The VM shared memory server subsystem is a BSD service that is closely tied to VM, but is not
part of VM. This server provides two submaps that are used for shared library support in Mac
OS X. Because shared libraries contain both read-only portions (text segment) and read-write
portions (data segment), the two portions are treated separately to maximize efficiency. The
read-only portions are completely shared between tasks, including the underlying pmap entries.
The read-write portions share a common submap, but have different underlying data objects
(achieved through copy-on-write).

The three functions exported by the VM shared memory server subsystem should only be called
by dyld. Do not use them in your programs.

The function load_shared_file is used to load a new shared library into the system. Once such
a file is loaded, other tasks can then depend on it, so a shared library cannot be unshared. However,
a new set of shared regions can be created with new_system_shared_regions so that no new
tasks will use old libraries.

The function reset_shared_file can be used to reset any changes that your task may have
made to its private copy of the data section for a file.

Finally, the function new_system_shared_regions can be used to create a new set of shared
regions for future tasks. New regions can be used when updating prebinding with new shared
libraries to cause new tasks to see the latest libraries at their new locations in memory. (Users of
old shared libraries will still work, but they will fall off the pre-bound path and will perform less
efficiently.) It can also be used when dealing with private libraries that you want to share only
with your task’s descendents.

Address Spaces

This section explains issues that some developers may see when using their drivers in Panther
or later. These changes were necessitated by a combination of hardware and underlying OS
changes; however, you may see problems resulting from the changes even on existing hardware.

There are three basic areas of change in Mac OS X 10.3. These are:

■ IOMemoryDescriptor changes

■ VM system (pmap) changes

■ Kernel dependency changes

64 Address Spaces
© Apple Computer, Inc. 2004

C H A P T E R 8

Memory and Virtual Memory

These are described in detail in the sections that follow.

Background Info on PCI Address Translation

To allow existing device drivers to work with upcoming 64-bit system architectures, a number
of changes were required. To explain these, a brief introduction to PCI bus bridges is needed.

When a PCI device needs to perform a data transaction to or from main memory, the device
driver calls a series of functions intended to prepare this memory for I/O. In an architecture
where both the device drivers and the memory subsystem use 32-bit addressing, everything just
works, so long as the memory doesn't get paged out during the I/O operation. As kernel memory
is generally not pageable, the preparation is largely superfluous.

On a system whose memory subsystem uses 64-bit addressing, however, this becomes a bit of a
problem. Because the hardware devices on the PCI bus can only handle 32-bit addresses, the
device can only “see” a 4 gigabyte aperture into the (potentially much larger) main memory at
any given time.

There are two possible solutions for this problem. The easy (but slow) solution would be to use
“bounce buffers”. In such a design, device drivers would copy data into memory specifically
allocated within the bottom 4 gigs of memory. However, this incurs a performance penalty and
also puts additional constraints on the lower 4 gigs of memory, causing numerous problems for
the VM system.

The other solution, the one chosen in Apple's 64-bit implementation, is to use address translation
to “map” blocks of memory into the 32-bit address space of the PCI devices. While the PCI device
can still only see a 4 gig aperture, that aperture can then be non-contiguous, and thus bounce
buffers and other restrictions are unnecessary. This address translation is done using a part of
the memory controller known as DART, which stands for Device Address Resolution Table.

This introduces a number of potential problems, however. First, physical addresses as seen by
the processor no longer map 1:1 onto the addresses as seen by PCI devices. Thus, a new term,
I/O addresses, is introduced to describe this new view. Because I/O addresses and physical
addresses are no longer the same, the DART must keep a table of translations to use when
mapping between them. Fortunately, if your driver is written according to Apple guidelines
(using only documented APIs), this process is handled transparently.

Note: This additional addressing mode has an impact when debugging I/O Kit device drivers.
For more information, see “When Things Go Wrong: Debugging the Kernel” (page 143).

IOMemoryDescriptor Changes

When your driver calls IOMemoryDescriptor::prepare, a mapping is automatically injected
into the DART. When it calls IOMemoryDescriptor::release , the mapping is removed. If you
fail to do this, your driver could experience random data corruption or panics.

Because the DART requires different caching for reads and writes, the DMA direction is important
on hardware that includes a DART. While you may receive random failures if the direction is
wrong in general (on any system), if you attempt to call WriteBytes on a memory region whose
DMA direction is set up for reading, you will cause a kernel panic on 64-bit hardware.

Address Spaces 65
© Apple Computer, Inc. 2004

C H A P T E R 8

Memory and Virtual Memory

If you attempt to perform a DMA transaction to unwired (user) memory, on previous systems,
you would only get random crashes, panics, and data corruption. On machines with a DART,
you will likely get no data whatsoever.

As a side-effect of changes in the memory subsystem, Mac OS X is much more likely to return
physically contiguous page ranges in memory regions. Historically, Mac OS X returned multi-page
memory regions in reverse order, starting with the last page and moving towards the first page.
The result of this was that multi-page memory regions essentially never had a contiguous range
of physical pages.

Because of the increased probability of seeing physically contiguous blocks of memory in a
memory region, this change may expose latent bugs in some drivers that only show up when
handling contiguous ranges of physical pages, which could result in incorrect behavior or panics.

Note that the problems mentioned above are caused by bugs in the drivers, and could result in
problems on older hardware prior to Panther. These issues are more likely to occur in Panther
and later versions of Mac OS X, however, because of the new hardware designs and the OS
changes that were made to support those designs.

VM System and pmap Changes:

In Panther, as a result of the changes described in detail in the section on PCI address translation,
physical addresses obtained directly from the pmap layer have no useful purpose outside the VM
system itself. To prevent their inadvertent use in device drivers, the pmap calls are no longer
available from kernel extensions.

A few drivers written prior to the addition of the IOMemoryDescriptor class still use pmap calls
to get the physical pages associated with a virtual address. Also, a few developers have looked
at the IOMemoryDescriptor implementation and chosen to obtain addresses directly from the
pmap layer to remove what was perceived as an unnecessary abstraction layer.

Even without removing access to the pmap calls, these drivers would not function on systems
with a DART (see the PCI section above for info on DARTs). To better emphasize this upcoming
failure, Panther will cause these drivers to fail to load with an undefined symbol error (generally
for pmap_extract) even on systems without a DART.

Kernel Dependency Changes

Beginning in Panther, device drivers that declare a dependency on version 7 (the Panther version)
of the I/O Kit will no longer automatically get symbols from Mach and BSD. This change was
made to discourage I/O Kit developers from relying on symbols that are not explicitly approved
for use in the I/O Kit.

Existing drivers are unaffected by this change. This change only affects you if you explicitly
modify your device driver to declare a dependency on version 7 of the I/O Kit to take advantage
of new I/O Kit features.

66 Address Spaces
© Apple Computer, Inc. 2004

C H A P T E R 8

Memory and Virtual Memory

Summary

As described above, some device drivers may require minor modifications to support Panther
and higher. Apple has made every effort to ensure compatibility with existing device drivers to
the greatest extent possible, but a few drivers may break. If your driver breaks, you should first
check to see if your driver includes any of the bugs described in the previous sections. If it does
not, contact Apple Developer Technical Support for additional debugging suggestions.

Allocating Memory in the Kernel

As with most things in the Mac OS X kernel, there are a number of ways to allocate memory. The
choice of routines depends both on the location of the calling routine and on the reason for
allocating memory. In general, you should use Mach routines for allocating memory unless you
are writing code for use in the I/O Kit, in which case you should use I/O Kit routines.

Allocating Memory Using Mach Routines

Mach routines provide a relatively straightforward interface for allocating and releasing memory.
They are the preferred mechanism for allocating memory outside of the I/O Kit. BSD also offers
_MALLOC and _FREE, which may be used in BSD parts of the kernel.

They do not provide for forced mapping of a given physical address to a virtual address. However,
if you need such a mapping, you are probably writing a device driver, in which case you should
be using I/O Kit routines instead of Mach routines.

These are some of the commonly used Mach routines for allocating memory:

kern_return_t kmem_alloc(vm_map_t map, vm_offset_t *addrp, vm_size_t size);
void kmem_free(vm_map_t map, vm_offset_t addr, vm_size_t size);
kern_return_t mem_alloc_aligned(vm_map_t map, vm_offset_t *addrp,
 vm_size_t size);
kern_return_t kmem_alloc_wired(vm_map_t map, vm_offset_t *addrp,
 vm_size_t size);
kern_return_t kmem_alloc_pageable(vm_map_t map, vm_offset_t *addrp,
 vm_size_t size);
kern_return_t kmem_alloc_contig(vm_map_t map, vm_offset_t *addrp,
 vm_size_t size, vm_offset_t mask, int flags);

These functions all take a map as the first argument. Unless you need to allocate memory in a
different map, you should pass kernel_map for this argument.

All of the kmem_alloc functions except kmem_alloc_pageable allocate wired memory. The
function kmem_alloc_pageable creates the appropriate VM structures but does not back the
region with physical memory. This function could be combined with vm_map_copyout when
creating a new address map, for example. In practice, it is rarely used.

The function kmem_alloc_aligned allocates memory aligned according to the value of the size
argument, which must be a power of 2.

Allocating Memory in the Kernel 67
© Apple Computer, Inc. 2004

C H A P T E R 8

Memory and Virtual Memory

The function kmem_alloc_wired is synonymous with kmem_alloc and is appropriate for data
structures that cannot be paged out. It is not strictly necessary; however, if you explicitly need
certain pieces of data to be wired, using kmem_alloc_wired makes it easier to find those portions
of your code.

The function kmem_alloc_contig attempts to allocate a block of physically contiguous memory.
This is not always possible, and requires a full sort of the system free list even for short allocations.
After startup, this sort can cause long delays, particularly on systems with lots of RAM. You
should generally not use this function.

The function kmem_free is used to free an object allocated with one of the kmem_alloc functions.
Unlike the standard C free function, kmem_free requires the length of the object. If you are not
allocating fixed-size objects (for example, sizeof struct foo), you may have to do some
additional bookkeeping, since you must free an entire object, not just a portion of one.

Allocating Memory From the I/O Kit

Although the I/O Kit is generally beyond the scope of this document, the I/O Kit memory
management routines are presented here for completeness. In general, I/O Kit routines should
not be used outside the I/O Kit. Similarly, Mach allocation routines should not be directly used
from the I/O Kit because the I/O Kit has abstractions for those routines that fit the I/O Kit
development model more closely.

The I/O Kit includes the following routines for kernel memory allocation:

void *IOMalloc(vm_size_t size);
void *IOMallocAligned(vm_size_t size, vm_size_t alignment);
void *IOMallocContiguous(vm_size_t size, vm_size_t alignment,
 IOPhysicalAddress *physicalAddress);
void *IOMallocPageable(vm_size_t size, vm_size_t alignment);
void IOFree(void *address, vm_size_t size);
void IOFreeAligned(void *address, vm_size_t size);
void IOFreeContiguous(void *address, vm_size_t size);
void IOFreePageable(void *address, vm_size_t size);

Most of these routines are relatively transparent wrappers around the Mach allocation functions.
There are two major differences, however. First, the caller does not need to know which memory
map is being modified. Second, they have a separate free call for each allocation call for internal
bookkeeping reasons.

The functions IOMallocContiguous and IOMallocAligned differ somewhat from their Mach
underpinnings. IOMallocAligned uses calls directly to Mach VM to add support for arbitrary
(power of 2) data alignment, rather than aligning based on the size of the object.
IOMallocContiguous adds an additional parameter, PhysicalAddress. If this pointer is not
NULL, the physical address is returned through this pointer. Using Mach functions, obtaining the
physical address requires a separate function call.

Important
If your KEXT allocates memory that will be shared, you should
create a buffer of type IOMemoryDescriptor or
BufferMemoryDescriptor and specify that the buffer should be
sharable. If you are allocating memory in a user application that
will be shared with the kernel, you should use valloc or

68 Allocating Memory in the Kernel
© Apple Computer, Inc. 2004

C H A P T E R 8

Memory and Virtual Memory

vm_allocate instead of malloc and then call
mach_make_memory_entry_64.

Allocating Memory in the Kernel 69
© Apple Computer, Inc. 2004

C H A P T E R 8

Memory and Virtual Memory

70 Allocating Memory in the Kernel
© Apple Computer, Inc. 2004

C H A P T E R 8

Memory and Virtual Memory

Mac OS X is based on Mach and BSD. Like Mach and most BSD UNIX systems, it contains an
advanced scheduler based on the CMU Mach 3 scheduler. This chapter describes the scheduler
from the perspective of both a kernel programmer and an application developer attempting to
set scheduling parameters.

This chapter begins with the “Overview of Scheduling” (page 71), which describes the basic
concepts behind Mach scheduling at a high level, including real-time priority support.

The second section, “Using Mach Scheduling From User Applications” (page 73), describes how
to access certain key Mach scheduler routines from user applications and from other parts of the
kernel outside the scheduler.

The third section, “Kernel Thread APIs” (page 77), explains scheduler-related topics including
how to create and terminate kernel threads and describes the BSD spl macros and their limited
usefulness in Mac OS X.

Overview of Scheduling

The Mac OS X scheduler is derived from the scheduler used in OSFMK 7.3. In general, much
documentation about prior implementations applies to the scheduler in Mac OS X, although you
will find numerous differences. The details of those differences are beyond the scope of this
overview.

Mach scheduling is based on a system of run queues at various priorities that are handled in
different ways. The priority levels are divided into four bands according to their characteristics,
as described in Table 8-1 (page 71).

Table 9-1 Thread priority bands

CharacteristicsPriority Band

normal application thread prioritiesNormal

threads whose priority has been raised above normal
threads

System high priority

C H A P T E R 9

Mach Scheduling and Thread Interfaces

Overview of Scheduling 71
© Apple Computer, Inc. 2004

CharacteristicsPriority Band

reserved for threads created inside the kernel that need to
run at a higher priority than all user space threads (I/O Kit
workloops, for example)

Kernel mode only

threads whose priority is based on getting a well-defined
fraction of total clock cycles, regardless of other activity (in
an audio player application, for example).

Real-time threads

Threads can migrate between priority levels for a number of reasons, largely as an artifact of the
time sharing algorithm used. However, this migration is within a given band.

Threads marked as being real-time priority are also special in the eyes of the scheduler. A real-time
thread tells the scheduler that it needs to run for A cycles out of the next B cycles. For example,
it might need to run for 3000 out of the next 7000 clock cycles in order to keep up. It also tells the
scheduler whether those cycles must be contiguous. Using long contiguous quanta is generally
frowned upon but is occasionally necessary for specialized real-time applications.

If the real-time thread requests something relatively reasonable, its priority will remain in the
real-time band. If it lies blatantly about its requirements and behaves in a compute-bound fashion,
it may be demoted to the priority of a normal thread.

Changing a thread’s priority to turn it into a real-time priority thread using Mach calls is described
in more detail in “Using Mach Scheduling From User Applications” (page 73).

In addition to the raw Mach RPC interfaces, some aspects of a thread’s priority can be controlled
from user space using the POSIX thread priority API. The POSIX thread API is able to set thread
priority only within the lowest priority band (0–63).

Why Did My Thread Priority Change?

There are many reasons that a thread’s priority can change. This section attempts to explain the
root cause of these thread priority changes.

A real-time thread, as mentioned previously, is penalized (and may even be knocked down to
normal thread priority) if it exceeds its time quantum without blocking repeatedly. For this
reason, it is very important to make a reasonable guess about your thread’s workload if it needs
to run in the real-time band.

Threads that are heavily compute-bound are given lower priority to help minimize response
time for interactive tasks so that high–priority compute–bound threads cannot monopolize the
system and prevent lower–priority I/O-bound threads from running. Even at a lower priority,
the compute–bound threads still run frequently, since the higher–priority I/O-bound threads
do only a short amount of processing, block on I/O again, then allow the compute-bound threads
to execute.

All of these mechanisms are operating continually in the Mach scheduler. This means that threads
are frequently moving up or down in priority based upon their behavior and the behavior of
other threads in the system.

72 Why Did My Thread Priority Change?
© Apple Computer, Inc. 2004

C H A P T E R 9

Mach Scheduling and Thread Interfaces

Using Mach Scheduling From User Applications

There are three basic ways to change how a user thread is scheduled. You can use the BSD
pthreads API to change basic policy and importance. You can also use Mach RPC calls to change
a task’s importance. Finally, you can use RPC calls to change the scheduling policy to move a
thread into a different scheduling band. This is commonly used when interacting with CoreAudio.

The pthreads API is a user space API, and has limited relevance for kernel programmers. The
Mach thread and task APIs are more general and can be used from anywhere in the kernel. The
Mach thread and task calls can also be called from user applications.

Using the pthreads API to Influence Scheduling

Mac OS X supports a number of policies at the pthreads API level. If you need real-time behavior,
you must use the Mach thread_policy_set call. This is described in “Using the Mach Thread
API to Influence Scheduling” (page 74).

The pthreads API adjusts the priority of threads within a given task. It does not necessarily
impact performance relative to threads in other tasks. To increase the priority of a task, you can
use nice or renice from the command line or call getpriority and setpriority from your
application.

The API provides two functions: pthread_attr_getschedparam and pthread_setschedparam.
Their prototypes look like this:

pthread_setschedparam(pthread_t thread, int policy,
 struct sched_param *param);
pthread_getschedparam(pthread_t thread, int *policy,
 struct sched_param *param)

The arguments for pthread_getschedparam are straightforward. The first argument is a thread
ID, and the others are pointers to memory where the results will be stored.

The arguments to pthread_setschedparam are not as obvious, however. As with
pthread_getschedparam, the first argument is a thread ID.

The second argument to pthread_setschedparam is the desired policy, which can currently be
one of SCHED_FIFO (first in, first out), SCHED_RR (round-robin), or SCHED_OTHER. The SCHED_OTHER
policy is generally used for extra policies that are specific to a given operating system, and should
thus be avoided when writing portable code.

The third argument is a structure that contains various scheduling parameters.

Here is a basic example of using pthreads functions to set a thread’s scheduling policy and
priority.

int set_my_thread_priority(int priority) {
 struct sched_param sp;

 memset(&sp, 0, sizeof(struct sched_param));
 sp.sched_priority=priority;
 if (pthread_setschedparam(pthread_self(), SCHED_RR, &sp) == -1) {

Using Mach Scheduling From User Applications 73
© Apple Computer, Inc. 2004

C H A P T E R 9

Mach Scheduling and Thread Interfaces

 printf(“Failed to change priority.\n”);
 return -1;
 }
 return 0;
}

This code snippet sets the scheduling policy for the current thread to round-robin scheduling,
and sets the thread’s relative importance within the task to the value passed in through the
priority argument.

Using the Mach Thread API to Influence Scheduling

This API is frequently used in multimedia applications to obtain real-time priority. It is also
useful in other situations when the pthread scheduling API cannot be used or does not provide
the needed functionality.

The API consists of two functions, thread_policy_set and thread_policy_get.

kern_return_t thread_policy_set(
 thread_act_t thread,
 thread_policy_flavor_t flavor,
 thread_policy_t policy_info,
 mach_msg_type_number_t count);

kern_return_t thread_policy_get(
 thread_act_t thread,
 thread_policy_flavor_t flavor,
 thread_policy_t policy_info,
 mach_msg_type_number_t *count,
 boolean_t *get_default);

The parameters of these functions are roughly the same, except that the thread_policy_get
function takes pointers for the count and the get_default arguments. The count is an inout
parameter, meaning that it is interpreted as the maximum amount of storage that the calling task
has allocated for the return, but it is also overwritten by the scheduler to indicate the amount of
data that was actually returned.

These functions get and set several parameters, according to the thread policy chosen. The possible
thread policies are listed in Table 8-2 (page 74).

Table 9-2 Thread policies

MeaningPolicy

Default valueTHREAD_STANDARD_POLICY

Used to specify real-time behavior.THREAD_TIME_CONSTRAINT_POLICY

Used to indicate the importance of
computation relative to other threads in a
given task.

THREAD_PRECEDENCE_POLICY

74 Using Mach Scheduling From User Applications
© Apple Computer, Inc. 2004

C H A P T E R 9

Mach Scheduling and Thread Interfaces

The following code snippet shows how to set the priority of a task to tell the scheduler that it
needs real-time performance. The example values provided in comments are based on the
estimated needs of esd (the Esound daemon).

#include <mach/mach_init.h>#include <mach/thread_policy.h>
#include <mach/sched.h>

int set_realtime(int period, int computation, int constraint) {
 struct thread_time_constraint_policy ttcpolicy;
 int ret;

 ttcpolicy.period=period; // HZ/160
 ttcpolicy.computation=computation; // HZ/3300;
 ttcpolicy.constraint=constraint; // HZ/2200;
 ttcpolicy.preemptible=1;

 if ((ret=thread_policy_set(mach_thread_self(),
 THREAD_TIME_CONSTRAINT_POLICY, (int *)&ttcpolicy,
 THREAD_TIME_CONSTRAINT_POLICY_COUNT)) != KERN_SUCCESS) {
 fprintf(stderr, “set_realtime() failed.\n”);
 return 0;
 }
 return 1;
}

The time values are in terms of Mach absolute time units. Since these values differ according to
the bus speed of your computer, you should generally use numbers relative to HZ (ticks per
second). These are discussed in more detail in “Using Kernel Time Abstractions” (page 127).

Say your computer reports 133 million for the value of HZ. If you pass the example values given
as arguments to this function, your thread tells the scheduler that it needs approximately 40,000
out of the next 833,333 bus cycles. The preemptible value indicates that those 40,000 bus cycles
need not be contiguous. However, the constraint value tells the scheduler that there can be no
more than 60,000 bus cycles between the start of computation and the end of computation.

A straightforward example using this API is code that displays video directly to the framebuffer
hardware. It needs to run for a certain number of cycles every frame to get the new data into the
frame buffer. It can be interrupted without worry, but if it is interrupted for too long, the video
hardware starts displaying an outdated frame before the software writes the updated data,
resulting in a nasty glitch. Audio has similar behavior, but since it is usually buffered along the
way (in hardware and in software), there is greater tolerance for variations in timing, to a point.

Another policy call is THREAD_PRECEDENCE_POLICY. This is used for setting the relative importance
of non-real-time threads. Its calling convention is similar, except that its structure is
thread_precedence_policy, and contains only one field, an integer_t called importance,
which is a signed 32-bit value.

Using the Mach Task API to Influence Scheduling

This relatively simple API is not particularly useful for most developers. However, it may be
beneficial if you are developing a graphical user interface for Darwin. It also provides some
insight into the prioritization of tasks in Mac OS X. It is presented here for completeness.

The API consists of two functions, task_policy_set and task_policy_get.

Using Mach Scheduling From User Applications 75
© Apple Computer, Inc. 2004

C H A P T E R 9

Mach Scheduling and Thread Interfaces

kern_return_t task_policy_set(
 task_t task,
 task_policy_flavor_t flavor,
 task_policy_t policy_info,
 mach_msg_type_number_t count);

kern_return_t task_policy_get(
 task_t task,
 task_policy_flavor_t flavor,
 task_policy_t policy_info,
 mach_msg_type_number_t *count,
 boolean_t *get_default);

As with thread_policy_set and thread_policy_get, the parameters are similar, except that
the task_policy_get function takes pointers for the count and the get_default arguments.
The count argument is an inout parameter. It is interpreted as the maximum amount of storage
that the calling task has allocated for the return, but it is also overwritten by the scheduler to
indicate the amount of data that was actually returned.

These functions get and set a single parameter, that of the role of a given task, which changes
the way the task’s priority gets altered over time. The possible roles of a task are listed in Table
8-3 (page 76).

Table 9-3 Task roles

MeaningRole

Default valueTASK_UNSPECIFIED

This is set when a process is executed with
nice or is modified by renice.

TASK_RENICED

GUI application in the foreground. There can
be more than one foreground application.

TASK_FOREGROUND_APPLICATION

GUI application in the background.TASK_BACKGROUND_APPLICATION

Reserved for the dock or equivalent (assigned
FCFS).

TASK_CONTROL_APPLICATION

Reserved for WindowServer or equivalent
(assigned FCFS).

TASK_GRAPHICS_SERVER

The following code snippet shows how to set the priority of a task to tell the scheduler that it is
a foreground application (regardless of whether it really is).

#include <mach/mach_init.h>#include <mach/task_policy.h>
#include <mach/sched.h>

int set_my_task_policy(void) {
 int ret;
 struct task_category_policy tcatpolicy;

 tcatpolicy.role = TASK_FOREGROUND_APPLICATION;

76 Using Mach Scheduling From User Applications
© Apple Computer, Inc. 2004

C H A P T E R 9

Mach Scheduling and Thread Interfaces

 if ((ret=task_policy_set(mach_task_self(),
 TASK_CATEGORY_POLICY, (int *)&tcatpolicy,
 TASK_CATEGORY_POLICY_COUNT)) != KERN_SUCCESS) {
 fprintf(stderr, “set_my_task_policy() failed.\n”);
 return 0;
 }
 return 1;
}

Kernel Thread APIs

The Mac OS X scheduler provides a number of public APIs. While many of these APIs should
not be used, the APIs to create, destroy, and alter kernel threads are of particular importance.
While not technically part of the scheduler itself, they are inextricably tied to it.

The scheduler directly provides certain services that are commonly associated with the use of
kernel threads, without which kernel threads would be of limited utility. For example, the
scheduler provides support for wait queues, which are used in various synchronization primitives
such as mutex locks and semaphores.

Creating and Destroying Kernel Threads

There are two basic interfaces for creating threads within the kernel. The I/O Kit provides
IOCreateThread, IOThreadSelf, and IOExitThread, while Mach itself provides kernel_thread
and current_thread. The basic functions for creating and terminating kernel threads are:

thread_t kernel_thread(task_t task, void (*start)(void));
thread_t current_thread(void);
IOThread IOCreateThread(IOThreadFunc function, void *argument);
IOThread IOThreadSelf(void);
void IOExitThread(void);

With the exception of IOCreateThread (which is a bit more complex), the I/O Kit functions are
fairly thin wrappers around Mach thread functions. The types involved are also very thin
abstractions. IOThread is really the same as thread_t.

The functions are relatively straightforward. The Mach functions allow you to create a kernel
thread in which a function with no arguments executes, while the equivalent I/O Kit functions
support a function with a single argument.

One other useful function is thread_terminate. This can be used to destroy an arbitrary thread
(except, of course, the currently running thread). This can be extremely dangerous if not done
correctly. Before tearing down a thread with thread_terminate, you should lock the thread and
disable any outstanding timers against it. If you fail to deactivate a timer, a kernel panic will
occur when the timer expires.

With that in mind, you may be able to terminate a thread as follows:

thread_terminate(getact_thread(thread_t thread));

Kernel Thread APIs 77
© Apple Computer, Inc. 2004

C H A P T E R 9

Mach Scheduling and Thread Interfaces

In general, you can only be assured that you can kill yourself, not other threads in the system.
The function thread_terminate takes a single parameter of type thread_act_t (a thread
activation). The function getact_thread takes a thread shuttle (struct thread_shuttle or
thread_t) and returns the thread activation associated with it.

SPL and Friends

BSD–based and Mach–based operating systems contain legacy functions designed for basic
single-processor synchronization. These include functions such as splhigh, splbio, splx, and
other similar functions. Since these functions are not particularly useful for synchronization in
an SMP situation, they are not particularly useful as synchronization tools in Mac OS X.

If you are porting legacy code from earlier Mach–based or BSD–based operating systems, you
must find an alternate means of providing synchronization. In many cases, this is as simple as
taking the kernel or network funnel. In parts of the kernel, the use of spl functions does nothing,
but causes no harm if you are holding a funnel (and results in a panic if you are not). In other
parts of the kernel, spl macros are actually used. Because spl cannot necessarily be used for its
intended purpose, it should not be used in general unless you are writing code it a part of the
kernel that already uses it. You should instead use alternate synchronization primitives such as
those described in “Synchronization Primitives” (page 119).

Wait Queues and Wait Primitives

The wait queue API is used extensively by the scheduler and is closely tied to the scheduler in
its implementation. It is also used extensively in locks, semaphores, and other synchronization
primitives. The wait queue API is both powerful and flexible, and as a result is somewhat large.
Not all of the API is exported outside the scheduler, and parts are not useful outside the context
of the wait queue functions themselves. This section documents only the public API.

The wait queue API includes the following functions:

void wait_queue_init(wait_queue_t wq, int policy);
extern wait_queue_t wait_queue_t wait_queue_alloc(int policy);
void wait_queue_free(wait_queue_t wq);
void wait_queue_lock(wait_queue_t wq);
void wait_queue_lock_try(wait_queue_t wq);
void wait_queue_unlock(wait_queue_t wq);
boolean_t wait_queue_member(wait_queue_t wq, wait_queue_sub_t wq_sub);
boolean_t wait_queue_member_locked(wait_queue_t wq, wait_queue_sub_t
wq_sub);
kern_return_t wait_queue_link(wait_queue_t wq, wait_queue_sub_t wq_sub);
kern_return_t wait_queue_unlink(wait_queue_t wq, wait_queue_sub_t wq_sub);
kern_return_t wait_queue_unlink_one(wait_queue_t wq,
 wait_queue_sub_t *wq_subp);
void wait_queue_assert_wait(wait_queue_t wq, event_t event,
 int interruptible);
void wait_queue_assert_wait_locked(wait_queue_t wq, event_t event,
 int interruptible, boolean_t unlocked);
kern_return_t wait_queue_wakeup_all(wait_queue_t wq, event_t event,
 int result);
kern_return_t wait_queue_peek_locked(wait_queue_t wq, event_t event,
 thread_t *tp, wait_queue_t *wqp);

78 Kernel Thread APIs
© Apple Computer, Inc. 2004

C H A P T E R 9

Mach Scheduling and Thread Interfaces

void wait_queue_pull_thread_locked(wait_queue_t wq, thread_t thread,
 boolean_t unlock);
thread_t wait_queue_wakeup_identity_locked(wait_queue_t wq, event_t event,
 int result, boolean_t unlock);
kern_return_t wait_queue_wakeup_one(wait_queue_t wq, event_t event,
 int result);
kern_return_t wait_queue_wakeup_one_locked(wait_queue_t wq, event_t event,
 int result, boolean_t unlock);
kern_return_t wait_queue_wakeup_thread(wait_queue_t wq, event_t event,
 thread_t thread, int result);
kern_return_t wait_queue_wakeup_thread_locked(wait_queue_t wq, event_t
event,
 thread_t thread, int result, boolean_t unlock);
kern_return_t wait_queue_remove(thread_t thread);

Most of the functions and their arguments are straightforward and are not presented in detail.
However, a few require special attention.

Most of the functions take an event_t as an argument. These can be arbitrary 32-bit values, which
leads to the potential for conflicting events on certain wait queues. The traditional way to avoid
this problem is to use the address of a data object that is somehow related to the code in question
as that 32-bit integer value.

For example, if you are waiting for an event that indicates that a new block of data has been
added to a ring buffer, and if that ring buffer’s head pointer was called rb_head, you might pass
the value &rb_head as the event ID. Because wait queue usage does not generally cross address
space boundaries, this is generally sufficient to avoid any event ID conflicts.

Notice the functions ending in _locked. These functions require that your thread be holding a
lock on the wait queue before they are called. Functions ending in _locked are equivalent to
their nonlocked counterparts (where applicable) except that they do not lock the queue on entry
and may not unlock the queue on exit (depending on the value of unlock). The remainder of this
section does not differentiate between locked and unlocked functions.

The wait_queue_alloc and wait_queue_init functions take a policy parameter, which can be
one of the following:

■ SYNC_POLICY_FIFO—first-in, first-out

■ SYNC_POLICY_FIXED_PRIORITY—policy based on thread priority

■ SYNC_POLICY_PREPOST—keep track of number of wakeups where no thread was waiting
and allow threads to immediately continue executing without waiting until that count reaches
zero. This is frequently used when implementing semaphores.

You should not use the wait_queue_init function outside the scheduler. Because a wait queue
is an opaque object outside that context, you cannot determine the appropriate size for allocation.
Thus, because the size could change in the future, you should always use wait_queue_alloc
and wait_queue_free unless you are writing code within the scheduler itself.

Similarly, the functions wait_queue_member, wait_queue_member_locked, wait_queue_link,
wait_queue_unlink, and wait_queue_unlink_one are operations on subordinate queues, which
are not exported outside the scheduler.

The function wait_queue_member determines whether a subordinate queue is a member of a
queue.

Kernel Thread APIs 79
© Apple Computer, Inc. 2004

C H A P T E R 9

Mach Scheduling and Thread Interfaces

The functions wait_queue_link and wait_queue_unlink link and unlink a given subordinate
queue from its parent queue, respectively.

The function wait_queue_unlink_one unlinks the first subordinate queue in a given parent and
returns it.

The function wait_queue_assert_wait causes the calling thread to wait on the wait queue until
it is either interrupted (by a thread timer, for example) or explicitly awakened by another thread.
The interruptible flag indicates whether this function should allow an asynchronous event to
interrupt waiting.

The function wait_queue_wakeup_all wakes up all threads waiting on a given queue for a
particular event.

The function wait_queue_peek_locked returns the first thread from a given wait queue that is
waiting on a given event. It does not remove the thread from the queue, nor does it wake the
thread. It also returns the wait queue where the thread was found. If the thread is found in a
subordinate queue, other subordinate queues are unlocked, as is the parent queue. Only the
queue where the thread was found remains locked.

The function wait_queue_pull_thread_locked pulls a thread from the wait queue and optionally
unlocks the queue. This is generally used with the result of a previous call to
wait_queue_peek_locked.

The function wait_queue_wakeup_identity_locked wakes up the first thread that is waiting
for a given event on a given wait queue and starts it running but leaves the thread locked. It then
returns a pointer to the thread. This can be used to wake the first thread in a queue and then
modify unrelated structures based on which thread was actually awakened before allowing the
thread to execute.

The function wait_queue_wakeup_one wakes up the first thread that is waiting for a given event
on a given wait queue.

The function wait_queue_wakeup_thread wakes up a given thread if and only if it is waiting
on the specified event and wait queue (or one of its subordinates).

The function wait_queue_remove wakes a given thread without regard to the wait queue or
event on which it is waiting.

80 Kernel Thread APIs
© Apple Computer, Inc. 2004

C H A P T E R 9

Mach Scheduling and Thread Interfaces

In Mac OS X kernel programming, the term context has several meanings that appear similar on
the surface, but differ subtly.

First, the term context can refer to a BSD process or Mach task. Switching from one process to
another is often referred to as a context switch.

Second, context can refer to the part of the operating system in which your code resides. Examples
of this include thread contexts, the interrupt context, the kernel context, an application’s context,
a Carbon File Manager context, and so on. Even for this use of the term, the exact meaning
depends, ironically, on the context in which the term is used.

Finally, context can refer to a bootstrap context. In Mach, the bootstrap task is assigned
responsibility for looking up requests for Mach ports. As part of this effort, each Mach task is
registered in one of two groups—either in the startup context or a user’s login context. (In theory,
Mach can support any number of independent contexts, however the use of additional contexts
is beyond the scope of this document.)

For the purposes of this chapter, the term context refers to a bootstrap context.

When Mac OS X first boots, there is only the top-level context, which is generally referred to as
the startup context. All other contexts are subsets of this context. Basic system services that rely
on Mach ports must be started in this context in order to work properly.

When a user logs in, the bootstrap task creates a new context called the login context. Programs
run by the user are started in the login context. This allows the user to run a program that provides
an alternate port lookup mechanism if desired, causing that user’s tasks to get a different port
when the tasks look up a basic service. This has the effect of replacing that service with a
user-defined version in a way that changes what the user’s tasks see, but does not affect any of
the rest of the system.

To avoid wasting memory, currently the login context is destroyed when the user logs out (or
shortly thereafter). This behavior may change in the future, however. In the current
implementation, programs started by the user will no longer be able to look up Mach ports after
logout. If a program does not need to do any port lookup, it will not be affected. Other programs
will terminate, hang, or behave erratically.

For example, in Mac OS 10.1 and earlier, sshd continues to function when started from a user
context. However, since it is unable to communicate with lookupd or netinfo, it stops accepting
passwords. This is not a particularly useful behavior.

C H A P T E R 1 0

Bootstrap Contexts

81
© Apple Computer, Inc. 2004

Other programs such as esound, however, continue to work correctly after logout when started
from a user context. Other programs behave correctly in their default configuration but fail in
other configurations—for example, when authentication support is enabled.

There are no hard and fast rules for which programs will continue to operate after their bootstrap
context is destroyed. Only thorough testing can tell you whether any given program will
misbehave if started from a user context, since even programs that do not appear to directly use
Mach communication may still do so indirectly.

In Mac OS X 10.2, a great deal of effort has gone into making sure that programs that use only
standard BSD services and functions do not use Mach lookups in a way that would fail if started
from a user context. If you find an application that breaks when started from a Terminal.app
window, please file a bug report.

How Contexts Affect Users

From the perspective of a user, contexts are generally unimportant as long as they do not want
a program to survive past the end of their login session.

Contexts do become a problem for the administrator, however. For example, if the administrator
upgrades sshd by killing the old version, starting the new one, and logging out, strange things
could happen since the context in which sshd was running no longer exists.

Contexts also pose an issue for users running background jobs with nohup or users detaching
terminal sessions using screen. There are times when it is perfectly reasonable for a program to
survive past logout, but by default, this does not occur.

There are three basic ways that a user can get around this. In the case of daemons, they can modify
the startup scripts to start the application. On restart, the application will be started in the startup
context. This is not very practical if the computer in question is in heavy use, however. Fortunately,
there are other ways to start services in a startup context.

The second way to run a service in the startup context is to use ssh to connect to the computer.
Since sshd is running in the startup context, programs started from an ssh session also register
themselves in the startup context. (Note that a user can safely kill the main sshd process without
being logged out. The user just needs to be careful to kill the right one.)

The third way is to log in as the console user (>console), which causes LoginWindow to exit and
causes init to spawn a getty process on the console. Since init spawns getty, which spawns
login, which spawns the user’s shell, any programs started from the text console will be in the
startup context.

More generally, any process that is the child of a process in the startup context (other than those
inherited by init because their parent process exited) is automatically in the startup context.
Any process that is the child of a process in the login context is, itself, in the login context. This
means that daemons can safely fork children at any time and those children will be in the startup
context, as will programs started from the console (not the Console application). This also means
that any program started by a user in a terminal window, from Finder, from the Dock, and so
on, will be in the currently logged in user’s login context, even if that user runs the application
using su or sudo.

82 How Contexts Affect Users
© Apple Computer, Inc. 2004

C H A P T E R 1 0

Bootstrap Contexts

How Contexts Affect Developers

If you are writing only kernel code, contexts are largely irrelevant (unless you are creating a new
context, of course). However, kernel developers frequently need to write a program that registers
itself in the startup context in order to provide some level of driver communication. For example,
you could write a user-space daemon that brokers configuration information for a sound driver
based on which user is logged in at the time.

In the most general case, the problem of starting an application in the startup context can be
solved by creating a startup script for your daemon, which causes it to be run in the startup
context after the next reboot. However, users generally do not appreciate having to reboot their
computers to install a new driver. Asking the user to connect to his or her own computer with
ssh to execute a script is probably not reasonable, either.

The biggest problem with forcing a reboot, of course, is that users often install several programs
at once. Rebooting between each install inconveniences the end user, and has no other benefit.
For that reason, you should not force the user to restart. Instead, you should offer the user the
option, noting that the software may not work correctly until the user restarts. While this does
not solve the fundamental problem, it does at least minimize the most common source of
complaints.

There are a number of ways to force a program to start in the startup context without rebooting
or using ssh. However, these are not robust solutions, and are not recommended. A standard
API for starting daemons is under consideration. When an official API becomes available, this
chapter will be updated to discuss it.

How Contexts Affect Developers 83
© Apple Computer, Inc. 2004

C H A P T E R 1 0

Bootstrap Contexts

84 How Contexts Affect Developers
© Apple Computer, Inc. 2004

C H A P T E R 1 0

Bootstrap Contexts

Those of you who are already familiar with writing device drivers for Mac OS 9 or for BSD will
discover that writing drivers for Mac OS X requires some new ways of thinking. In creating Mac
OS X, Apple has completely redesigned the Macintosh I/O architecture, providing a framework
for simplified driver development that supports many categories of devices. This framework is
called the I/O Kit.

From a programming perspective, the I/O Kit provides an abstract view of the system hardware
to the upper layers of Mac OS X. The I/O Kit uses an object-oriented programming model,
implemented in a restricted subset of C++ to promote increased code reuse.

By starting with properly designed base classes, you gain a head start in writing a new driver;
with much of the driver code already written, you need only to fill in the specific code that makes
your driver different. For example, all SCSI controllers deliver a fairly standard set of commands
to a device, but do so via different low-level mechanisms. By properly using object-oriented
programming methodology, a SCSI driver can implement those low-level transport portions
without reimplementing the higher level SCSI protocol code. Similar opportunities for code reuse
can be found in most types of drivers.

Part of the philosophy of the I/O Kit is to make the design completely open. Rather than hiding
parts of the API in an attempt to protect developers from themselves, all of the I/O Kit source is
available as part of Darwin. You can use the source code as an aid to designing (and debugging)
new drivers.

Instead of hiding the interfaces, Apple’s designers have chosen to lead by example. Sample code
and classes show the recommended (easy) way to write a driver. However, you are not prevented
from doing things the hard way (or the wrong way). Instead, attention has been concentrated
on making the “best” ways easy to follow.

Redesigning the I/O Model

You might ask why Apple chose to redesign the I/O model. At first glance, it might seem that
reusing the model from Mac OS 9 or FreeBSD would have been an easier choice. There are several
reasons for the decision, however.

Neither the Mac OS 9 driver model nor the FreeBSD model offered a feature set rich enough to
meet the needs of Mac OS X. The underlying operating-system technology of Mac OS X is very
different from that of Mac OS 9. The Mac OS X kernel is significantly more advanced than the

C H A P T E R 1 1

I/O Kit Overview

Redesigning the I/O Model 85
© Apple Computer, Inc. 2004

previous Mac OS system architecture; Mac OS X needs to handle memory protection, preemption,
multiprocessing, and other features not present (or substantially less pervasive) in previous
versions of the Mac OS.

Although FreeBSD supports these features, the BSD driver model did not offer the automatic
configuration, stacking, power management, or dynamic device-loading features required in a
modern, consumer-oriented operating system.

By redesigning the I/O architecture, Apple’s engineers can take best advantage of the
operating-system features in Mac OS X. For example, virtual memory (VM) is not a fundamental
part of the operating system in Mac OS 9. Thus, every driver writer must know about (and write
for) VM. This has presented certain complications for developers. In contrast, Mac OS X has
simplified driver interaction with VM. VM capability is inherent in the Mac OS X operating
system and cannot be turned off by the user. Thus, VM capabilities can be abstracted into the
I/O Kit, and the code for handling VM need not be written for every driver.

Mac OS X offers an unprecedented opportunity to reuse code. In Mac OS 9, for example, all
software development kits (SDKs) were independent of each other, duplicating functionality
between them. In Mac OS X, the I/O Kit is delivered as part of the basic developer tools, and
code is shared among its various parts.

In contrast with traditional I/O models, the reusable code model provided by the I/O Kit can
decrease your development work substantially. In porting drivers from Mac OS 9, for example,
the Mac OS X counterparts have been up to 75% smaller.

In general, all hardware support is provided directly by I/O Kit entities. One exception to this
rule is imaging devices such as printers, scanners, and digital cameras (although these do make
some use of I/O Kit functionality). Specifically, although communication with these devices is
handled by the I/O Kit (for instance, under the FireWire or USB families), support for particular
device characteristics is handled by user-space code (see “For More Information” (page 91) for
further discussion). If you need to support imaging devices, you should employ the appropriate
imaging software development kit (SDK).

The I/O Kit attempts to represent, in software, the same hierarchy that exists in hardware. Some
things are difficult to abstract, however. When the hardware hierarchy is difficult to represent
(for example, if layering violations occur), then the I/O Kit abstractions provide less help for
writing drivers.

In addition, all drivers exist to drive hardware; all hardware is different. Even with the reusable
model provided by the I/O Kit, you still need to be aware of any hardware quirks that may
impact a higher-level view of the device. The code to support those quirks still needs to be unique
from driver to driver.

Although most developers should be able to take full advantage of I/O Kit device families (see
“Families” (page 87)), there will occasionally be some who cannot. Even those developers should
be able to make use of parts of the I/O Kit, however. In any case, the source code is always
available. You can replace functionality and modify the classes yourself if you need to do so.

In designing the I/O Kit, one goal has been to make developers’ lives easier. Unfortunately, it is
not possible to make all developers’ lives uniformly easy. Therefore, a second goal of the I/O
Kit design is to meet the needs of the majority of developers, without getting in the way of the
minority who need lower level access to the hardware.

86 Redesigning the I/O Model
© Apple Computer, Inc. 2004

C H A P T E R 1 1

I/O Kit Overview

I/O Kit Architecture

The I/O Kit provides a model of system hardware in an object-oriented framework. Each type
of service or device is represented by a C++ class; each discrete service or device is represented
by an instance (object) of that class.

There are three major conceptual elements of the I/O Kit architecture:

■ “Families” (page 87)

■ “Drivers” (page 87)

■ “Nubs” (page 88)

Families

A family defines a collection of high-level abstractions common to all devices of a particular
category that takes the form of C code and C++ classes. Families may include headers, libraries,
sample code, test harnesses, and documentation. They provide the API, generic support code,
and at least one example driver (in the documentation).

Families provide services for many different categories of devices. For example, there are protocol
families (such as SCSI, USB, and FireWire), storage families (disk), network families, and families
to describe human interface devices (mouse and keyboard). When devices have features in
common, the software that supports those features is most likely found in a family.

Common abstractions are defined and implemented by the family, allowing all drivers in a family
to share similar features easily. For example, all SCSI controllers have certain things they must
do, such as scanning the SCSI bus. The SCSI family defines and implements the functionality
that is common to SCSI controllers. Because this functionality has been included in the SCSI
family, you do not need to include scanning code (for example) in your new SCSI controller
driver.

Instead, you can concentrate on device-specific details that make your driver different from other
SCSI drivers. The use of families means there is less code for you to write.

Families are dynamically loadable; they are loaded when needed and unloaded when no longer
needed. Although some common families may be preloaded at system startup, all families should
be considered to be dynamically loadable (and, therefore, potentially unloaded). See the
“Connection Example” (page 88) for an illustration.

Drivers

A driver is an I/O Kit object that manages a specific device or bus, presenting a more abstract
view of that device to other parts of the system. When a driver is loaded, its required families
are also loaded to provide necessary, common functionality. The request to load a driver causes
all of its dependent requirements (and their requirements) to be loaded first. After all requirements
are met, the requested driver is loaded as well. See “Connection Example” (page 88) for an
illustration.

I/O Kit Architecture 87
© Apple Computer, Inc. 2004

C H A P T E R 1 1

I/O Kit Overview

Note that families are loaded upon demand of the driver, not the other way around. Occasionally,
a family may already be loaded when a driver demands it; however, you should never assume
this. To ensure that all requirements are met, each device driver should list all of its requirements
in its property list.

Most drivers are in a client-provider relationship, wherein the driver must know about both the
family from which it inherits and the family to which it connects. A SCSI controller driver, for
example, must be able to communicate with both the SCSI family and the PCI family (as a client
of PCI and provider of SCSI). A SCSI disk driver communicates with both the SCSI and storage
families.

Nubs

A nub is an I/O Kit object that represents a point of connection for a driver. It represents a
controllable entity such as a disk or a bus.

A nub is loaded as part of the family that instantiates it. Each nub provides access to the device
or service that it represents and provides services such as matching, arbitration, and power
management.

The concept of nubs can be more easily visualized by imagining a TV set. There is a wire attached
to your wall that provides TV service from somewhere. For all practical purposes, it is permanently
associated with that provider, the instantiating class (the cable company who installed the line).
It can be attached to the TV to provide a service (cable TV). That wire is a nub.

Each nub provides a bridge between two drivers (and, by extension, between two families). It is
most common that a driver publishes one nub for each individual device or service it controls.
(In this example, imagine one wire for every home serviced by the cable company.)

It is also possible for a driver that controls only a single device or service to act as its own nub.
(Imagine the antenna on the back of your TV that has a built-in wire.) See the “Connection
Example” (page 88) for an illustration of the relationship between nubs and drivers.

Connection Example

Figure 10-1 (page 89) illustrates the I/O Kit architecture, using several example drivers and their
corresponding nubs. Note that many different driver combinations are possible; this diagram
shows only one possibility.

In this case, a SCSI stack is shown, with a PCI controller, a disk, and a SCSI scanner. The SCSI
disk is controlled by a kernel-resident driver. The SCSI scanner is controlled by a driver that is
part of a user application.

88 I/O Kit Architecture
© Apple Computer, Inc. 2004

C H A P T E R 1 1

I/O Kit Overview

Figure 11-1 I/O Kit architecture

IOPCIBridge
family

PCI bus driver

IOSCSIParallelController
family

SCSI card driver

IOBlockStorageDriver
family

SCSI disk driver

IOPCIDevice nubs

IOSCSIParallelDevice nubs

IOMedia nub

Disk

User application

User space

Kernel space

Device
interface

User
client

This example illustrates how a SCSI disk driver (Storage family) is connected to the PCI bus. The
connection is made in several steps.

1. The PCI bus driver discovers a PCI device and announces its presence by creating a nub
(IOPCIDevice). The nub’s class is defined by the PCI family.

IOPCIBridge
family

PCI bus driver

IOPCIDevice nubs

Video
card

Main logic
board
ATA

SCSI
card

2. The bus driver identifies (matches) the correct device driver and requests that the driver be
loaded. At the end of this matching process, a SCSI controller driver has been found and
loaded. Loading the controller driver causes all required families to be loaded as well. In this

I/O Kit Architecture 89
© Apple Computer, Inc. 2004

C H A P T E R 1 1

I/O Kit Overview

case, the SCSI family is loaded; the PCI family (also required) is already present. The SCSI
controller driver is given a reference to the IOPCIDevice nub.

3. The SCSI controller driver scans the SCSI bus for devices. Upon finding a device, it announces
the presence of the device by creating a nub (IOSCSIDevice). The class of this nub is defined
by the SCSI family.

IOPCIBridge
family

PCI bus driver

IOSCSIParallelController
family SCSI card driver

IOPCIDevice nubs

IOSCSIParallelDevice nubs

SCSI
disk

Unknown
device

SCSI
scanner

1 5 6

4. The controller driver identifies (matches) the correct device driver and requests that the driver
be loaded. At the end of this matching process, a disk driver has been found and loaded.
Loading the disk driver causes all required families to be loaded as well. In this case, the
Storage family is loaded; the SCSI family (also required) is already present. The disk driver
is given a reference to the IOSCSIDevice nub.

IOPCIBridge
family

PCI bus driver

IOSCSIParallelController
family SCSI card driver

IOBlockStorageDriver
family SCSI disk driver

IOPCIDevice nubs

IOSCSIParallelDevice nubs

IOMedia nub

Disk

90 I/O Kit Architecture
© Apple Computer, Inc. 2004

C H A P T E R 1 1

I/O Kit Overview

For More Information

For more information on the I/O Kit, you should read the document Inside Mac OS X: I/O Kit
Fundamentals, available from Apple’s technical publications website,
http://developer.apple.com/documentation. It provides a good general overview of the I/O
Kit.

In addition to Inside Mac OS X: I/O Kit Fundamentals, the website contains a number of HOWTO
documents and topic-specific documents that describe issues specific to particular technology
areas such as FireWire and USB.

For More Information 91
© Apple Computer, Inc. 2004

C H A P T E R 1 1

I/O Kit Overview

http://developer.apple.com/documentation

92 For More Information
© Apple Computer, Inc. 2004

C H A P T E R 1 1

I/O Kit Overview

The BSD portion of the Mac OS X kernel is derived primarily from FreeBSD, a version of 4.4BSD
that offers advanced networking, performance, security, and compatibility features. BSD variants
in general are derived (sometimes indirectly) from 4.4BSD-Lite Release 2 from the Computer
Systems Research Group (CSRG) at the University of California at Berkeley. BSD provides many
advanced features, including the following:

■ Preemptive multitasking with dynamic priority adjustment. Smooth and fair sharing of the
computer between applications and users is ensured, even under the heaviest of loads.

■ Multiuser access. Many people can use a Mac OS X system simultaneously for a variety of
things. This means, for example, that system peripherals such as printers and disk drives are
properly shared between all users on the system or the network and that individual resource
limits can be placed on users or groups of users, protecting critical system resources from
overuse.

■ Strong TCP/IP networking with support for industry standards such as SLIP, PPP, and NFS.
Mac OS X can interoperate easily with other systems as well as act as an enterprise server,
providing vital functions such as NFS (remote file access) and email services, or Internet
services such as HTTP, FTP, routing, and firewall (security) services.

■ Memory protection. Applications cannot interfere with each other. One application crashing
does not affect others in any way.

■ Virtual memory and dynamic memory allocation. Applications with large appetites for
memory are satisfied while still maintaining interactive response to users. With the virtual
memory system in Mac OS X, each application has access to its own 4 GB memory address
space; this should satisfy even the most memory-hungry applications.

■ Support for kernel threads based on Mach threads. User-level threading packages are
implemented on top of kernel threads. Each kernel thread is an independently scheduled
entity. When a thread from a user process blocks in a system call, other threads from the
same process can continue to execute on that or other processors. By default, a process in the
conventional sense has one thread, the main thread. A user process can use the POSIX thread
API to create other user threads.

■ SMP support. Support is included for computers with multiple CPUs.

■ Source code. Developers gain the greatest degree of control over the BSD programming
environment because source is included.

■ Many of the POSIX APIs.

C H A P T E R 1 2

BSD Overview

93
© Apple Computer, Inc. 2004

BSD Facilities

The facilities that are available to a user process are logically divided into two parts: kernel
facilities and system facilities implemented by or in cooperation with a server process.

The facilities implemented in the kernel define the virtual machine in which each process runs.
Like many real machines, this virtual machine has memory management, an interrupt facility,
timers, and counters.

The virtual machine also allows access to files and other objects through a set of descriptors. Each
descriptor resembles a device controller and supports a set of operations. Like devices on real
machines, some of which are internal to the machine and some of which are external, parts of
the descriptor machinery are built into the operating system, while other parts are often
implemented in server processes.

The BSD component provides the following kernel facilities:

■ processes and protection

❏ host and process identifiers

❏ process creation and termination

❏ user and group IDs

❏ process groups

■ memory management

❏ text, data, stack, and dynamic shared libraries

❏ mapping pages

❏ page protection control

■ POSIX synchronization primitives

■ POSIX shared memory

■ signals

❏ signal types

❏ signal handlers

❏ sending signals

■ timing and statistics

❏ real time

❏ interval time

■ descriptors

❏ files

94 BSD Facilities
© Apple Computer, Inc. 2004

C H A P T E R 1 2

BSD Overview

❏ pipes

❏ sockets

■ resource controls

❏ process priorities

❏ resource utilization and resource limits

❏ quotas

■ system operation support

❏ bootstrap operations

❏ shut-down operations

❏ accounting

BSD system facilities (facilities that may interact with user space) include

■ generic input/output operations such as read and write, nonblocking, and asynchronous
operations

■ file-system operations

■ interprocess communication

■ handling of terminals and other devices

■ process control

■ networking operations

Differences between Mac OS X and BSD

Although the BSD portion of Mac OS X is primarily derived from FreeBSD, some changes have
been made:

■ The sbrk() system call for memory management is deprecated. Its use is not recommended
in Mac OS X.

■ The Mac OS X runtime model supports dynamic shared libraries. This model uses Mach-O
and PEF binary file formats; the dynamic link editor (dyld) and the Code Fragment Manager
(CFM) use these formats respectively. The kernel supports execve() with Mach-O binaries.
Mapping and management of Mach-O dynamic shared libraries, as well as launching of
PEF-based applications, are performed by user-space code.

■ Mac OS X does not support memory-mapped devices through the mmap() function. (Graphic
device support and other subsystems provide similar functionality, but using different APIs.)
In Mac OS X, this interface should be done through user clients. See the Apple I/O Kit
documents for additional information.

Differences between Mac OS X and BSD 95
© Apple Computer, Inc. 2004

C H A P T E R 1 2

BSD Overview

■ The swapon() call is not supported; macx_swapon() is the equivalent call from the Mach
pager.

■ The Unified Buffer Cache implementation in Mac OS X differs from that found in FreeBSD.

■ Mach provides IPC primitives that differ from the System V primitives traditionally found
in UNIX. See “Boundary Crossings” (page 103) for more information on Mach IPC. Some
System V primitives are emulated on top of Mach primitives, but their use is discouraged.

■ The dlopen/dlsym API for loading shared code dynamically is not present. Mac OS X provides
different mechanisms for supporting shared libraries. For more information, see the man
pages for dyld and libtool and Inside Mac OS X: UNIX Porting Guide.

■ Several changes have been made to the BSD security model to support single-user and
multiple-administrator configurations, including the ability to disable ownership and
permissions on a volume-by-volume basis.

In addition, several new features have been added that are specific to the Mac OS X (Darwin)
implementation of BSD. These features are not found in FreeBSD.

■ enhancements to file-system buffer cache and file I/O clustering

❏ adaptive and speculative read ahead

❏ user-process controlled read ahead

❏ time aging of the file-system buffer cache

■ enhancements to file-system support

❏ implementation of Apple extensions for ISO-9660 file systems

❏ multithreaded asynchronous I/O for NFS

❏ addition of system calls to support semantics of Mac OS Extended (HFS+) file systems

❏ additions to naming conventions for pathnames, as required for accessing multiple forks
in Mac OS Extended file systems

For Further Reading

The BSD component of the Mac OS X kernel is complex. A complete description is beyond the
scope of this document. However, many excellent references exist for this component. If you are
interested in BSD, be sure to refer to the bibliography for further information.

Although the BSD layer of Mac OS X is derived from 4.4BSD, keep in mind that it is not identical
to 4.4BSD. Some functionality of 4.4 BSD has not been included in Mac OS X. Some new
functionality has been added. The cited reference materials are recommended for additional
reading. However, they should not be presumed as forming a definitive description of Mac OS
X.

96 For Further Reading
© Apple Computer, Inc. 2004

C H A P T E R 1 2

BSD Overview

Mac OS X provides “out-of-the-box” support for several different file systems. These include
Mac OS Extended format (HFS+), the BSD standard file system format (UFS), NFS (an industry
standard for networked file systems), ISO 9660 (used for CD-ROM), MS-DOS, SMB (Windows
file sharing standard), AFP (Mac OS file sharing), and UDF.

Support is also included for reading the older, Mac OS Standard format (HFS) file-system type;
however, you should not plan to format new volumes using Mac OS Standard format. Mac OS
X cannot boot from these file systems, nor does the Mac OS Standard format provide some of
the information required by Mac OS X.

The Mac OS Extended format provides many of the same characteristics as Mac OS Standard
format but adds additional support for modern features such as file permissions, longer filenames,
Unicode, both hard and symbolic links, and larger disk sizes.

UFS provides case sensitivity and other characteristics that may be expected by BSD commands.
In contrast, Mac OS Extended Format is not case-sensitive (but is case-preserving).

Mac OS X currently can boot and “root” from an HFS+, UFS, ISO, NFS, or UDF volume. That is,
Mac OS X can boot from and mount a volume of any of these types and use it as the primary, or
root, file system.

Other file systems can also be mounted, allowing users to gain access to additional volume
formats and features.

NFS provides access to network servers as if they were locally mounted file systems. The Carbon
application environment mimics many expected behaviors of Mac OS Extended format on top
of both UFS and NFS. These include such characteristics as Finder Info, file ID access, and aliases.

By using the Mac OS X Virtual File System (VFS) capability and writing kernel extensions, you
can add support for other file systems. Examples of file systems that are not currently supported
in Mac OS X but that you may wish to add to the system include the Andrew file system (AFS)
and the Windows NT file system (NTFS). If you want to support a new volume format or
networking protocol, you’ll need to write a file-system kernel extension.

C H A P T E R 1 3

File Systems Overview

97
© Apple Computer, Inc. 2004

Working With the File System

In Mac OS X, the vnode structure provides the internal representation of a file or directory (folder).
There is a unique vnode allocated for each active file or folder, including the root.

Within a file system, operations on specific files and directories are implemented via vnodes and
VOP (vnode operation) calls. VOP calls are used for operations on individual files or directories
(such as open, close, read, or write). Examples include VOP_OPEN to open a file and VOP_READ to
read file contents.

In contrast, file-system–wide operations are implemented using VFS calls. VFS calls are primarily
used for operations on entire file systems; examples include VFS_MOUNT and VFS_UNMOUNT to
mount or unmount a file system, respectively. File-system writers need to provide stubs for each
of these sets of calls.

VFS Transition

The details of the VFS subsystem in Mac OS X are in the process of changing in order to make
the VFS interface sustainable.

If you are writing a leaf file system, these changes will still affect you in many ways. please contact
Apple Developer Support for more information.

98 Working With the File System
© Apple Computer, Inc. 2004

C H A P T E R 1 3

File Systems Overview

Network kernel extensions (NKEs) are a specific type of Mac OS X kernel extension. NKEs provide
a way to extend and modify the networking infrastructure of Mac OS X dynamically, without
recompiling or relinking the kernel. The effect is immediate and does not require rebooting the
system.

Much of the content of this chapter has been excerpted from Chapter 1 of Inside Mac OS X: Network
Kernel Extensions. For further information on to this topic, you should refer to that document.

NKEs can be used to

■ monitor network traffic

■ modify network traffic

■ receive notification of asynchronous events from the driver layer

In the last case, such events are received by the data link and network layers. Examples of these
events include power management events and interface status changes. See “4.4 BSD network
architecture” (page 100) for an illustration of the data link and network layers.

Specifically, NKEs allow you to

■ create protocol stacks that can be loaded and unloaded dynamically and configured
automatically

■ create modules that can be loaded and unloaded dynamically at specific positions in the
network hierarchy.

The Kernel Extension Manager dynamically adds NKEs to the running Mac OS X kernel inside
the kernel’s address space. An installed and enabled NKE is invoked automatically, depending
on its position in the sequence of protocol components, to process an incoming or outgoing
packet.

All NKEs provide initialization and termination routines that the Kernel Extension Manager
invokes when it loads or unloads the NKE. The initialization routine handles any operations that
are needed to complete the incorporation of the NKEs into the kernel, such as updating protosw
and domain structures. Similarly, the termination routine must remove references to the NKE
from these structures to unload itself successfully. NKEs must provide a mechanism, such as a
reference count, to ensure that the NKE can terminate without leaving dangling pointers.

C H A P T E R 1 4

Network Architecture

99
© Apple Computer, Inc. 2004

Review of 4.4BSD Network Architecture

Mac OS X is based on the 4.4BSD operating system. The following structures control the 4.4BSD
network architecture:

■ socket structure—used to keep track of network information on a per-file descriptor basis.
The socket structure is referenced by file descriptors from user space.

■ domain structure—describes protocol families.

■ protosw structure—describes protocol handlers. (A protocol handler is the implementation
of a particular protocol in a protocol family.)

■ ifnet structure—describes a network interface.

None of these structures is used throughout the 4.4BSD networking infrastructure. Instead, each
structure is used at a specific level, as shown in Figure 13-1 (page 100).

Figure 14-1 4.4 BSD network architecture

socket structure

domain structure
protosw structure

ifnet structure

Transport layer

Kernel space

Data link layer

Byte/packet delivery

Network layer

Device

Frame delivery

Above the network layer, packets are isolated on a per-user (per-file descriptor) basis. That is,
packets are isolated based upon their ownership. Below the network layer, packets are isolated
based on their destination or source device. The network layer provides a transition in how
packets are viewed and processed. In the protocol stack (network layer) and the data link layer,
the point of view is per-packet. Above these, in the socket structure, the point of view is the
stream.

NKE Types

Making the 4.4BSD network architecture dynamically extensible requires several NKE types, for
use at specific places in the kernel. These include:

■ Socket NKEs, which reside between the socket layer and the transport protocol handlers and
are invoked through a protosw structure. Socket NKEs use a new set of dispatch vectors that
intercept specific socket and socket buffer utility functions. These are primarily useful as a
basis for constructing more complex NKEs such as those used by the Classic environment’s
networking (SharedIP).

100 Review of 4.4BSD Network Architecture
© Apple Computer, Inc. 2004

C H A P T E R 1 4

Network Architecture

■ Protocol family NKEs, which are collections of protocols that share a common addressing
structure. Internally, a domain structure and a chain of protosw structures describe each
protocol.

■ Protocol handler NKEs, which process packets for a particular protocol within the context
of a protocol family. A protosw structure describes a protocol handler and provides the
mechanism by which the handler is invoked to process incoming and outgoing packets and
for invoking various control functions.

■ Data link NKEs, which are inserted below the protocol layer and above the network interface
layer. This type of NKE can passively observe traffic as it flows in and out of the system (for
example, a sniffer) or can modify the traffic (for example, by encryption or address translation).

Socket NKEs operate in one of two modes: programmatic or global. Data link NKEs operate only
in global mode.

A programmatic NKE is a socket NKE that is enabled under program control, using socket
options, for a specific socket. That is, a program is responsible for enabling these on a specific
socket. Programmatic NKEs must be specified by a name (a 32-bit integer handle); these should
be registered with Apple. NKE handles use the same namespace as type and creator handles.

In contrast, global socket NKEs as well as data link NKEs are automatically enabled when they
are loaded and initialized. The developer (or application) need not know the names of the global
NKEs that are enabled.

Figure 13-2 (page 101) shows the basic architecture of NKEs.

Figure 14-2 NKE architecture

Socket infastructure (fixed)

Data link NKEs

Socket layer

Kernel space

Data link layer

User space

Protocol layer

DLIL (fixed)

Data link NKEs

IP

Socket NKE

I/O Kit

AppleTalk IPX ...

Modifications to 4.4BSD Networking Architecture

To support NKEs in Mac OS X, the 4.4BSD domain and protosw structures were modified as
follows:

Modifications to 4.4BSD Networking Architecture 101
© Apple Computer, Inc. 2004

C H A P T E R 1 4

Network Architecture

■ The domain structure field protosw is now a linked list, thereby removing the array’s upper
bound. The new max_protohdr field defines the maximum protocol header size for the
domain. The new dom_refs field is a reference count that is incremented when a new socket
for this address family is created and is decremented when a socket for this address family
is closed.

■ Because the protosw structure is no longer an array, the pr_next field has been added to
link the structures together. This change has implications for protox usage for AF_INET and
AF_ISO input packet processing. The pr_flags field is an unsigned integer instead of a short.
NKE hooks have been added to link NKE descriptors together.

102 Modifications to 4.4BSD Networking Architecture
© Apple Computer, Inc. 2004

C H A P T E R 1 4

Network Architecture

Two applications can communicate in a number of ways—for example, by using pipes or sockets.
The applications themselves are unaware of the underlying mechanisms that provide this
communication. However this communication occurs by sending data from one program into
the kernel, which then sends the data to the second program.

As a kernel programmer, it is your job to create the underlying mechanisms responsible for
communication between your kernel code and applications. This communication is known as
crossing the user-kernel boundary. This chapter explains various ways of crossing that boundary.

In a protected memory environment, each process is given its own address space. This means
that no program can modify another program’s data unless that data also resides in its own
memory space (shared memory). The same applies to the kernel. It resides in its own address
space. When a program communicates with the kernel, data cannot simply be passed from one
address space to the other as you might between threads (or between programs in environments
like Mac OS 9 and most real-time operating systems, which do not have protected memory).

We refer to the kernel’s address space as kernel space, and collectively refer to applications’
address spaces as user space. For this reason, applications are also commonly referred to as
user-space programs, or user programs for short.

When the kernel needs a small amount of data from an application, the kernel cannot just
dereference a pointer passed in from that application, since that pointer is relative to the
application’s address space. Instead, the kernel generally copies that information into storage
within its own address space. When a large region of data needs to be moved, it may map entire
pages into kernel space for efficiency. The same behavior can be seen in reverse when moving
data from the kernel to an application.

Because it is difficult to move data back and forth between the kernel and an application, this
separation is called a boundary. It is inherently time consuming to copy data, even if that data
is just the user-space address of a shared region. Thus, there is a performance penalty whenever
a data exchange occurs. If this penalty is a serious problem, it may affect which method you
choose for crossing the user-kernel boundary. Also, by trying to minimize the number of boundary
crossings, you may find ways to improve the overall design of your code. This is particularly
significant if your code is involved in communication between two applications, since the
user-kernel boundary must be crossed twice in that case.

There are a number of ways to cross the user-kernel boundary. Some of them are covered in this
chapter in the following sections:

■ “Mach Messaging and Mach Interprocess Communication (IPC)” (page 106)

C H A P T E R 1 5

Boundary Crossings

103
© Apple Computer, Inc. 2004

■ “BSD syscall API” (page 109)

■ “BSD ioctl API” (page 109)

■ “BSD sysctl API” (page 110)

■ “Memory Mapping and Block Copying” (page 116)

In addition, the I/O Kit uses the user-client/device-interface API for most communication.
Because that API is specific to the I/O Kit, it is not covered in this chapter. The user client API
is covered in I/O Kit Fundamentals, Accessing Hardware From Applications, and Writing an I/O Kit
Device Driver.

The ioctl API is also specific to the construction of device drivers, and is largely beyond the
scope of this document. However, since ioctl is a BSD API, it is covered at a glance for your
convenience.

This chapter covers one subset of Mach IPC—the Mach remote procedure call (RPC) API. It also
covers the syscall, sysctl, memory mapping, and block copying APIs.

Security Considerations

Crossing the user-kernel boundary represents a security risk if the kernel code operates on the
data in any substantial way (beyond writing it to disk or passing it to another application). You
must carefully perform bounds checking on any data passed in, and you must also make sure
your code does not dereference memory that no longer belongs to the client application. Also,
under no circumstances should you run unverified program code passed in from user space within
the kernel. See “Security Considerations” (page 23) for further information.

Choosing a Boundary Crossing Method

The first step in setting up user-kernel data exchange is choosing a means to do that exchange.
First, you must consider the purpose for the communication. Some crucial factors are latency,
bandwidth, and the kernel subsystem involved. Before choosing a method of communication,
however, you should first understand at a high-level each of these forms of communication.

Mach messaging and Mach interprocess communication (IPC) are relatively low-level ways of
communicating between two Mach tasks (processes), as well as between a Mach task and the
kernel. These form the basis for most communication outside of BSD and the I/O Kit. The Mach
remote procedure call (RPC) API is a high level procedural abstraction built on top of Mach IPC.
Mach RPC is the most common use of IPC.

The BSD syscall API is an API for calling kernel functions from user space. It is used extensively
when writing file systems and networking protocols, in ways that are very subsystem-dependent.
Developers are strongly discouraged from using the syscall API outside of file-system and
network extensions, as no plug-in API exists for registering a new system call with the syscall
mechanism.

104 Security Considerations
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

The BSD sysctl API (in its revised form) supersedes the syscall API and also provides a
relatively painless way to change individual kernel variables from user space. It has a
straightforward plug-in architecture, making it a good choice where possible.

Memory mapping and block copying are used in conjunction with one of the other APIs
mentioned, and provide ways of moving large amounts of data (more than a few bytes) or variably
sized data to and from kernel space.

Kernel Subsystems

The choice of boundary crossing methods depends largely on the part of the kernel into which
you are adding code. In particular, the boundary crossing method preferred for the I/O Kit is
different from that preferred for BSD, which is different from that preferred for Mach.

If you are writing a device driver or other related code, you are probably dealing with the I/O
Kit. In that case, you should instead read appropriate sections in I/O Kit Fundamentals, Accessing
Hardware From Applications, and Writing an I/O Kit Device Driver.

If you are writing code that resides in the BSD subsystem (for example, a file system), you should
generally use BSD APIs such as syscall or sysctl unless you require high bandwidth or
exceptionally low latency.

If you are writing code that resides anywhere else, you will probably have to use Mach messaging.

Bandwidth and Latency

The guidelines in the previous section apply to most communication between applications and
kernel code. The methods mentioned, however, are somewhat lacking where high bandwidth
or low latency are concerns.

If you require high bandwidth, but latency is not an issue, you should probably consider doing
memory-mapped communication. For large messages this is handled somewhat transparently
by Mach RPC, making it a reasonable choice. For BSD, however, you must explicitly pass pointers
and use copyin and copyout to move large quantities of data. This is discussed in more detail
in “Memory Mapping and Block Copying” (page 116).

If you require low latency but bandwidth is not an issue, sysctl and syscall are not good
choices. Mach RPC, however, may be an acceptable solution. Another possibility is to actually
wire a page of memory (see “Memory Mapping and Block Copying” (page 116) for details), start
an asynchronous Mach RPC simpleroutine (to process the data), and use either locks or high/low
water marks (buffer fullness) to determine when to read and write data. This can work for
high-bandwidth communication as well.

If you require both high bandwidth and low latency, you should also look at the user client/device
interface model used in the I/O Kit, since that model has similar requirements.

Choosing a Boundary Crossing Method 105
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

Mach Messaging and Mach Interprocess Communication
(IPC)

Mach IPC and Mach messaging are the basis for much of the communication in Mac OS X. In
many cases, however, these facilities are used indirectly by services implemented on top of one
of them. Mach messaging and IPC are fundamentally similar except that Mach messaging is
stateless, which prevents certain types of error recovery, as explained later. Except where explicitly
stated, this section treats the two as equivalent.

The fundamental unit of Mach IPC is the port. The concept of Mach ports can be difficult to
explain in isolation, so instead this section assumes a passing knowledge of a similar concept,
that of ports in TCP/IP.

In TCP/IP, a server listens for incoming connections over a network on a particular port. Multiple
clients can connect to the port and send and receive data in word-sized or multiple-word–sized
blocks. However, only one server process can be bound to the port at a time.

In Mach IPC, the concept is the same, but the players are different. Instead of multiple hosts
connecting to a TCP/IP port, you have multiple Mach tasks on the same computer connecting
to a Mach port. Instead of firewall rules on a port, you have port rights that specify what tasks
can send data to a particular Mach port.

Also, TCP/IP ports are bidirectional, while Mach ports are unidirectional, much like UNIX pipes.
This means that when a Mach task connects to a port, it generally allocates a reply port and sends
a message containing send rights to that reply port so that the receiving task can send messages
back to the sending task.

As with TCP/IP, multiple client tasks can open connections to a Mach port, but only one task
can be listening on that port at a time. Unlike TCP/IP, however, the IPC mechanism itself provides
an easy means for one task to hand off the right to listen to an arbitrary task. The term receive
rights refers to a task’s ability to listen on a given port. Receive rights can be sent from task to
task in a Mach message. In the case of Mach IPC (but not Mach messaging), receive rights can
even be configured to automatically return to the original task if the new task crashes or becomes
unreachable (for example, if the new task is running on another computer and a router crashes).

In addition to specifying receive rights, Mach ports can specify which tasks have the right to
send data. A task with send rights may be able to send once, or may be able to arbitrarily send
data to a given port, depending on the nature of the rights.

Using Well-Defined Ports

Before you can use Mach IPC for task communication, the sending task must be able to obtain
send rights on the receiving task’s task port. Historically, there are several ways of doing this,
not all of which are supported by Mac OS X. For example, in Mac OS X, unlike most other Mach
derivatives, there is no service server or name server. Instead, the bootstrap task and mach_init
subsume this functionality.

When a task is created, it is given send rights to a bootstrap port for sending messages to the
bootstrap task. Normally a task would use this port to send a message that gives the bootstrap
task send rights on another port so that the bootstrap task can then return data to the calling task.

106 Mach Messaging and Mach Interprocess Communication (IPC)
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

Various routines exist in bootstrap.h that abstract this process. Indeed, most users of Mach
IPC or Mach messaging actually use Mach remote procedure calls (RPC), which are implemented
on top of Mach IPC.

Since direct use of IPC is rarely desirable (because it is not easy to do correctly), and because the
underlying IPC implementation has historically changed on a regular basis, the details are not
covered here. You can find more information on using Mach IPC directly in the Mach 3 Server
Writer’s Guide from Silicomp (formerly the Open Group, formerly the Open Software Foundation
Research Institute), which can be obtained from the developer section of Apple’s website. While
much of the information contained in that book is not fully up-to-date with respect to Mac OS
X, it should still be a relatively good resource on using Mach IPC.

Remote Procedure Calls (RPC)

Mach RPC is the most common use for Mach IPC. It is frequently used for user-kernel
communication, but can also be used for task to task or even computer-to-computer
communication. Programmers frequently use Mach RPC for setting certain kernel parameters
such as a given thread’s scheduling policy.

RPC is convenient because it is relatively transparent to the programmer. Instead of writing long,
complex functions that handle ports directly, you have only to write the function to be called
and a small RPC definition to describe how to export the function as an RPC interface. After
that, any application with appropriate permissions can call those functions as if they were local
functions, and the compiler will convert them to RPC calls.

In the directory osfmk/mach (relative to your checkout of the xnu module from CVS), there are
a number of files ending in .defs; these files contain the RPC definitions. When the kernel (or a
kernel module) is compiled, the Mach Interface Generator (MIG) uses these definitions to create
IPC code to support the functions exported via RPC. Normally, if you want to add a new remote
procedure call, you should do so by adding a definition to one of these existing files. (See
“Building and Debugging Kernels” (page 139) for more information on obtaining kernel sources.)

What follows is an example of the definition for a routine, one of the more common uses of RPC.

routine thread_policy_get(
 thread : thread_act_t;
 flavor : thread_policy_flavor_t;
 out policy_info : thread_policy_t, CountInOut;
 inout get_default : boolean_t);

Notice the C-like syntax of the definition. Each parameter in the routine roughly maps onto a
parameter in the C function. The C prototype for this function follows.

kern_return_t thread_policy_get(
 thread_act_t act,
 thread_policy_flavor_t flavor,
 thread_policy_t policy_info,
 mach_msg_type_number_t *count,
 boolean_t get_default);

The first two parameters are integers, and are passed as call-by-value. The third is a struct
containing integers. It is an outgoing parameter, which means that the values stored in that
variable will not be received by the function, but will be overwritten on return.

Mach Messaging and Mach Interprocess Communication (IPC) 107
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

Note: The parameters are all word-sized or multiples of the word size. Smaller data are impossible
because of limitations inherent to the underlying Mach IPC mechanisms.

From there it becomes more interesting. The fourth parameter in the C prototype is a representation
of the size of the third. In the definition file, this is represented by an added option, CountInOut.

The MIG option CountInOut specifies that there is to be an inout parameter called count. An
inout parameter is one in which the original value can be read by the function being called, and
its value is replaced on return from that function. Unlike a separate inout parameter, however,
the value initially passed through this parameter is not directly set by the calling function. Instead,
it is tied to the policy_info parameter so that the number of integers in policy_info is
transparently passed in through this parameter.

In the function itself, the function checks the count parameter to verify that the buffer size is at
least the size of the data to be returned to prevent exceeding array bounds. The function changes
the value stored in count to be the desired size and returns an error if the buffer is not large
enough (unless the buffer pointer is null, in which case it returns success). Otherwise, it
dereferences the various fields of the policy_info parameter and in so doing, stores appropriate
values into it, then returns.

Note: Since Mach RPC is done via message passing, inout parameters are technically
call-by-value-return and not call-by-reference. For more realistic call-by-reference, you need to
pass a pointer. The distinction is not particularly significant except when aliasing occurs. (Aliasing
means having a single variable visible in the same scope under two or more different names.)

In addition to the routine, Mach RPC also has a simpleroutine. A simpleroutine is a routine
that is, by definition, asynchronous. It can have no out or inout parameters and no return value.
The caller does not wait for the function to return. One possible use for this might be to tell an
I/O device to send data as soon as it is ready. In that use, the simpleroutine might simply wait
for data, then send a message to the calling task to indicate the availability of data.

Another important feature of MIG is that of the subsystem. In MIG, a subsystem is a group of
routines and simpleroutines that are related in some way. For example, the semaphore
subsystem contains related routines that operate on semaphores. There are also subsystems for
various timers, parts of the virtual memory (VM) system, and dozens of others in various places
throughout the kernel.

Most of the time, if you need to use RPC, you will be doing it within an existing subsystem. The
details of creating a new subsystem are beyond the scope of this document. Developers needing
to add a new Mach subsystem should consult the Mach 3 Server Writer’s Guide from The Open
Group (TOG), which can be obtained from various locations on the internet.

Another feature of MIG is the type. A type in MIG is exactly the same thing as it is in programming
languages. However, the construction of aggregate types differs somewhat.

type clock_flavor_t = int;
type clock_attr_t = array[*:1] of int;
type mach_timespec_t = struct[2] of int;

Data of type array is passed as the user-space address of what is assumed to be a contiguous
array of the base type, while a struct is passed by copying all of the individual values of an array
of the base type. Otherwise, these are treated similarly. A “struct” is not like a C struct, as elements
of a MIG struct must all be of the same base type.

108 Mach Messaging and Mach Interprocess Communication (IPC)
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

The declaration syntax is similar to Pascal, where *:1 and 2 represent sizes for the array or
structure, respectively. The *:1 construct indicates a variable-sized array, where the size can be
up to 1, inclusive, but no larger.

Calling RPC From User Applications

RPC, as mentioned previously, is virtually transparent to the client. The procedure call looks like
any other C function call, and no additional library linkage is needed. You need only to bring
the appropriate headers in with a #include directive. The compiler automatically recognizes the
call as a remote procedure call and handles the underlying MIG aspects for you.

BSD syscall API

The syscall API is the traditional UNIX way of calling kernel functions from user space. Its
implementation varies from one part of the kernel to the next, however, and it is completely
unsupported for loadable modules. For this reason, it is not a recommended way of getting data
into or out of the kernel in Mac OS X unless you are writing a file system.

File systems have to support a number of standard system calls (for example, mount), but do so
by means of generic file system routines that call the appropriate file-system functions. Thus, if
you are writing a file system, you need to implement those functions, but you do not need to
write the code that handles the system calls directly. For more information on implementing
syscall support in file systems, see the chapter “File Systems Overview” (page 97).

BSD ioctl API

The ioctl interface provides a way for an application to send certain commands or information
to a device driver. These can be used for parameter tuning (though this is more commonly done
with sysctl), but can also be used for sending instructions for the driver to perform a particular
task (for example, rewinding a tape drive).

The use of the ioctl interface is essentially the same under Mac OS X as it is in other BSD-derived
operating systems, except in the way that device drivers register themselves with the system. In
Mac OS X, unlike most BSDs, the contents of the /dev directory are created dynamically by the
kernel. This file system mounted on /dev is referred to as devfs. You can, of course, still manually
create device nodes with mknod, because devfs is union mounted over the root file system.

The I/O Kit automatically registers some types of devices with devfs, creating a node in /dev.
If your device family does not do that, you can manually register yourself in devfs using
cdevsw_add or bdevsw_add (for character and block devices, respectively).

When registering a device manually with devfs, you create a struct cdevsw or struct bdevsw
yourself. In that device structure, one of the function pointers is to an ioctl function. You must
define the particular values passed to the ioctl function in a header file accessible to the person
compiling the application.

BSD syscall API 109
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

A user application can also look up the device using the I/O Kit function call
IOServiceGetMatchingServices and then use various I/O Kit calls to tune parameter instead.
For more information on looking up a device driver from an application, see the document Inside
Mac OS X: Accessing Hardware From Applications.

You can also find additional information about writing an ioctl in The Design and Implementation
of the 4.4 BSD Operating System. See the bibliography at the end of this document for more
information.

BSD sysctl API

The sysctl API is specifically designed for kernel parameter tuning. This functionality supersedes
the syscall API, and also provides an easy way to tune simple kernel parameters without
actually needing to write a handler routine in the kernel. The sysctl namespace is divided into
several broad categories corresponding to the purpose of the parameters in it. Some of these
areas include

■ kern—general kernel parameters

■ vm—virtual memory options

■ fs—filesystem options

■ machdep—machine dependent settings

■ net—network stack settings

■ debug—debugging settings

■ hw—hardware parameters (generally read-only)

■ user—parameters affecting user programs

■ ddb—kernel debugger

Most of the time, programs use the sysctl call to retrieve the current value of a kernel parameter.
For example, in Mac OS X, the hw sysctl group includes the option ncpu, which returns the
number of processors in the current computer (or the maximum number of processors supported
by the kernel on that particular computer, whichever is less).

The sysctl API can also be used to modify parameters (though most parameters can only be
changed by the root). For example, in the net hierarchy, net.inet.ip.forwarding can be set to
1 or 0, to indicate whether the computer should forward packets between multiple interfaces
(basic routing).

General Information on Adding a sysctl

When adding a sysctl, you must do all of the following first:

■ add the following includes:

#include <mach/mach_types.h>

110 BSD sysctl API
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

#include <sys/systm.h>

#include <sys/types.h>

#include <sys/sysctl.h>

■ add -no-cpp-precomp to your compiler options in Project Builder (or to CFLAGS in your
makefile if building by hand).

Adding a sysctl Procedure Call

Adding a sysctl was once a daunting task requiring changes to dozens of files. With the current
implementation, a sysctl can be added simply by writing the appropriate handler functions
and then registering the handler with the system at runtime. The old-style sysctl, which used
fixed numbers for each sysctl, is deprecated.

Note: Because this is largely a construct of the BSD subsystem, all path names in this section can
be assumed to be from /path/to/xnu-version/bsd/.

Also, you may safely assume that all program code snippets should go into the main source file
for your subsystem or module unless otherwise noted, and that in the case of modules, function
calls should be made from your init or unload routines unless otherwise noted.

The preferred way of adding a sysctl looks something like the following:

SYSCTL_PROC(_hw, OID_AUTO, l2cr, CTLTYPE_INT|CTLFLAG_RW,
 &L2CR, 0, &sysctl_l2cr, “I”, “L2 Cache Register”);

The _PROC part indicates that you are registering a procedure to provide the value (as opposed
to simply reading from a static address in kernel memory). _hw is the top level category (in this
case, hardware), and OID_AUTO indicates that you should be assigned the next available sysctl
ID in that category (as opposed to the old-style, fixed ID sysctls). l2cr is the name of your
sysctl, which will be used by applications to look up the number of your sysctl.

Note: Not all top level categories will necessarily accept the addition of a user-specified new-style
sysctl. If you run into problems, you should try a different top-level category.

CTLTYPE_INT indicates that the value being changed is an integer. Other legal values are
CTLTYPE_NODE, CTLTYPE_STRING, CTLTYPE_QUAD, and CTLTYPE_OPAQUE (also known as
CTLTYPE_STRUCT). CTLTYPE_NODE is the only one that isn’t somewhat obvious. It refers to a node
in the sysctl hierarchy that isn’t directly usable, but instead is a parent to other entries. Two
examples of nodes are hw and kern.

CTLFLAG_RW indicates that the value can be read and written. Other legal values are CTLFLAG_RD,
CTLFLAG_WR, CTLFLAG_ANYBODY, and CTLFLAG_SECURE. CTLFLAG_ANYBODY means that the value
should be modifiable by anybody. (The default is for variables to be changeable only by root.)
CTLFLAG_SECURE means that the variable can be changed only when running at securelevel
<= 0 (effectively, in single-user mode).

L2CR is the location where the sysctl will store its data. Since the address is set at compile time,
however, this must be a global variable or a static local variable. In this case, L2CR is a global of
type unsigned int.

BSD sysctl API 111
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

The number 0 is a second argument that is passed to your function. This can be used, for example,
to identify which sysctl was used to call your handler function if the same handler function is
used for more than one sysctl. In the case of strings, this is used to store the maximum allowable
length for incoming values.

sysctl_l2cr is the handler function for this sysctl. The prototype for these functions is of the
form

static int sysctl_l2cr SYSCTL_HANDLER_ARGS;

If the sysctl is writable, the function may either use sysctl_handle_int to obtain the value
passed in from user space and store it in the default location or use the SYSCTL_IN macro to store
it into an alternate buffer. This function must also use the SYSCTL_OUT macro to return a value
to user space.

“I” indicates that the argument should refer to a variable of type integer (or a constant, pointer,
or other piece of data of equivalent width), as opposed to “L” for a long, “A” for a string, “N”
for a node (a sysctl that is the parent of a sysctl category or subcategory), or “S” for a struct.
“L2 Cache Register” is a human-readable description of your sysctl.

In order for a sysctl to be accessible from an application, it must be registered. To do this, you
do the following:

sysctl_register_oid(&sysctl__hw_l2cr);

You should generally do this in an init routine for a loadable module. If your code is not part of
a loadable module, you should add your sysctl to the list of built-in OIDs in the file
kern/sysctl_init.c.

If you study the SYSCTL_PROC constructor macro, you will notice that sysctl__hw_l2cr is the
name of a variable created by that macro. This means that the SYSCTL_PROC line must be before
sysctl_register_oid in the file, and must be in the same (or broader) scope. This name is in
the form of sysctl_ followed by the name of it’s parent node, followed by another underscore
(_) followed by the name of your sysctl.

A similar function, sysctl_unregister_oid exists to remove a sysctl from the registry. If you
are writing a loadable module, you should be certain to do this when your module is unloaded.

In addition to registering your handler function, you also have to write the function. The following
is a typical example

static int myhandler SYSCTL_HANDLER_ARGS
{

 int error, retval;

 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
 if (!error && req->newptr) {
 /* We have a new value stored in the standard location.*/
 /* Do with it as you see fit here. */
 printf("sysctl_test: stored %d\n", SCTEST);
 } else if (req->newptr) {
 /* Something was wrong with the write request */
 /* Do something here if you feel like it.... */
 } else {
 /* Read request. Always return 763, just for grins. */

112 BSD sysctl API
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

 printf("sysctl_test: read %d\n", SCTEST);
 retval=763;
 error=SYSCTL_OUT(req, &retval, sizeof retval);
 }
 /* In any case, return success or return the reason for failure */
 return error;
}

This demonstrates the use of SYSCTL_OUT to send an arbitrary value out to user space from the
sysctl handler. The “phantom” req argument is part of the function prototype when the
SYSCTL_HANDLER_ARGS macro is expanded, as is the oidp variable used elsewhere. The remaining
arguments are a pointer (type indifferent) and the length of data to copy (in bytes).

This code sample also introduces a new function, sysctl_handle_int, which takes the arguments
passed to the sysctl, and writes the integer into the usual storage area (L2CR in the earlier
example, SCTEST in this one). If you want to see the new value without storing it (to do a sanity
check, for example), you should instead use the SYSCTL_IN macro, whose arguments are the
same as SYSCTL_OUT.

Registering a New Top Level sysctl

In addition to adding new sysctl options, you can also add a new category or subcategory of
sysctl. The macro SYSCTL_DECL can be used to declare a node that can have children. This
requires modifying one additional file to create the child list. For example, if your main C file
does this:

SYSCTL_DECL(_net_newcat);
SYSCTL_NODE(_net, OID_AUTO, newcat, CTLFLAG_RW, handler, “new category”);

then this is basically the same thing as declaring extern sysctl_oid_list
sysctl__net_newcat_children in your program. In order for the kernel to compile, or the
module to link, you must then add this line:

struct sysctl_oid_list sysctl__net_newcat_children;

If you are not writing a module, this should go in the file kern/kern_newsysctl.c. Otherwise,
it should go in one of the files of your module. Once you have created this variable, you can use
_net_newcat as the parent when creating a new sysctl. As with any sysctl, the node
(sysctl__net_newcat) must be registered with sysctl_register_oid and can be unregistered
with sysctl_unregister_oid.

Note: When creating a top level sysctl, parent is simply left blank, for example,

SYSCTL_NODE(, OID_AUTO, _topname, flags, handler_fn, “desc”);

Adding a Simple sysctl

If your sysctl only needs to read a value out of a variable, then you do not need to write a
function to provide access to that variable using sysctl. Instead, you can use one of the following
macros:

BSD sysctl API 113
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

■ SYSCTL_INT(parent, nbr, name, access, ptr, val, descr)

■ SYSCTL_LONG(parent, nbr, name, access, ptr, descr)

■ SYSCTL_STRING(parent, nbr, name, access, arg, len, descr)

■ SYSCTL_OPAQUE(parent, nbr, name, access, ptr, len, descr)

■ SYSCTL_STRUCT(parent, nbr, name, access, arg, type, descr)

The first four parameters for each macro are the same as for SYSCTL_PROC (described in the
previous section) as is the last parameter. The len parameter (where applicable) gives a length
of the string or opaque object in bytes.

The arg parameters are pointers just like the ptr parameters. However, the parameters named
ptr are explicitly described as pointers because you must explicitly use the “address of” (&)
operator unless you are already working with a pointer. Parameters called arg either operate on
base types that are implicitly pointers or add the & operator in the appropriate place during
macro expansion. In both cases, the argument should refer to the integer, character, or other
object that the sysctl will use to store the current value.

The type parameter is the name of the type minus the “struct”. For example, if you have an
object of type struct scsipi, then you would use scsipi as that argument. The SYSCTL_STRUCT
macro is functionally equivalent to SYSCTL_OPAQUE, except that it hides the use of sizeof.

Finally, the val parameter for SYSCTL_INT is a default value. If the value passed in ptr is NULL,
this value is returned when the sysctl is used. You can use this, for example, when adding a
sysctl option that is specific to certain hardware or certain compile options. One possible example
of this might be a special value for feature.version that means “not present.” If that feature
became available (for example, if a module were loaded by some user action), it could then update
that pointer. If that module were subsequently unloaded, it could set the pointer back to NULL.

Calling a sysctl From User Space

Unlike RPC, sysctl requires explicit intervention on the part of the programmer. To complicate
things further, there are two different ways of calling sysctl functions, and neither one works
for every sysctl. The old-style sysctl call can only invoke a sysctl if it is listed in a static OID
table in the kernel. The new-style sysctlbyname call will work for any user-added sysctl, but
not for those listed in the static table. Occasionally, you will even find a sysctl that is registered
in both ways, and thus available to both calls. In order to understand the distinction, you must
first consider the functions used.

The sysctlbyname System Call

If you are calling a sysctl that was added using the new sysctl method (including any sysctl
that you may have added), then your sysctl does not have a fixed number that identifies it, since
it was added dynamically to the system. Since there is no approved way to get this number from
user space, and since the underlying implementation is not guaranteed to remain the same in
future releases, you cannot call a dynamically added sysctl using the sysctl function. Instead,
you must use sysctlbyname.

sysctlbyname(char *name, void *oldp, size_t *oldlenp,
 void *newp, u_int newlen)

114 BSD sysctl API
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

The parameter name is the name of the sysctl, encoded as a standard C string.

The parameter oldp is a pointer to a buffer where the old value will be stored. The oldlenp
parameter is a pointer to an integer-sized buffer that holds the current size of the oldp buffer. If
the oldp buffer is not large enough to hold the returned data, the call will fail with errno set to
ENOMEM, and the value pointed to by oldlenp will be changed to indicate the buffer size needed
for a future call to succeed.

Here is an example for reading an integer, in this case a buffer size.

int get_debug_bufsize()
{
char *name=”debug.bpf_bufsize”;
int bufsize, retval;
size_t len;
len=4;
retval=sysctlbyname(name, &bufsize, &len, NULL, 0);
/* Check retval here */
return bufsize;
}

The sysctl System Call

The sysctlbyname system call is the recommended way to call system calls. However, not every
built-in sysctl is registered in the kernel in such a way that it can be called with sysctlbyname.
For this reason, you should also be aware of the sysctl system call.

Note: If you are adding a sysctl, it will be accessible using sysctlbyname. You should use this
system call only if the sysctl you need cannot be retrieved using sysctlbyname. In particular,
you should not assume that future versions of sysctl will be backed by traditional numeric
OIDs except for the existing legacy OIDs, which will be retained for compatibility reasons.

The sysctl system call is part of the original historical BSD implementation of sysctl. You
should not depend on its use for any sysctl that you might add to the system. The usage of
sysctl looks like the following

sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
 void *newp, u_int newlen)

Sysctl, in this form, is based on the MIB, or Management Information Base. A MIB is a list of
objects and identifiers for those objects. Each object identifier, or OID, is a list of integers that
represent a tokenization of a path through the sysctl tree. For example, if the hw class of sysctl
is number 3, the first integer in the OID would be the number 3. If the l2cr option is built into
the system and assigned the number 75, then the second integer in the OID would be 75. To put
it another way, each number in the OID is an index into a node’s list of children.

Here is a short example of a call to get the bus speed of the current computer:

int get_bus_speed()
{
int mib[2], busspeed, retval;
unsigned int miblen;
size_t len;
mib[0]=CTL_HW;
mib[1]=HW_BUS_FREQ;

BSD sysctl API 115
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

miblen=2;
len=4;
retval=sysctl(mib, miblen, &busspeed, &len, NULL, 0);
/* Check retval here */
return busspeed;
}

For more information on the sysctl system call, see the manual page sysctl(2)

Memory Mapping and Block Copying

Memory mapping is one of the more common means of communicating between two applications
or between an application and the kernel. While occasionally used by itself, it is usually used in
conjunction with one of the other means of boundary crossing.

One way of using memory mapping is known as shared memory. In this form, one or more pages
of memory are mapped into the address space of two processes. Either process can then access
or modify the data stored in those shared pages. This is useful when moving large quantities of
data between processes, as it allows direct communication without multiple user-kernel boundary
crossings. Thus, when moving large amounts of data between processes, this is preferable to
traditional message passing.

The same holds true with memory mapping between an application and the kernel. The BSD
sysctl and syscall interfaces (and to an extent, Mach IPC) were designed to transfer small
units of data of known size, such as an array of four integers. In this regard, they are much like
a traditional C function call. If you need to pass a large amount of data to a function in C, you
should pass a pointer. This is also true when passing data between an application and the kernel,
with the addition of memory mapping or copying to allow that pointer to be dereferenced in the
kernel.

There are a number of limitations to the way that memory mapping can be used to exchange
data between an application and the kernel. For one, memory allocated in the kernel cannot be
written to by applications, including those running as root (unless the kernel is running in an
insecure mode, such as single user mode). For this reason, if a buffer must be modified by an
application, the buffer must be allocated by that program, not by the kernel.

When you use memory mapping for passing data to the kernel, the application allocates a block
of memory and fills it with data. It then performs a system call that passes the address to the
appropriate function in kernel space. It should be noted, however, that the address being passed
is a virtual address, not a physical address, and more importantly, it is relative to the address
space of the program, which is not the same as the address space of the kernel.

Since the address is a user-space virtual address, the kernel must call special functions to copy
the block of memory into a kernel buffer or to map the block of memory into the kernel’s address
space.

In the Mac OS X kernel, data is most easily copied into kernel space with the BSD copyin function,
and back out to user space with the copyout function. For large blocks of data, entire pages will
be memory mapped using copy-on-write. For this reason, it is generally not useful to do memory
mapping by hand.

116 Memory Mapping and Block Copying
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

Getting data from the kernel to an application can be done in a number of ways. The most common
method is the reverse of the above, in which the application passes in a buffer pointer, the kernel
scribbles on a chunk of data, uses copyout to copy the buffer data into the address space of the
application, and returns KERN_SUCCESS. Note that this is really using the buffer allocated in the
application, even though the physical memory may have actually been allocated by the kernel.
Assuming the kernel frees its reference to the buffer, no memory is wasted.

A special case of memory mapping occurs when doing I/O to a device from user space. Since
I/O operations can, in some cases, be performed by DMA hardware that operates based on
physical addressing, it is vital that the memory associated with I/O buffers not be paged out
while the hardware is copying data to or from the buffer.

For this reason, when a driver or other kernel entity needs a buffer for I/O, it must take steps to
mark it as not pageable. This step is referred to as wiring the pages in memory.

Wiring pages into memory can also be helpful where high bandwidth, low latency communication
is desired, as it prevents shared buffers from being paged out to disk. In general, however, this
sort of workaround should be unnecessary, and is considered to be bad programming practice.

Pages can be wired in two ways. When a memory region is allocated, it may be allocated in a
nonpageable fashion. The details of allocating memory for I/O differ, depending on what part
of the kernel you are modifying. This is described in more detail in the appropriate sections of
this document, or in the case of the I/O Kit, in the API reference documentation (available from
the developer section of Apple’s web site). Alternately, individual pages may be wired after
allocation.

The recommended way to do this is through a call to vm_wire in BSD parts of the kernel, with
mlock from applications (but only by processes running as root), or with
IOMemoryDescriptor::prepare in the I/O Kit. Because this can fail for a number of reasons, it
is particularly crucial to check return values when wiring memory. The vm_wire call and other
virtual memory topics are discussed in more detail in “Memory and Virtual Memory” (page
57). The IOMemoryDescriptor class is described in more detail in the I/O Kit API reference
available from the developer section of Apple’s web site.

Summary

Crossing the user-kernel boundary is not a trivial task. Many mechanisms exist for this
communication, and each one has specific advantages and disadvantages, depending on the
environment and bandwidth requirements. Security is a constant concern to prevent inadvertently
allowing one program to access data or files from another program or user. It is every kernel
programmer’s personal responsibility to take security into account any time that data crosses
the user-kernel boundary.

Summary 117
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

118 Summary
© Apple Computer, Inc. 2004

C H A P T E R 1 5

Boundary Crossings

This chapter is not intended as an introduction to synchronization. It is assumed that you have
some understanding of the basic concepts of locks and semaphores already. If you need additional
background reading, synchronization is covered in most introductory operating systems texts.
However, since synchronization in the kernel is somewhat different from locking in an application
this chapter does provide a brief overview to help ease the transition, or for experienced kernel
developers, to refresh your memory.

As a Mac OS X kernel programmer, you have many choices of synchronization mechanisms at
your disposal. The kernel itself provides two such mechanisms: locks and semaphores.

A lock is used for basic protection of shared resources. Multiple threads can attempt to acquire
a lock, but only one thread can actually hold it at any given time (at least for traditional
locks—more on this later). While that thread holds the lock, the other threads must wait. There
are several different types of locks, differing mainly in what threads do while waiting to acquire
them.

A semaphore is much like a lock, except that a finite number of threads can hold it simultaneously.
Semaphores can be thought of as being much like piles of tokens. Multiple threads can take these
tokens, but when there are none left, a thread must wait until another thread returns one. It is
important to note that semaphores can be implemented in many different ways, so Mach
semaphores may not behave in the same way as semaphores on other platforms.

In addition to locks and semaphores, certain low-level synchronization primitives like test and
set are also available, along with a number of other atomic operations. These additional operations
are described in libkern/gen/OSAtomicOperations.c in the kernel sources. Such atomic
operations may be helpful if you do not need something as robust as a full-fledged lock or
semaphore. Since they are not general synchronization mechanisms, however, they are beyond
the scope of this chapter.

Semaphores

Semaphores and locks are similar, except that with semaphores, more than one thread can be
doing a given operation at once. Semaphores are commonly used when protecting multiple
indistinct resources. For example, you might use a semaphore to prevent a queue from overflowing
its bounds.

C H A P T E R 1 6

Synchronization Primitives

Semaphores 119
© Apple Computer, Inc. 2004

Mac OS X uses traditional counting semaphores rather than binary semaphores (which are
essentially locks). Mach semaphores obey Mesa semantics—that is, when a thread is awakened
by a semaphore becoming available, it is not executed immediately. This presents the potential
for starvation in multiprocessor situations when the system is under low overall load because
other threads could keep downing the semaphore before the just-woken thread gets a chance to
run. This is something that you should consider carefully when writing applications with
semaphores.

Semaphores can be used any place where mutexes can occur. This precludes their use in interrupt
handlers or within the context of the scheduler, and makes it strongly discouraged in the VM
system. The public API for semaphores is divided between the MIG–generated task.h file
(located in your build output directory, included with #include <mach/task.h>) and
osfmk/mach/semaphore.h (included with #include <mach/semaphore.h>).

The public semaphore API includes the following functions:

kern_return_t semaphore_create(task_t task, semaphore_t *semaphore,
 int policy, int value)
kern_return_t semaphore_signal(semaphore_t semaphore)
kern_return_t semaphore_signal_all(semaphore_t semaphore)
kern_return_t semaphore_wait(semaphore_t semaphore)
kern_return_t semaphore_destroy(task_t task, semaphore_t semaphore)
kern_return_t semaphore_signal_thread(semaphore_t semaphore,
 thread_act_t thread_act)

which are described in <mach/semaphore.h> or xnu/osfmk/mach/semaphore.h (except for create
and destroy, which are described in <mach/task.h>.

The use of these functions is relatively straightforward with the exception of the
semaphore_create, semaphore_destroy, and semaphore_signal_thread calls.

The value and semaphore parameters for semaphore_create are exactly what you would
expect—a pointer to the semaphore structure to be filled out and the initial value for the
semaphore, respectively.

The task parameter refers to the primary Mach task that will “own” the lock. This task should
be the one that is ultimately responsible for the subsequent destruction of the semaphore. The
task parameter used when calling semaphore_destroy must match the one used when it was
created.

For communication within the kernel, the task parameter should be the result of a call to
current_task. For synchronization with a user process, you need to determine the underlying
Mach task for that process. The details of such user-kernel synchronization are beyond the scope
of this document.

The policy parameter is passed as the policy for the wait queue contained within the semaphore.
The possible values are defined in osfmk/mach/sync_policy.h. Current possible values are

■ SYNC_POLICY_FIFO

■ SYNC_POLICY_FIXED_PRIORITY

■ SYNC_POLICY_PREPOST

120 Semaphores
© Apple Computer, Inc. 2004

C H A P T E R 1 6

Synchronization Primitives

The FIFO policy is, as the name suggests, first-in-first-out. The fixed priority policy causes wait
queue reordering based on fixed thread priority policies. The prepost policy causes the
semaphore_signal function to not increment the counter if no threads are waiting on the queue.
This policy is needed for creating condition variables (where a thread is expected to always wait
until signalled). See the section “Wait Queues and Wait Primitives” (page 78) for more
information.

The semaphore_signal_thread call takes a particular thread from the wait queue and places it
back into one of the scheduler’s wait-queues, thus making that thread available to be scheduled
for execution. If thread_act is NULL, the first thread in the queue is similarly made runnable.

With the exception of semaphore_create and semaphore_destroy, these functions can also be
called from user space via RPC. See “Calling RPC From User Applications” (page 109) for more
information.

Condition Variables

The BSD portion of Mac OS X provides tsleep, wakeup, and wakeup_one, which are equivalent
to condition variables with the addition of an optional time-out. Since they are more commonly
used for waiting a predetermined period of time, these calls are discussed in more detail in the
section “Using tsleep” (page 129) as part of the “Miscellaneous Kernel Services” (page 127) chapter.

Outside the BSD portion of the kernel, condition variables may be implemented using semaphores.

Locks

Mac OS X (and Mach in general) has three basic types of locks: spinlocks, mutexes, and read-write
locks. Each of these has different uses and different problems. There are also many other types
of locks that are not implemented in Mac OS X, such as spin-sleep locks, some of which may be
useful to implement for performance comparison purposes.

Spinlocks

A spinlock is the simplest type of lock. In a system with a test-and-set instruction or the equivalent,
the code looks something like this:

while (test_and_set(bit) != 0);

In other words, until the lock is available, it simply “spins” in a tight loop that keeps checking
the lock until the thread’s time quantum expires and the next thread begins to execute. Since the
entire time quantum for the first thread must complete before the next thread can execute and
(possibly) release the lock, a spinlock is very wasteful of CPU time, and should be used only in
places where a mutex cannot be used, such as in a hardware exception handler or low-level
interrupt handler.

Note that a thread may not block while holding a spinlock, because that could cause deadlock.
Further, preemption is disabled on a given processor while a spinlock is held.

Condition Variables 121
© Apple Computer, Inc. 2004

C H A P T E R 1 6

Synchronization Primitives

There are three basic types of spinlocks available in Mac OS X: simple_lock_t, usimple_lock_t,
and hw_lock_t. You are strongly encouraged to not use hw_lock_t; it is only mentioned for the
sake of completeness.

The u in usimple stands for uniprocessor, because they are the only spinlocks that provide actual
locking on uniprocessor systems. Traditional simple locks, by contrast, disable preemption but
do not spin on uniprocessor systems. Note that in most contexts, it is not useful to spin on a
uniprocessor system, and thus you usually only need simple locks. Use of usimple locks is
permissible for synchronization between thread context and interrupt context or between a
uniprocessor and an intelligent device. However, in most cases, a mutex is a better choice.

Important
Simple locks that could potentially be shared between interrupt
context and thread context must have their use coordinated with
spl (see glossary). The IPL (interrupt priority level) must always
be the same when acquiring the lock, otherwise deadlock may
result.

The simple and usimple lock functions consist of the following:

void simple_lock_init(simple_lock_t, etap_event_t)
void simple_lock(simple_lock_t)
void simple_unlock(simple_lock_t)
unsigned int simple_lock_try(simple_lock_t)

void usimple_lock_init(usimple_lock_t, etap_event_t)
void usimple_lock(usimple_lock_t)
void usimple_unlock(usimple_lock_t)
unsigned int usimple_lock_try(usimple_lock_t)
void usimple_lock_held(usimple_lock_t)
void usimple_lock_none_held(void)

Prototypes for these locks can be found in <kern/simple_lock.h> or
xnu/osfmk/kern/simple_lock.h.

The second argument to the lock initializer, of type etap_event_t, is a special feature of Mac
OS X. It is part of the Event Trace Analysis Package, which can be used for lock contention
profiling. The list of values for this parameter is found in xnu/osfmk/kern/etap.c. Unless you
are planning to use this facility, you should probably use the value ETAP_NO_TRACE. Tracing is
not enabled in the default kernel build, so you must enable the appropriate options in
osfmk/conf/MASTER and recompile the kernel. The details of lock tracing are beyond the scope
of this document.

Mutexes

A mutex, mutex lock, or sleep lock, is similar to a spinlock, except that instead of constantly
polling, it places itself on a queue of threads waiting for the lock, then yields the remainder of
its time quantum. It does not execute again until the thread holding the lock wakes it (or in some
user space variations, until an asynchronous signal arrives).

Mutexes are more efficient than spinlocks for most purposes. However, they are less efficient in
multiprocessing environments where the expected lock-holding time is relatively short. If the
average time is relatively short but occasionally long, spin/sleep locks may be a better choice.
Although Mac OS X does not support spin/sleep locks in the kernel, they can be easily

122 Locks
© Apple Computer, Inc. 2004

C H A P T E R 1 6

Synchronization Primitives

implemented on top of existing locking primitives. If your code performance improves as a result
of using such locks, however, you should probably look for ways to restructure your code, such
as using more than one lock or moving to read-write locks, depending on the nature of the code
in question. See “Spin/Sleep Locks” (page 125) for more information.

Because mutexes are based on blocking, they can only be used in places where blocking is allowed.
For this reason, mutexes cannot be used in the context of interrupt handlers. Interrupt handlers
are not allowed to block because interrupts are disabled for the duration of an interrupt handler,
and thus, if an interrupt handler blocked, it would prevent the scheduler from receiving timer
interrupts, which would prevent any other thread from executing, resulting in deadlock.

For a similar reason, it is not reasonable to block within the scheduler. Also, blocking within the
VM system can easily lead to deadlock if the lock you are waiting for is held by a task that is
paged out.

However, unlike simple locks, it is permissible to block while holding a mutex. This would occur,
for example, if you took one lock, then tried to take another, but the second lock was being held
by another thread. However, this is generally not recommended unless you carefully scrutinize
all uses of that mutex for possible circular waits, as it can result in deadlock. You can avoid this
by always taking locks in a certain order.

In general, blocking while holding a mutex specific to your code is fine as long as you wrote your
code correctly, but blocking while holding a more global mutex is probably not, since you may
not be able to guarantee that other developers’ code obeys the same ordering rules.

A Mach mutex is of type mutex_t. The functions that operate on mutexes include:

mutex_t *mutex_alloc(etap_event_t)
void mutex_free(mutex_t *)
void mutex_lock(mutex_t *)
void mutex_unlock(mutex_t *)
boolean_t mutex_try(mutex_t *)
void mutex_pause(void)

as described in <kern/lock.h> or xnu/osfmk/kern/lock.h.

The argument to mutex_alloc, of type etap_event_t, is part of the Event Trace Analysis Package,
used for lock contention profiling. For a list of possible values, see xnu/osfmk/kern/etap.c. As
with spinlocks, unless you are planning to use this facility, you should probably use the value
ETAP_NO_TRACE. Tracing is not enabled in the default kernel build, so you must enable the
appropriate options in osfmk/conf/MASTER and recompile the kernel. The details of lock tracing
are beyond the scope of this document.

The mutex_pause function puts the current thread to sleep for 1 ms. You might use this function
if, for example, you have a thread that needs to do something while waiting for a lock to become
available. In such a design, your code first calls mutex_try on the lock. If that fails, a block of
code executes, ending with a mutex_pause, followed by another mutex_try, and so on. The use
of mutex_pause prevents the code from resembling a spinlock (which could potentially cause
the thread’s priority to be lowered).

There is a second mutex API in the kernel called a sync lock. The sync lock API is exported to
user space, and is described in osfmk/kern/sync_lock.c. Sync locks should generally be avoided
in the kernel in favor of the mutex_ functions unless you are synchronizing communication
between the kernel and user space or you need lock sets. Sync locks and lock sets are beyond the
scope of this document.

Locks 123
© Apple Computer, Inc. 2004

C H A P T E R 1 6

Synchronization Primitives

Read-Write Locks

Read-write locks (also called shared-exclusive locks) are somewhat different from traditional
locks in that they are not always exclusive locks. A read-write lock is useful when shared data
can be reasonably read concurrently by multiple threads except while a thread is modifying the
data. Read-write locks can dramatically improve performance if the majority of operations on
the shared data are in the form of reads (since it allows concurrency), while having negligible
impact in the case of multiple writes.

A read-write lock allows this sharing by enforcing the following constraints:

■ Multiple readers can hold the lock at any time.

■ Only one writer can hold the lock at any given time.

■ A writer must block until all readers have released the lock before obtaining the lock for
writing.

■ Readers arriving while a writer is waiting to acquire the lock will block until after the writer
has obtained and released the lock.

The first constraint allows read sharing. The second constraint prevents write sharing. The third
prevents read-write sharing, and the fourth prevents starvation of the writer by a steady stream
of incoming readers.

Mach read-write locks also provide the ability for a reader to become a writer and vice-versa. In
locking terminology, an upgrade is when a reader becomes a writer, and a downgrade is when
a writer becomes a reader. To prevent deadlock, some additional constraints must be added for
upgrades and downgrades:

■ Upgrades are favored over writers.

■ The second and subsequent concurrent upgrades will fail, causing that thread’s read lock to
be released.

The first constraint is necessary because the reader requesting an upgrade is holding a read lock,
and the writer would not be able to obtain a write lock until the reader releases its read lock. In
this case, the reader and writer would wait for each other forever. The second constraint is
necessary to prevents the deadlock that would occur if two readers wait for the other to release
its read lock so that an upgrade can occur.

The functions that operate on read-write locks are:

void lock_init(lock_t *l, boolean_t can_sleep, etap_event_t event,
 etap_event_t i_event)
lock_t * lock_alloc(boolean_t can_sleep, etap_event_t event,
 etap_event_t i_event)
void lock_free(lock_t *)
void lock_read(lock_t *)
void lock_write(lock_t *)
boolean_t lock_read_to_write(lock_t *)
void lock_write_to_read(lock_t *)
void lock_done(lock_t *)
void lock_read_done(lock_t *)
void lock_write_done(lock_t *)

124 Locks
© Apple Computer, Inc. 2004

C H A P T E R 1 6

Synchronization Primitives

This is a more complex interface than that of the other locking mechanisms, and actually is the
interface upon which the other locks are built. Most of the functions are straightforward except
for lock_init and lock_done.

The first argument to the function lock_init is, of course, a pointer to the lock structure to be
locked. The second argument, can_sleep, is a boolean value that indicates whether the lock is
allowed to block (and consequently, whether a thread is allowed to block while holding the lock).
If this argument is true, the lock is fundamentally a mutex. Otherwise, it behaves like a spinlock.
The third and fourth arguments are for gathering trace statistics using the Event Trace Analysis
Package. As before, unless you plan to use the trace facility, you should simply pass in
ETAP_NO_TRACE.

The function lock_done releases a lock. It does not matter whether the lock is held for reading
or writing. However, most parts of the kernel create macros with names like lock_read_done
and lock_write_done to make the code more understandable.

Spin/Sleep Locks

Spin/sleep locks are not implemented in the Mac OS X kernel. However, they can be easily
implemented on top of existing locks if desired.

For short waits on multiprocessor systems, the amount of time spent in the context switch can
be greater than the amount of time spent spinning. When the time spent spinning while waiting
for the lock becomes greater than the context switch overhead, however, mutexes become more
efficient. For this reason, if there is a large degree of variation in wait time on a highly contended
lock, spin/sleep locks may be more efficient than traditional spinlocks or mutexes.

Ideally, a program should be written in such a way that the time spent holding a lock is always
about the same, and the choice of locking is clear. However, in some cases, this is not practical
for a highly contended lock. In those cases, you may consider using spin/sleep locks.

The basic principle of spin/sleep locks is simple. A thread takes the lock if it is available. If the
lock is not available, the thread may enter a spin cycle. After a certain period of time (usually a
fraction of a time quantum or a small number of time quanta), the spin routine’s time-out is
reached, and it returns failure. At that point, the lock places the waiting thread on a queue and
puts it to sleep.

In other variations on this design, spin/sleep locks determine whether to spin or sleep according
to whether the lock-holding thread is currently on another processor (or is about to be).

For short wait periods on multiprocessor computers, the spin/sleep lock is more efficient than
a mutex, and roughly as efficient as a standard spinlock. For longer wait periods, the spin/sleep
lock is significantly more efficient than the spinlock and only slightly less efficient than a mutex.
There is a period near the transition between spinning and sleeping in which the spin/sleep lock
may behave significantly worse than either of the basic lock types, however. Thus, spin/sleep
locks should not be used unless a lock is heavily contended and has widely varying hold times.
When possible, you should rewrite the code to avoid such designs.

Locks 125
© Apple Computer, Inc. 2004

C H A P T E R 1 6

Synchronization Primitives

126 Locks
© Apple Computer, Inc. 2004

C H A P T E R 1 6

Synchronization Primitives

This chapter contains information about miscellaneous services provided by the Mac OS X kernel.
For most projects, you will probably never need to use most of these services, but if you do, you
will find it hard to do without them.

This chapter contains these sections: “Using Kernel Time Abstractions” (page 127), “Boot Option
Handling” (page 130), “Queues” (page 130), and “Installing Shutdown Hooks” (page 131).

Using Kernel Time Abstractions

There are two basic groups of time abstractions in the kernel. One group includes functions that
provide delays and timed wake-ups. The other group includes functions and variables that
provide the current wall clock time, the time used by a given process, and other similar
information. This section describes both aspects of time from the perspective of the kernel.

Obtaining Time Information

There are a number of ways to get basic time information from within the kernel. The officially
approved methods are those that Mach exports in kern/clock.h. These include the following:

void clock_get_uptime(uint64_t *result);
mach_timespec_t clock_get_system_value(void);
mach_timespec_t clock_get_calendar_value(void);
mach_timespec_t clock_get_calendar_offset(void);

The function clock_get_uptime returns a value in AbsoluteTime units. For more information
on using AbsoluteTime, see “Using Mach Absolute Time Functions” (page 128).

The remaining functions return type mach_timespec_t, which is similar to the traditional BSD
struct timespec, except that fractions of a second are measured in nanoseconds instead of
microseconds:

struct mach_timespec {
 unsigned int tv_sec;
 clock_res_t tv_nsec;
};
typedef struct mach_timespec *mach_timespec_t;

C H A P T E R 1 7

Miscellaneous Kernel Services

Using Kernel Time Abstractions 127
© Apple Computer, Inc. 2004

The function clock_get_calendar_value returns time as the number of seconds and nanoseconds
since January 1, 1970 (the traditional UNIX time measure). The function clock_get_system_value
returns time as the number of seconds and nanoseconds that the computer has been turned on.
Finally, the function clock_get_calendar_offset returns the difference between the two.

In addition to the traditional Mach functions, if you are writing code in BSD portions of the kernel
you can also get the current calendar (wall clock) time as a BSD timeval, as well as find out the
calendar time when the system was booted by doing the following:

#include <sys/kernel.h>
struct timeval tv=time; /* calendar time */
struct timeval tv_boot=boottime; /* calendar time when booting occurred
*/

For other information, you should use the Mach functions listed previously.

Event and Timer Waits

Each part of the Mac OS X kernel has a distinct API for waiting a certain period of time. In most
cases, you can call these functions from other parts of the kernel. The I/O Kit provides IODelay
and IOSleep. Mach provides functions based on AbsoluteTime, as well as a few based on
microseconds. BSD provides tsleep.

Using IODelay and IOSleep

IODelay, provided by the I/O Kit, abstracts a timed spin. If you are delaying for a short period
of time, and if you need to be guaranteed that your wait will not be stopped prematurely by
delivery of asynchronous events, this is probably the best choice. If you need to delay for several
seconds, however, this is a bad choice, because the CPU that executes the wait will spin until the
time has elapsed, unable to handle any other processing.

IOSleep puts the currently executing thread to sleep for a certain period of time. There is no
guarantee that your thread will execute after that period of time, nor is there a guarantee that
your thread will not be awakened by some other event before the time has expired. It is roughly
equivalent to the sleep call from user space in this regard.

The use of IODelay and IOSleep are straightforward. Their prototypes are:

IODelay(unsigned microseconds);
IOSleep(unsigned milliseconds);

Note the differing units. It is not practical to put a thread to sleep for periods measured in
microseconds, and spinning for several milliseconds is also inappropriate.

Using Mach Absolute Time Functions

The following Mach time functions are commonly used. Several others are described in
osfmk/kern/clock.h.

void delay(uint64_t microseconds);
void clock_delay_for_interval(uint32_t interval, uint32_t scale_factor);
void clock_delay_until(uint64_t deadline);

128 Using Kernel Time Abstractions
© Apple Computer, Inc. 2004

C H A P T E R 1 7

Miscellaneous Kernel Services

void clock_absolutetime_interval_to_deadline(uint64_t abstime,
 uint64_t *result);
void nanoseconds_to_absolutetime(uint64_t nanoseconds, uint64_t *result);
void absolutetime_to_nanoseconds(uint64_t abstime, uint64_t *result);

These functions are generally straightforward. However, a few points deserve explanation. Unless
specifically stated, all times, deadlines, and so on, are measured in abstime units. The abstime
unit is equal to the length of one bus cycle, so the duration is dependent on the bus speed of the
computer. For this reason, Mach provides conversion routines between abstime units and
nanoseconds.

The function clock_delay_for_interval, however, is an unusual function in that its unit is
based in nanoseconds, but is variable according to a scaling factor. The most common way to
use this function is something like the following:

clock_delay_for_interval(32, NSEC_PER_USEC);

That statement causes a delay of 32 microseconds since NSEC_PER_USEC = 1000. Similarly, a
scaling factor of 1 million would delay for a millisecond, and so on. To put it another way, this
function waits interval * scale_factor nanoseconds.

Using tsleep

In addition to Mach and I/O Kit routines, BSD provides tsleep, which is the recommended way
to delay while holding the kernel or network funnel. It will not work if you are not holding a
funnel. In other parts of the kernel, you should with either use wait_queue functions or use
assert_wait and thread_wakeup functions, both of which are closely tied to the Mach scheduler,
and are described in “Kernel Thread APIs” (page 77).

The tsleep call is similar to a condition variable. It puts a thread to sleep until wakeup or
wakeup_one is called on that channel. Unlike a condition variable, however, you can set a timeout
measured in clock ticks. This means that it is both a synchronization call and a delay. The
prototypes follow:

sleep(void *channel, int priority);
tsleep0(void *channel, int priority, char *subsystem, int timeout,
 int (*continuation)(void));
tsleep(void *channel, int priority, char *subsystem, int timeout);
wakeup(void *channel);
wakeup_one(void *channel);

The three sleep calls are similar except in the amount of debugging support (subsystem) and in
whether they allow timeouts or calling a function on wakeup.

In these functions, channel is a unique identifier representing a single condition upon which
you are waiting. Normally, when tsleep is used, you are waiting for a change to occur in a data
structure. In such cases, it is common to use the address of that data structure as the value for
channel, as this ensures that no code elsewhere in the system will be using the same value.

The priority argument has two effects. First, when wakeup is called, threads are inserted in the
scheduling queue at this priority. Second, the value of priority modifies signal delivery behavior.
If the value of priority is negative, signal delivery cannot wake the thread early. If the bit
(priority & PCATCH) is set, tsleep0 does not call the continuation function upon waking up
from sleep and returns a value of 1.

Using Kernel Time Abstractions 129
© Apple Computer, Inc. 2004

C H A P T E R 1 7

Miscellaneous Kernel Services

The subsystem argument is a short text string that represents the subsystem that is waiting on
this channel. This is used solely for debugging purposes.

The timeout argument is used to set a maximum wait time. The thread may wake sooner,
however, if wakeup or wakeup_one is called on the appropriate channel. It may also wake sooner
if a signal is received, depending on the value of priority.

Finally, the continuation argument is a function that is called when the thread is woken up by
a signal or a call to wakeup or wakeup_one. If the wake occurred programmatically, this function
is called (if it is not NULL). If the wake occurred as a result of a signal, it is called only if the PCATCH
bit is not set in the priority value.

Boot Option Handling

Mac OS X provides a simple parse routine, PE_parse_boot_arg, for basic boot argument passing.
It supports both flags and numerical value assignment. For obtaining values, you write code
similar to the following:

unsigned int argval;

if (PE_parse_boot_arg(“argflag”, &argval)) {
 /* check for reasonable value */
 if (argval < 10 || argval > 37)
 argval = 37;
} else {
 /* use default value */
 argval = 37;
}

Since PE_parse_boot_arg returns a nonzero value if the flag exists, you can check for the presence
of a flag by using a flag that starts with a dash (-) and ignoring the value stored in argvalue.

The PE_parse_boot_arg function can also be used to get a string argument. To do this, you must
pass in the address of an array of type char as the second argument. The behavior of
PE_parse_boot_arg is undefined if a string is passed in for a numeric variable or vice versa. Its
behavior is also undefined if a string exceeds the storage space allocated. Be sure to allow enough
space for the largest reasonable string including a null delimiter. No attempt is made at bounds
checking, since an overflow is generally a fatal error and should reasonably prevent booting.

Queues

As part of its BSD infrastructure, the Mac OS X kernel provides a number of basic support macros
to simplify handling of linked lists and queues. These are implemented as C macros, and assume
a standard C struct. As such, they are probably not suited for writing code in C++.

The basic types of lists and queues included are

■ SLIST, a singly linked list

■ STAILQ, a singly linked tail queue

130 Boot Option Handling
© Apple Computer, Inc. 2004

C H A P T E R 1 7

Miscellaneous Kernel Services

■ LIST, a doubly linked list

■ TAILQ, a doubly linked tail queue

SLIST is ideal for creating stacks or for handling large sets of data with few or no removals.
Arbitrary removal, however, requires an O(n) traversal of the list.

STAILQ is similar to SLIST except that it maintains pointers to both ends of the queue. This makes
it ideal for simple FIFO queues by adding entries at the tail and fetching entries from the head.
Like SLIST, it is inefficient to remove arbitrary elements.

LIST is a doubly linked version of SLIST. The extra pointers require additional space, but allow
O(1) (constant time) removal of arbitrary elements and bidirectional traversal.

TAILQ is a doubly linked version of STAILQ. Like LIST, the extra pointers require additional space,
but allow O(1) (constant time) removal of arbitrary elements and bidirectional traversal.

Because their functionality is relatively simple, their use is equally straightforward. These macros
can be found in xnu/bsd/sys/queue.h.

Installing Shutdown Hooks

Although Mac OS X does not have traditional BSD-style shutdown hooks, the I/O Kit provides
equivalent functionality in recent versions. Since the I/O Kit provides this functionality, you
must call it from C++ code.

To register for notification, you call registerPrioritySleepWakeInterest (described in
IOKit/RootDomain.h) and register for sleep notification. If the system is about to be shut down,
your handler is called with the message kIOMessageSystemWillPowerOff. If the system is about
to reboot, your handler gets the message kIOMessageSystemWillRestart.

If you no longer need to receive notification (for example, if your KEXT gets unloaded), be certain
to release the notifier with IONofitier::release to avoid a kernel panic on shutdown.

Installing Shutdown Hooks 131
© Apple Computer, Inc. 2004

C H A P T E R 1 7

Miscellaneous Kernel Services

132 Installing Shutdown Hooks
© Apple Computer, Inc. 2004

C H A P T E R 1 7

Miscellaneous Kernel Services

As discussed in the chapter “Kernel Architecture Overview” (page 17), Mac OS X provides a
kernel extension mechanism as a means of allowing dynamic loading of code into the kernel,
without the need to recompile or relink. Because these kernel extensions (KEXTs) provide both
modularity and dynamic loadability, they are a natural choice for any relatively self-contained
service that requires access to internal kernel interfaces.

Because KEXTs run in supervisor mode in the kernel’s address space, they are also harder to
write and debug than user-level modules, and must conform to strict guidelines. Further, kernel
resources are wired (permanently resident in memory) and are thus more costly to use than
resources in a user-space task of equivalent functionality.

In addition, although memory protection keeps applications from crashing the system, no such
safeguards are in place inside the kernel. A badly behaved kernel extension in Mac OS X can
cause as much trouble as a badly behaved application or extension could in Mac OS 9.

Bugs in KEXTs can have far more severe consequences than bugs in user-level code. For example,
a memory access error in a user application can, at worst, cause that application to crash. In
contrast, a memory access error in a KEXT causes a kernel panic, crashing the operating system.

Finally, for security reasons, some customers restrict or don’t permit the use of third-party KEXTs.
As a result, use of KEXTs is strongly discouraged in situations where user-level solutions are
feasible. Mac OS X guarantees that threading in applications is just as efficient as threading inside
the kernel, so efficiency should not be an issue. Unless your application requires low-level access
to kernel interfaces, you should use a higher level of abstraction when developing code for Mac
OS X.

When you are trying to determine if a piece of code should be a KEXT, the default answer is
generally no. Even if your code was a system extension in Mac OS 9, that does not necessarily
mean that it should be a kernel extension in Mac OS X. There are only a few good reasons for a
developer to write a kernel extension:

■ Your code needs to take a primary interrupt—that is, something in the (built-in) hardware
needs to interrupt the CPU and execute a handler.

■ The primary client of your code is inside the kernel—for example, a block device whose
primary client is a file system.

■ Your code needs to access kernel interfaces that are not exported to user space.

■ Your code has other special requirements that cannot be satisfied in a user space application.

C H A P T E R 1 8

Kernel Extension Overview

133
© Apple Computer, Inc. 2004

If your code does not meet any of the above criteria (and possibly even if it does), you should
consider developing it as a library or a user-level daemon, or using one of the user-level plug-in
architectures (such as QuickTime components or the Core Graphics framework) instead of writing
a kernel extension.

If you are writing device drivers or code to support a new volume format or networking protocol,
however, KEXTs may be the only feasible solution. Fortunately, while KEXTs may be more
difficult to write than user-space code, several tools and procedures are available to enhance the
development and debugging process. See “Debugging Your KEXT” (page 135) for more
information.

This chapter provides a conceptual overview of KEXTs and how to create them. If you are
interested in building a simple KEXT, see the Apple tutorials listed in the bibliography. These
provide step-by-step instructions for creating a simple, generic KEXT or a basic I/O Kit driver.

Implementation of a Kernel Extension (KEXT)

Kernel extensions are implemented as bundles, folders that the Finder treats as single files. See
the chapter about bundles in Inside Mac OS X: System Overview for a discussion of bundles.The
KEXT bundle can contain the following:

■ Information property list—a text file that describes the contents, settings, and requirements
of the KEXT. This file is required. A KEXT bundle need contain nothing more than this file,
although most KEXTs contain one or more kernel modules as well. See the chapter about
software configuration in Inside Mac OS X: System Overview for further information about
property lists.

■ KEXT binary—a file in Mach-O format, containing the actual binary code used by the KEXT.
A KEXT binary (also known as a kernel module or KMOD) represents the minimum unit of
code that can be loaded into the kernel. A KEXT usually contains one KEXT binary. If no
KEXT binaries are included, the information property list file must contain a reference to
another KEXT and change its default settings.

■ Resources—for example, icons or localization dictionaries. Resources are optional; they may
be useful for a KEXT that needs to display a dialog or menu. At present, no resources are
explicitly defined for use with KEXTs.

■ KEXT bundles—a kext can contain other KEXTs. This can be used for plug-ins that augment
features of a KEXT.

Kernel Extension Dependencies

Any KEXT can declare that it is dependent upon any other KEXT. The developer lists these
dependencies in the “Requires” field of the module’s property list file.

Before a KEXT is loaded, all of its requirements are checked. Those required extensions (and their
requirements) are loaded first, iterating back through the lists until there are no more required
extensions to load. Only after all requirements are met, is the requested KEXT loaded as well.

134 Implementation of a Kernel Extension (KEXT)
© Apple Computer, Inc. 2004

C H A P T E R 1 8

Kernel Extension Overview

For example, device drivers (a type of KEXT) are dependent upon (require) certain families
(another type of KEXT). When a driver is loaded, its required families are also loaded to provide
necessary, common functionality. To ensure that all requirements are met, each device driver
should list all of its requirements (families and other drivers) in its property list. See the chapter
“I/O Kit Overview” (page 85), for an explanation of drivers and families.

It is important to list all dependencies for each KEXT. If your KEXT fails to do so, your KEXT
may not load due to unrecognized symbols, thus rendering the KEXT useless. Dependencies in
KEXTs can be considered analogous to required header files or libraries in code development;
in fact, the Kernel Extension Manager uses the standard linker to resolve KEXT requirements.

Building and Testing Your Extension

After creating the necessary property list and C or C++ source files, you use Project Builder to
build your KEXT. Any errors in the source code are brought to your attention during the build
and you are given the chance to edit your source files and try again.

To test your KEXT, however, you need to leave Project Builder and work in the Terminal
application (or in console mode). In console mode, all system messages are written directly to
your screen, as well as to a log file (/var/log/system.log). If you work in the Terminal
application, you must view system messages in the log file or in the Console application.You
also need to log in to the root account (or use the su or sudo command), since only the root
account can load kernel extensions.

When testing your KEXT, you can load and unload it manually, as well as check the load status.
You can use the kextload command to load any KEXT. A manual page for kextload is included
in Mac OS X. (On Mac OS X prior to 10.2, you must use the kmodload command instead.)

Note that this command is useful only when developing a KEXT. Eventually, after it has been
tested and debugged, you install your KEXT in one of the standard places (see “Installed
KEXTs” (page 136) for details). Then, it will be loaded and unloaded automatically at system
startup and shutdown or whenever it is needed (such as when a new device is detected).

Debugging Your KEXT

KEXT debugging can be complicated. Before you can debug a KEXT, you must first enable kernel
debugging, as Mac OS X is not normally configured to permit debugging the kernel. Only the
root account can enable kernel debugging, and you need to reboot Mac OS X for the changes to
take effect. (You can use sudo to gain root privileges if you don’t want to enable a root password.)

Kernel debugging is performed using two Mac OS X computers, called the development or debug
host and the debug target. These computers must be connected over a reliable network connection
on the same subnet (or within a single local network). Specifically, there must not be any
intervening IP routers or other devices that could make hardware-based Ethernet addressing
impossible.

The KEXT is registered (and loaded and run) on the target. The debugger is launched and run
on the debug host. You can also rebuild your KEXT on the debug host, after you fix any errors
you find.

Building and Testing Your Extension 135
© Apple Computer, Inc. 2004

C H A P T E R 1 8

Kernel Extension Overview

Debugging must be performed in this fashion because you must temporarily halt the kernel on
the target in order to use the debugger. When you halt the kernel, all other processes on that
computer stop. However, a debugger running remotely can continue to run and can continue to
examine (or modify) the kernel on the target.

Note that bugs in KEXTs may cause the target kernel to freeze or panic. If this happens, you may
not be able to continue debugging, even over a remote connection; you have to reboot the target
and start over, setting a breakpoint just before the code where the KEXT crashed and working
very carefully up to the crash point.

Developers generally debug KEXTs using gdb, a source-level debugger with a command-line
interface. You will need to work in the Terminal application to run gdb. For detailed information
about using gdb, see the documentation included with Mac OS X. You can also use the help
command from within gdb.

Some features of gdb are unavailable when debugging KEXTs because of implementation
limitations. For example:

■ You can’t use gdb to call a function or method in a KEXT.

■ You should not use gdb to debug interrupt routines.

The former is largely a barrier introduced by the C++ language. The latter may work in some
cases but is not recommended due to the potential for gdb to interrupt something upon which
kdp (the kernel shim used by gdb) depends in order to function properly.

Use care that you do not halt the kernel for too long when you are debugging (for example, when
you set breakpoints). In a short time, internal inconsistencies can appear that cause the target
kernel to panic or freeze, forcing you to reboot the target.

Additional information about debugging can be found in “When Things Go Wrong: Debugging
the Kernel” (page 143).

Installed KEXTs

The Kernel Extension Manager (KEXT Manager) is responsible for loading and unloading all
installed KEXTs (commands such as kextload are used only during development). Installed
KEXTs are dynamically added to the running Mac OS X kernel as part of the kernel’s address
space. An installed and enabled KEXT is invoked as needed.

Important
Note that KEXTs are only wrappers (bundles) around a property
list, KEXT binaries (or references to other KEXTs), and optional
resources. The KEXT describes what is to be loaded; it is the
KEXT binaries that are actually loaded.

KEXTs are usually installed in the folder /System/Libraries/Extensions. The Kernel Extension
Manager (in the form of a daemon, kextd), always checks here. KEXTs can also be installed in
several other locations:

■ in ROM

■ in the Driver partition on a disk

136 Installed KEXTs
© Apple Computer, Inc. 2004

C H A P T E R 1 8

Kernel Extension Overview

■ inside an application bundle

The last location allows an application to register KEXTs without the need to install them
permanently elsewhere within the system hierarchy. This may be more convenient and allows
the KEXT to be associated with a specific, running application. When it starts, the application
can call the Kernel Extension Manager and register a KEXT.

For example, a network packet sniffer application might employ a Network Kernel Extension
(NKE). A tape backup application would require that a tape driver be loaded during the duration
of the backup process. When the application exits, the kernel extension is no longer needed and
can be unloaded.

Note that, although the application is responsible for registering the KEXT, this is no guarantee
that the corresponding KEXTs are actually ever loaded. It is still up to a kernel component, such
as the I/O Kit, to determine a need, such as matching a piece of hardware to a desired driver,
and tell the KEXT Manager to load the appropriate KEXTs (and their dependencies).

Installed KEXTs 137
© Apple Computer, Inc. 2004

C H A P T E R 1 8

Kernel Extension Overview

138 Installed KEXTs
© Apple Computer, Inc. 2004

C H A P T E R 1 8

Kernel Extension Overview

This chapter is not about building kernel extensions (KEXTs). There are a number of good KEXT
tutorials on Apple’s developer documentation site (http://developer.apple.com/documentation).
This chapter is about adding new in-kernel modules (optional parts of the kernel), building
kernels, and debugging kernel and kernel extension builds.

The discussion is divided into three sections. The first, “Adding New Files or Modules” (page
139), describes how to add new functionality into the kernel itself. You should only add files into
the kernel when the use of a KEXT is not possible (for example, when adding certain low-level
motherboard hardware support).

The second section, “Building Your First Kernel” (page 141), describes how to build a kernel,
including how to build a kernel with debugger support, how to add new options, and how to
obtain sources that are of similar vintage to those in a particular version of Mac OS X or Darwin.

The third section, “When Things Go Wrong: Debugging the Kernel” (page 143), tells how to debug
a kernel or kernel module using ddb and gdb. This is a must-read for anyone doing kernel
development.

Adding New Files or Modules

In this context, the term module is used loosely to refer to a collection of related files in the kernel
that are controlled by a single config option at compile time. It does not refer to loadable modules
(KEXTs). This section describes how to add additional files that will be compiled into the kernel,
including how to add a new config option for an additional module.

Modifying the Configuration Files

The details of adding a new file or module into the kernel differ according to what portion of the
kernel contains the file. If you are adding a new file or module into the Mach portion of the kernel,
you need to list it in various files in xnu/osfmk/conf. For the BSD portion of the kernel, you
should list it in various files in xnu/bsd/conf. In either case, the procedure is basically the same,
just in a different directory.

This section is divided into two subsections. The first describes adding the module itself and the
second describes enabling the module.

C H A P T E R 1 9

Building and Debugging Kernels

Adding New Files or Modules 139
© Apple Computer, Inc. 2004

http://developer.apple.com/documentation

Adding the Files or Modules

In the appropriate conf directory, you need to add your files or modules into various files. The
files MASTER, MASTER.ppc, and MASTER.i386 contain the list of configuration options that should
be built into the kernel for all architectures, PowerPC, and i386, respectively.

These are supplemented by files, files.ppc, and files.i386, which contain associations
between compile options and the files that are related to them for their respective architectures.

The format for these two files is relatively straightforward. If you are adding a new module, you
should first choose a name for that module. For example, if your module is called mach_foo, you
should then add a new option line near the top of files that is whitespace (space or tab) delimited
and looks like this:

OPTIONS/mach_foo optional mach_foo

The first part defines the name of the module as it will be used in #if statements in the code.
(See “Modifying the Source Code Files” (page 141) for more information.) The second part is
always the word optional. The third part tells the name of the option as used to turn it on or off
in a MASTER file. Any line with mach_foo in the last field will be enabled only if there is an
appropriate line in a MASTER file.

Then, later in the file, you add

osfmk/foo/foo_main.c optional mach_foo
osfmk/foo/foo_bar.c optional mach_foo

and so on, for each new file associated with that module. This also applies if you are adding a
file to an existing module. If you are adding a file that is not associated with any module at all,
you add a line that looks like the following to specify that this file should always be included:

osfmk/crud/mandatory_file.c standard

If you are not adding any modules, then you’re done. Otherwise, you also need to enable your
option in one of the MASTER files.

Enabling Module Options

To enable a module option (as described in the files files), you must add an entry for that option
into one of the MASTER files. If your code is not a BSD pseudo-device, you should add something
like the following:

options MACH_FOO

Otherwise, you should add something like this:

pseudo-device mach_foo

In the case of a pseudo-device (for example, /dev/random), you can also add a number. When
your code checks to see if it should be included, it can also check that number and allocate
resources for more than one pseudo-device. The meaning of multiple pseudo-devices is
device-dependent. An example of this is ppp, which allocates resources for two simultaneous
PPP connections. Thus, in the MASTER.ppc file, it has the line:

pseudo-device ppp 2

140 Adding New Files or Modules
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

Modifying the Source Code Files

In the Mac OS X kernel, all source code files are automatically compiled. It is the responsibility
of the C file itself to determine whether its contents need to be included in the build or not.

In the example above, you created a module called mach_foo. Assume that you want this file to
compile only on PowerPC-based computers. In that case, you should have included the option
only in MASTER.ppc and not in MASTER.i386. However, by default, merely specifying the file
foo_main.c in files causes it to be compiled, regardless of compile options specified.

To make the code compile only when the option mach_foo is included in the configuration, you
should begin each C source file with the lines

#include <mach_foo.h>
#if (MACH_FOO > 0)

and end it with

#endif /* MACH_FOO */

If mach_foo is a pseudo-device and you need to check the number of mach_foo pseudo-devices
included, you can do further tests of the value of MACH_FOO.

Note that the file <mach_foo.h> is not something you create. It is created by the makefiles
themselves. You must run make exporthdrs before make all to generate these files.

Building Your First Kernel

Before you can build a kernel, you must first obtain source code. Source code for the Mac OS X
kernel can be found in the Darwin xnu project on http://www.opensource.apple.com. To find
out your current kernel version, use the command uname -a. If you run into trouble, search the
archives of the darwin-kernel and darwin-development mailing lists for information. If that
doesn’t help, ask for assistance on either list. The list archives and subscription information can
be found at http://www.lists.apple.com.

Note: Before you begin, make sure you extract the sources in a directory whose path does not
contain any “special” characters (non-alphanumeric characters other than dash and underscore),
as having such characters in the path leading up to the build directory can cause compiling to
fail.

Also, make sure that /usr/local/bin is in your PATH environment variable as follows:

If you are using a csh derivative such as tcsh, you should add set path = (/usr/local/bin
$path) to your .tcshrc file

If you are using a Bourne shell derivative, you should add export PATH=/usr/local/bin:$PATH
to your .bashrc file.

Building Your First Kernel 141
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

http://www.opensource.apple.com
http://www.lists.apple.com

After you have obtained and extracted the sources, you will need to compile several support
tools. Get the bootstrap_cmds, Libstreams, and cctools packages from
http://www.opensource.apple.com. Extract the files from these .tar packages, then do the
following:

cd bootstrap_cmds-version/relpath.tproj
make
sudo make install
cd ../../Libstreams-version
make
make install
cd ../cctools
sudo cp /usr/include/sys/unistd.h \
 /System/Library/Frameworks/Kernel.framework/Headers/sys

In the cctools package, modify the Makefile, and change the COMMON_SUBDIRS line to read:

COMMON_SUBDIRS = libstuff libmacho misc

Finally, issue the following commands:

make RC_OS=macos
sudo cp misc/seg_hack.NEW /usr/local/bin/seg_hack
cd ld
make RC_OS=macos kld_build
sudo cp static_kld/libkld.a /usr/local/lib
sudo ranlib /usr/local/lib/libkld.a

Congratulations. You now have all the necessary tools, libraries, and header files to build a kernel.

The next step is to compile the kernel itself. First, change directories into the xnu directory. Next,
you need to set a few environment variables appropriately. For your convenience, the kernel
sources contain shell scripts to do this for you. If you are using sh, bash, zsh, or some other
Bourne-compatible shell, issue the following command:

source SETUP/setup.sh

If you are using csh, tcsh, or a similar shell, use the following command:

source SETUP/setup.csh

Then, you should be able to type

make exporthdrs
make all

and get a working kernel in BUILD/obj/RELEASE_PPC/mach_kernel (assuming you are building
a RELEASE kernel for PowerPC, of course).

142 Building Your First Kernel
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

http://www.opensource.apple.com

Building an Alternate Kernel Configuration

When building a kernel, you may want to build a configuration other than the RELEASE
configuration (the default shipping configuration). Additional configurations are RELEASE_TRACE,
DEBUG, DEBUG_TRACE, and PROFILE. These configurations add various additional options (except
PROFILE, which is reserved for future expansion, and currently maps onto RELEASE).

The most useful and interesting configurations are RELEASE and DEBUG. The release configuration
should be the same as a stock Apple-released kernel, so this is interesting only if you are building
source that differs from that which was used to build the kernel you are already running.
Compiling a kernel without specifying a configuration results in the RELEASE configuration being
built.

The DEBUG configuration enables ddb, the in-kernel serial debugger. The ddb debugger is helpful
to debug panics that occur early in boot or within certain parts of the Ethernet driver. It is also
useful for debugging low-level interrupt handler routines that cannot be debugged by using the
more traditional gdb.

To compile an alternate kernel configuration, you should follow the same basic procedure as
outlined previously, changing the final make statement slightly. For example, to build the DEBUG
configuration, instead of typing

make all

you type

make KERNEL_CONFIGS=DEBUG all

and wait.

To turn on additional compile options, you must modify one of the MASTER files. For information
on modifying these files, see the section “Enabling Module Options” (page 140).

When Things Go Wrong: Debugging the Kernel

No matter how careful your programming habits, sometimes things don’t work right the first
time. Kernel panics are simply a fact of life during development of kernel extensions or other
in-kernel code.

There are a number of ways to track down problems in kernel code. In many cases, you can find
the problem through careful use of printf or IOLog statements. Some people swear by this
method, and indeed, given sufficient time and effort, any bug can be found and fixed without
using a debugger.

Of course, the key words in that statement are “given sufficient time and effort.” For the rest of
us, there are debuggers: gdb and ddb.

Building an Alternate Kernel Configuration 143
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

Setting Debug Flags in Open Firmware

With the exception of kernel panics or calls to PE_enter_debugger, it is not possible to do remote
kernel debugging without setting debug flags in Open Firmware. These flags are relevant to both
gdb and ddb debugging and are important enough to warrant their own section.

To set these flags, you can either use the nvram program (from the Mac OS X command line) or
access your computer’s Open Firmware. You can access Open Firmware this by holding down
Command-Option-O-F at boot time. For most computers, the default is for Open Firmware to
present a command–line prompt on your monitor and accept input from your keyboard. For
some older computers you must use a serial line at 38400, 8N1. (Technically, such computers are
not supported by Mac OS X, but some are usable under Darwin, and thus they are mentioned
here for completeness.)

From an Open Firmware prompt, you can set the flags with the setenv command. From the Mac
OS X command line, you would use the nvram command. Note that when modifying these flags
you should always look at the old value for the appropriate Open Firmware variables and add
the debug flags.

For example, if you want to set the debug flags to 0x4, you use one of the following commands.
For computers with recent versions of Open Firmware, you would type

printenv boot-args
setenv boot-args original_contents debug=0x4

from Open Firmware or

nvram boot-args
nvram boot-args=”original_contents debug=0x4”

from the command line (as root).

For older firmware versions, the interesting variable is boot-command. Thus, you might do
something like

printenv boot-command
setenv boot-command 0 bootr debug=0x4

from Open Firmware or

nvram boot-command
nvram boot-command=”0 bootr debug=0x4”

from the command line (as root).

Of course, the more important issue is what value to choose for the debug flags. Table 18-1 (page
144) lists the debugging flags that are supported in Mac OS X.

Table 19-1 Debugging flags

MeaningFlagSymbolic name

Halt at boot-time and wait for debugger attach (gdb).0x01DB_HALT

144 When Things Go Wrong: Debugging the Kernel
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

MeaningFlagSymbolic name

Send kernel debugging printf output to console.0x02DB_PRT

Drop into debugger on NMI (Command–Power or
interrupt switch).

0x04DB_NMI

Send kernel debugging kprintf output to serial port.0x08DB_KPRT

Make ddb (kdb) the default debugger (requires a
custom kernel).

0x10DB_KDB

Output certain diagnostic info to the system log.0x20DB_SLOG

Allow debugger to ARP and route (allows debugging
across routers and removes the need for a permanent

0x40DB_ARP

ARP entry, but is a potential security hole)—not
available in all kernels.

Support old versions of gdb on newer systems.0x80DB_KDP_BP_DIS

Disable graphical panic dialog.0x100DB_LOG_PI_SCRN

The option DB_KDP_BP_DIS is not available on all systems, and should not be important if your
target and host systems are running the same or similar versions of Mac OS X with matching
developer tools. The last option is only available in Mac OS 10.2 and later.

Note: If your target machine is running Mac OS X Server, your system will automatically reboot
within seconds after a crash. This is caused by a watchdog timer in hardware. You can disable
the automatic reboot on crash feature in the server administration tool.

Choosing a Debugger

There are two basic debugging environments supported by Mac OS X: ddb and gdb. ddb is a
built-in debugger that works over a serial line. By contrast, gdb is supported using a debugging
shim built into the kernel, which allows a remote computer on the same physical network to
attach after a panic (or sooner if you pass certain options to the kernel).

For problems involving network extensions or low-level operating system bringups, ddb is the
only way to do debugging. For other bugs, gdb is generally easier to use. For completeness, this
chapter describes how to use both ddb and gdb to do basic debugging. Since gdb itself is well
documented and is commonly used for application programming, this chapter assumes at least
a passing knowledge of the basics of using gdb and focuses on the areas where remote (kernel)
gdb differs.

Using gdb for Kernel Debugging

gdb, short for the GNU Debugger, is a piece of software commonly used for debugging software
on UNIX and Linux systems. This section assumes that you have used gdb before, and does not
attempt to explain basic usage.

When Things Go Wrong: Debugging the Kernel 145
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

In standard Mac OS X builds (and in your builds unless you compile with ddb support), gdb
support is built into the system but is turned off except in the case of a kernel panic.

Of course, many software failures in the kernel do not result in a kernel panic but still cause
aberrant behavior. For these reasons, you can pass additional flags to the kernel to allow you to
attach to a remote computer early in boot or after a nonmaskable interrupt (NMI), or you can
programmatically drop into the debugger in your code.

You can cause the test computer (the debug target) to drop into the debugger in the following
ways:

■ debug on panic

■ debug on NMI

■ debug on boot

■ programmatically drop into the default debugger

The function PE_enter_debugger can be called from anywhere in the kernel, although if gdb
is your default debugger, a crash will result if the network hardware is not initialized or if
gdb cannot be used in that particular context. This call is described in the header
pexpert/pexpert.h.

After you have decided what method to use for dropping into the debugger on the target, you
must configure your debug host (the computer that will actually be running gdb). Your debug
host should be running a version of Mac OS X that is comparable to the version running on your
target host. However, it should not be running a customized kernel, since a debug host crash
would be problematic, to say the least.

Note: It is possible to use a non-Mac OS X system as your debug host. This is not a trivial exercise,
however, and a description of building a cross-gdb is beyond the scope of this document.

When using gdb, the best results can be obtained when the source code for the customized kernel
is present on your debug host. This not only makes debugging easier by allowing you to see the
lines of code when you stop execution, it also makes it easier to modify those lines of code. Thus,
the ideal situation is for your debug host to also be your build computer. This is not required,
but it makes things easier. If you are debugging a kernel extension, it generally suffices to have
the source for the kernel extension itself on your debug host. However, if you need to see
kernel-specific structures, having the kernel sources on your debug host may also be helpful.

Once you have built a kernel using your debug host, you must then copy it to your target computer
and reboot the target computer. At this point, if you are doing panic-only debugging, you should
trigger the panic. Otherwise, you should tell your target computer to drop into the debugger by
issuing an NMI (or by merely booting, in the case of debug=0x1).

Next, unless your kernel supports ARP while debugging (and unless you enabled it with the
appropriate debug flag), you need to add a permanent ARP entry for the target. It will be unable
to answer ARP requests while waiting for the debugger. This ensures that your connection won’t
suddenly disappear. The following example assumes that your target is target.foo.com with
an IP number of 10.0.0.69:

$ ping -c 1 target_host_name
ping results:
$ arp -an

146 When Things Go Wrong: Debugging the Kernel
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

target.foo.com (10.0.0.69): 00:a0:13:12:65:31
$ arp -s target.foo.com 00:a0:13:12:65:31
$ arp -an
target.foo.com (10.0.0.69) at00:a0:13:12:65:31 permanent

Now, you can begin debugging by doing the following:

gdb /path/to/mach_kernel
source /path/to/xnu/osfmk/.gdbinit
p proc0
source /path/to/xnu/osfmk/.gdbinit
target remote-kdp
attach 10.0.0.69

Note that the mach kernel passed as an argument to gdb should be the symbol–laden kernel file
located in BUILD/obj/DEBUG_PPC/mach_kernel.sys (for debug kernel builds, RELEASE_PPC for
non-debug builds), not the bootable kernel that you copied onto the debug target. Otherwise
most of the gdb macros will fail. The correct kernel should be several times as large as a normal
kernel.

You must do the p proc0 command and source the .gdbinit file (from the appropriate kernel
sources) twice to work around a bug in gdb. Of course, if you do not need any of the macros in
.gdbinit, you can skip those two instructions. The macros are mostly of interest to people
debugging aspects of Mach, though they also provide ways of obtaining information about
currently loaded KEXTs.

WARNING
It may not be possible to detach in a way that the target
computer’s kernel continues to run. If you detach, the target
hangs until you reattach. It is not always possible to reattach,
though the situation is improving in this area. Do not detach
from the remote kernel!

If you are debugging a kernel module, you need to do some additional work to get debugging
symbol information about the module. First, you need to know the load address for the module.
You can get this information by running kextstat (kmodstat on systems running Mac OS X
10.1 or earlier) as root on the target.

If you are already in the debugger, then assuming the target did not panic, you should be able
to use the continue function in gdb to revive the target, get this information, then trigger another
NMI to drop back into the debugger.

If the target is no longer functional, and if you have a fully symbol–laden kernel file on your
debug host that matches the kernel on your debug target, you can use the showallkmods macro
to obtain this information. Obtaining a fully symbol–laden kernel generally requires compiling
the kernel yourself.

Once you have the load address of the module in question, you need to create a symbol file for
the module. You do this in different ways on different versions of Mac OS X.

For versions 10.1 and earlier, you use the kmodsyms program to create a symbol file for the module.
If your KEXT is called mykext and it is loaded at address 0xf7a4000, for example, you change
directories to mykext.kext/Contents/MacOS and type:

kmodsyms -k path/to/mach_kernel -o mykext.sym mykext@0xf7a4000

When Things Go Wrong: Debugging the Kernel 147
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

Be sure to specify the correct path for the mach kernel that is running on your target (assuming
it is not the same as the kernel running on your debug host).

For versions after 10.1, you have two options. If your KEXT does not crash the computer when
it loads, you can ask kextload to generate the symbols at load time by passing it the following
options:

kextload -s symboldir mykext.kext

It will then write the symbols for your kernel extension and its dependencies into files within
the directory you specified. Of course, this only works if your target doesn’t crash at or shortly
after load time.

Alternately, if you are debugging an existing panic, or if your KEXT can’t be loaded without
causing a panic, you can generate the debugging symbols on your debug host. You do this by
typing:

kextload -n -s symboldir mykext.kext

If will then prompt you for the load address of the kernel extension and the addresses of all its
dependencies. As mentioned previously, you can find the addresses with kextstat (or kmodstat)
or by typing showallkmods inside gdb.

You should now have a file or files containing symbolic information that gdb can use to determine
address–to–name mappings within the KEXT. To add the symbols from that KEXT, within gdb
on your debug host, type the command

add-symbol-file mykext.sym

for each symbol file. You should now be able to see a human-readable representation of the
addresses of functions, variables, and so on.

Special gdb I/O Addressing Issues

As described in “Address Spaces” (page 64), some Macintosh hardware has a third addressing
mode called I/O addressing which differs from both physical and virtual addressing modes.
Most developers will not need to know about these modes in any detail.

Where some developers may run into problems is debugging PCI device drivers and attempting
to access device memory/registers.

To allow I/O-mapped memory dumping, do the following:

set kdp_read_io=1

To dump in physical mode, do the following:

set kdp_trans_off=1

For example:

(gdb) x/x 0xf8022034
0xf8022034: Cannot access memory at address 0xf8022034
(gdb) set kdp_trans_off=1
(gdb) x/x 0xf8022034
0xf8022034: Cannot access memory at address 0xf8022034

148 When Things Go Wrong: Debugging the Kernel
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

(gdb) set kdp_read_io=1
(gdb) x/x 0xf8022034
0xf8022034: 0x00000020
(gdb)

If you experience problems accessing I/O addresses that are not corrected by this procedure,
please contact Apple Developer Technical Support for additional assistance.

Using ddb for Kernel Debugging

When doing typical debugging, gdb is probably the best solution. However, there are times when
gdb cannot be used or where gdb can easily run into problems. Some of these include

■ drivers for built-in Ethernet hardware

■ interrupt handlers (the hardware variety, not handler threads)

■ early bootstrap before the network hardware is initialized

When gdb is not practical (or if you’re curious), there is a second debug mechanism that can be
compiled into Mac OS X. This mechanism is called ddb, and is similar to the kdb debugger in
most BSD UNIX systems. It is not quite as easy to use as gdb, mainly because of the hardware
needed to use it.

Unlike gdb (which uses Ethernet for communication with a kernel stub), ddb is built into the
kernel itself, and interacts directly with the user over a serial line. Also unlike gdb, using ddb
requires building a custom kernel using the DEBUG configuration. For more information on
building this kernel, see “Building Your First Kernel” (page 141).

Note: ddb requires an actual built-in hardware serial line on the debug target. Neither PCI nor
USB serial adapters will work. In order to work reliably for interrupt-level debugging, ddb controls
the serial ports directly with a polled-mode driver without the use of the I/O Kit.

If your debug target does not have a factory serial port, third-party adapter boards may be
available that replace your internal modem with a serial port. Since these devices use the built-in
serial controller, they should work for ddb.

If your target computer has two serial ports, ddb uses the modem port (SCC port 0). However,
if your target has only one serial port, that port is probably attached to port 1 of the SCC cell,
which means that you have to change the default port if you want to use ddb. To use this port
(SCC port 1), change the line:

const int console_unit=0;

in osfmk/ppc/serial_console.c to read:

const int console_unit=1;

and recompile the kernel.

When Things Go Wrong: Debugging the Kernel 149
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

Once you have a kernel with ddb support, it is relatively easy to use. First, you need to set up a
terminal emulator program on your debug host. If your debug host is running Mac OS 9, you
might use ZTerm, for example. For Mac OS X computers, or for computers running Linux or
UNIX, minicom provides a good environment. Setting up these programs is beyond the scope
of this document.

Important
Serial port settings for communicating with ddb must be 57600
8N1. Hardware handshaking may be on, but is not necessary.

Note: For targets whose Open Firmware uses the serial ports, remember that the baud rate for
communicating with Open Firmware is 38400 and that hardware handshaking must be off.

Once you boot a kernel with ddb support, a panic will allow you to drop into the debugger, as
will a call to PE_enter_debugger. If the DB_KDB flag is not set, you will have to press the D key
on the keyboard to use ddb. Alternately, if both DB_KDB and DB_NMI are set, you should be able
to drop into ddb by generating a nonmaskable interrupt (NMI). See “Setting Debug Flags in
Open Firmware” (page 144) for more information on debug flags.

To generate a nonmaskable interrupt, hold down the command key while pressing the power
key on your keyboard or press the interrupt button on your target computer. At this point, the
system should hang, and you should see ddb output on the serial terminal. If you do not, check
your configuration and verify that you have specified the correct serial port on both computers.

Commands and Syntax of ddb

The ddb debugger is much more gdb-like than previous versions, but it still has a syntax that is
very much its own (shared only with other ddb and kdb debuggers). Because ddb is substantially
different from what most developers are used to using, this section outlines the basic commands
and syntax.

The commands in ddb are generally in this form:

command[/switch] address[,count]

The switches can be one of those shown in Table 18-2 (page 150).

Table 19-2 Switch options in ddb

DescriptionSwitch

Print the location with line number if possible/A

Display as instruction with possible alternate machine-dependent
format

/I

Print the location being displayed/a

Display or process by bytes/b

Display low 8 bits as a character (nonprinting characters as octal) or
count instructions while executing (depends on instruction)

/c

150 When Things Go Wrong: Debugging the Kernel
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

DescriptionSwitch

Display as signed decimal/d

Display or process by half word (16 bits)/h

Display as an instruction/i

Display or process by long word (32 bits)/l

Display as unsigned hex with character dump for each line/m

Display in unsigned octal/o

Print cumulative instruction count and call tree depth at each call
or return statement

/p

Display in current radix, signed/r

Display the null-terminated string at address (nonprinting as octal)./s

Display in unsigned decimal or set breakpoint at a user space address
(depending on command).

/u

Display in unsigned hex/x

Display in signed hex/z

The ddb debugger has a rich command set that has grown over its lifetime. Its command set is
similar to that of ddb and kdb on other BSD systems, and their manual pages provide a fairly
good reference for the various commands. The command set for ddb includes the following
commands:

break[/u] addr

Set a breakpoint at the address specified by addr. Execution will stop when the
breakpoint is reached. The /u switch means to set a breakpoint in user space.

c or continue[/c]

Continue execution after reaching a breakpoint. The /c switch means to count
instructions while executing.

call

Call a function.

cond

Set condition breakpoints. This command is not supported on PowerPC.

cpu cpunum

Causes ddb to switch to run on a different CPU.

d or delete [addr|#]

Delete a breakpoint. This takes a single argument that can be either an address or a
breakpoint number.

When Things Go Wrong: Debugging the Kernel 151
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

dk

Equivalent to running kextstat while the target computer is running. This lists loaded
KEXTs, their load addresses, and various related information.

dl vaddr

Dumps a range of memory starting from the address given. The parameter vaddr is a
kernel virtual address. If vaddr is not specified, the last accessed address is used. See
also dr, dv.

dm

Displays mapping information for the last address accessed.

dmacro name

Delete the macro called name. See macro.

dp

Displays the currently active page table.

dr addr

Dumps a range of memory starting from the address given. The parameter address is
a physical address. If addr is not specified, the last accessed address is used. See also
dl, dv.

ds

Dumps save areas of all Mach tasks.

dv [addr [vsid]]

Dumps a range of memory starting from the address given. The parameter addr is a
virtual address in the address space indicated by vsid. If addr is not specified, the last
accessed address is used. Similarly, if vsid is not specified, the last vsid is used. See
also dl, dr.

dwatch addr

Delete a watchpoint. See watch.

dx

Displays CPU registers.

examine

See print.

gdb

Switches to gdb mode, allowing gdb to attach to the computer.

lt

On PowerPC only: Dumps the PowerPC exception trace table.

152 When Things Go Wrong: Debugging the Kernel
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

macro name command [; command ..]

Create a macro called name that executes the listed commands. You can show a macro
with the command show macro name or delete it with dmacro name.

match[/p]

Stop at the matching return instruction. If the /p switch is not specified, summary
information is printed only at the final return.

print[/AIabcdhilmorsuxz] addr1 [addr2 ...]

Print the values at the addresses given in the format specified by the switch. If no switch
is given, the last used switch is assumed. Synonymous with examine and x. Note that
some of the listed switches may work for examine and not for print.

reboot

Reboots the computer. Immediately. Without doing any file-system unmounts or other
cleanup. Do not do this except after a panic.

s or step

Single step through instructions.

search[/bhl] addr value [mask[,count]]

Search memory for value starting at addr. If the value is not found, this command can
wreak havoc. This command may take other formatting values in addition to those
listed.

set $name [=] expr

Sets the value of the variable or register named by name to the value indicated by expr.

show

Display system data. For a list of information that can be shown, type the show command
by itself. Some additional options are available for certain options, particularly show
all. For those suboptions, type show all by itself.

trace[/u]

Prints a stack backtrace. If the /u flag is specified, the stack trace extends to user space
if supported by architecture-dependent code.

until[/p]

Stop at the next call or return.

w or write[/bhl] addr expr1 [expr2 ...]

Writes the value of expr1 to the memory location stored at addr in increments of a byte,
half word, or long word. If additional expressions are specified, they are written to
consecutive bytes, half words, or long words.

watch addr[,size]

Sets a watchpoint on a particular address. Execution stops when the value stored at that
address is modified. Watch points are not supported on PowerPC.

When Things Go Wrong: Debugging the Kernel 153
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

WARNING
Watching addresses in wired kernel memory may cause
unrecoverable errors on i386.

x

Short for examine. See print.

xb

Examine backward. Execute the last examine command, but use the address previous
to the last one used (jumping backward by increments of the last width displayed).

xf

Examine forward. Execute the last examine command, but use the address following
the last one used (jumping by increments of the last width displayed).

The ddb debugger should seem relatively familiar to users of gdb, and its syntax was changed
radically from its predecessor, kdb, to be more gdb-like. However, it is still sufficiently different
that you should take some time to familiarize yourself with its use before attempting to debug
something with it. It is far easier to use ddb on a system whose memory hasn’t been scribbled
upon by an errant DMA request, for example.

154 When Things Go Wrong: Debugging the Kernel
© Apple Computer, Inc. 2004

C H A P T E R 1 9

Building and Debugging Kernels

Table RH-1 (page 155) describes the revisions to Inside Mac OS X: Kernel Programming.

Table RH-1 Document revision history

NotesDate

Minor corrections to kernel build informationSep. 2003

Added information relating to Power Macintosh G5 VM issues and debugging.
Clarified wait queue documentation (event_t).

Aug. 2003

Minor update release. Added index and tweaked wording throughout. Fixed
minor errata in debugging chapter. Added a few missing details in the security

Feb, 2003

chapter and cleaned up the equations presented. Corrected a few very minor
Mac OS X 10.2-specific details that weren’t caught during the first revision.

Mac OS X 10.2 update release. Changed information on KEXT management,
various small corrections (mainly wording improvements).

Aug. 2002

Full web release to coincide with WWDC. Corrected a few minor errata from
the previous release.

June 2002

Initial partial web release.Jan. 2002

R E V I S I O N H I S T O R Y

Document Revision History

155
© Apple Computer, Inc. 2004

156 © Apple Computer, Inc. 2004

R E V I S I O N H I S T O R Y

Document Revision History

Apple Mac OS X Publications
The following Apple publications have information that could be of interest to you if you are
programming in the kernel:

Hello Debugger Debugging a Device Driver with GDB (tutorial).

Hello IOKit: Creating a Device Driver With Project Builder (tutorial)

Hello Kernel: Creating a Kernel Extension With Project Builder (tutorial).

Inside Mac OS X: Accessing Hardware From Applications

Inside Mac OS X: I/O Kit Fundamentals

Inside Mac OS X: Network Kernel Extensions

Inside Mac OS X: System Overview

Inside Mac OS X: UNIX Porting Guide

Inside Mac OS X: Writing an I/O Kit Device Driver

Packaging Your KEXT for Distribution and Installation (tutorial).

General UNIX and Open Source Resources
A Quarter Century of UNIX. Peter H. Salus. Addison-Wesley, 1994.ISBN 0-201-54777-5.

Berkeley Software Distribution. CSRG, UC Berkeley. USENIX and O’Reilly, 1994.ISBN 1-56592-082-1.

The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary. Eric
S. Raymond. O’Reilly & Associates, 1999.ISBN 1-56592-724-9.

The New Hacker’s Dictionary. 3rd. Ed., Eric S. Raymond. MIT Press, 1996. ISBN 0-262-68092-0.

Open Sources: Voices from the Open Source Revolution. Edited by Chris DiBona, Sam Ockman &
Mark Stone. O’Reilly & Associates, 1999. ISBN 1-56592-582-3.

Proceedings of the First Conference on Freely Redistributable Software. Free Software Foundation. FSF,
1996. ISBN 1-882114-47-7.

Bibliography

157
© Apple Computer, Inc. 2004

The UNIX Desk Reference: The hu.man Pages. Peter Dyson. Sybex, 1996. ISBN 0-7821-1658-2.

The UNIX Programming Environment. Brian W. Kernighan, Rob Pike. Prentice Hall, 1984. ISBN
0-13-937681-X (paperback), ISBN 0-13-937699-2 (hardback).

BSD and UNIX Internals
Advanced Topics in UNIX: Processes, Files, and Systems. Ronald J. Leach. Wiley, 1996. ISBN
1-57176-159-4.

The Complete FreeBSD. Greg Lehey, Walnut Creek CDROM Books, 1999. ISBN 1-57176-246-9.

The Design and Implementation of the 4.4BSD Operating System. Marshall Kirk McKusick, et al.
Addison-Wesley, 1996. ISBN 0-201-54979-4.

The Design of the UNIX Operating System. Maurice J. Bach. Prentice Hall, 1986. ISBN 0-13-201799-7.

Linux Kernel Internals 2nd edition. Michael Beck, et al. Addison-Wesley, 1997. ISBN 0-201-33143-8.

Lions’ Commentary on UNIX 6th Edition with Source Code. John Lions. Peer-to-Peer, 1996. ISBN
1-57398-013-7.

Panic!: UNIX System Crash Dump Analysis. Chris Drake, Kimberly Brown. Prentice Hall, 1995.
ISBN 0-13-149386-8.

UNIX Internals: The New Frontiers. Uresh Vahalia. Prentice-Hall, 1995. ISBN 0-13-101908-2.

UNIX Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel
Programmers. Curt Schimmel. Addison-Wesley, 1994. ISBN 0-201-63338-8.

Optimizing PowerPC Code. Gary Kacmarcik. Addison-Wesley Publishing Company, 1995. ISBN
0-201-40839-2.

Berkeley Software Architecture Manual 4.4BSD Edition. William Joy, Robert Fabry, Samuel Leffler,
M. Kirk McKusick, Michael Karels. Computer Systems Research Group, Computer Science
Division, Department of Electrical Engineering and Computer Science, University of California,
Berkeley.

Mach
CMU Computer Science: A 25th Anniversary Commemorative. Richard F. Rashid, Ed. ACM Press,
1991. ISBN 0-201-52899-1.

Load Distribution, Implementation for the Mach Microkernel. Dejan S. Milojicic. Vieweg Verlag, 1994.
ISBN 3-528-05424-7.

Programming under Mach. Boykin, et al. Addison-Wesley, 1993. ISBN 0-201-52739-1.

Mach Workshop Proceedings. USENIX Association. October, 1990.

Mach Symposium Proceedings.USENIX Association. November, 1991.

Mach III Symposium Proceedings. USENIX Association. April, 1993, ISBN 1-880446-49-9.

Mach 3 Documentation Series. Open Group Research Institute (RI), now Silicomp:
Final Draft Specifications OSF/1 1.3 Engineering Release. RI. May 1993.

158 © Apple Computer, Inc. 2004

Bibliography

OSF Mach Final Draft Kernel Principles. RI. May, 1993.
OSF Mach Final Draft Kernel Interfaces. RI. May, 1993.
OSF Mach Final Draft Server Writer’s Guide. RI. May, 1993.
OSF Mach Final Draft Server Library Interfaces, RI, May, 1993.

Research Institute Microkernel Series. Open Group Research Institute (RI):
Operating Systems Collected Papers. Volume I. RI. March, 1993.
Operating Systems Collected Papers. Volume II. RI. October,1993.
Operating Systems Collected Papers. Volume III. RI. April, 1994.
Operating Systems Collected Papers. Volume IV. RI. October, 1995.

Mach: A New Kernel Foundation for UNIX Development. Proceedings of the Summer 1986 USENIX
Conference. Atlanta, GA., http://www.usenix.org.

UNIX as an Application Program. Proceedings of the Summer 1990 USENIX Conference. Anaheim,
CA., http://www.usenix.org.

OSF RI papers (Spec ‘93):
OSF Mach Final Draft Kernel Interfaces
OSF Mach Final Draft Kernel Principles
OSF Mach Final Draft Server Library Interfaces
OSF Mach Final Draft Server Writer's Guide
OSF Mach Kernel Interface Changes

OSF RI papers (Spec ‘94):
OSF RI 1994 Mach Kernel Interfaces Draft
OSF RI 1994 Mach Kernel Interfaces Draft (Part A)
OSF RI 1994 Mach Kernel Interfaces Draft (Part B)
OSF RI 1994 Mach Kernel Interfaces Draft (Part C)

OSF RI papers (miscellaneous):
Debugging an object oriented system using the Mach interface
Unix File Access and Caching in a Multicomputer Environment
Untyped MIG: The Protocol
Untyped MIG: What Has Changed and Migration Guide
Towards a World-Wide Civilization of Objects
A Preemptible Mach Kernel
A Trusted, Scalable, Real-Time Operating System Environment
Mach Scheduling Framework

Networking
UNIX Network Programming. Volume 1, Networking APIs: Sockets and XTI. W. Richard Stevens.
Prentice Hall, 1998, ISBN 0-13-490012-X.

UNIX Network Programming. Volume 2, Interprocess Communications. W. Richard Stevens. Prentice
Hall, 1998. ISBN 0-13-081081-9.

TCP/IP Illustrated. Volume 1, The Protocols. W. Richard Stevens. Addison-Wesley, 1994. ISBN
0-201-63346-9.

TCP/IP Illustrated. Volume 2, The Implementation. W. Richard Stevens. Addison-Wesley, 1995.
ISBN 0-201-63354-X.

159
© Apple Computer, Inc. 2004

Bibliography

http://www.usenix.org
http://www.usenix.org

TCP/IP Illustrated. Volume 3, TCP for Transactions, HTTP, NNTP, and the UNIX Domain Protocols.
W. Richard Stevens. Addison-Wesley, 1996. ISBN 0-201-63495-3.

Operating Systems
Advanced Computer Architecture: Parallelism, Scalability, Programmability. Kai Hwang. McGraw-Hill,
1993. ISBN 0-07-031622-8.

Concurrent Systems: An Integrated Approach to Operating Systems, Database, and Distributed Systems.
Jean Bacon. Addison-Wesley, 1993. ISBN 0-201-41677-8.

Distributed Operating Systems. Andrew S. Tanenbaum. Prentice Hall, 1995. ISBN 0-13-219908-4.

Distributed Operating Systems: The Logical Design. A. Goscinski. Addison-Wesley, 1991. ISBN
0-201-41704-9.

Distributed Systems, Concepts, and Designs. G. Coulouris, et al. Addison-Wesley, 1994. ISBN
0-201-62433-8.

Operating System Concepts. 4th Ed., Abraham Silberschatz, Peter Galvin. Addison-Wesley, 1994.
ISBN 0-201-50480-4.

POSIX
Information Technology-Portable Operating System Interface (POSIX): System Application Program
Interface (API) (C Language). ANSI/IEEE Std. 1003.1. 1996 Edition. ISO/IEC 9945-1: 1996. IEEE
Standards Office. ISBN 1-55937-573-6.

Programming with POSIX Threads. David R. Butenhof. Addison Wesley Longman, Inc., 1997. ISBN
0-201-63392-2.

Programming
Advanced Programming in the UNIX Environment. Richard W. Stevens. Addison-Wesley, 1992.
ISBN 0-201-56317-7.

Debugging with GDB: The GNU Source-Level Debugger Eighth Edition for GDB version 5.0. Richard
Stallman et al. Cygnus Support.
http://developer.apple.com/documentation/DeveloperTools/gdb/gdb/gdb_toc.html.

Open Source Development with CVS, Karl Franz Fogel. Coriolis Group, 1999. ISBN: 1-57610-490-7.

Porting UNIX Software: From Download to Debug. Greg Lehey. O’Reilly, 1995. ISBN 1-56592-126-7.

The Standard C Library. P.J. Plauger. Prentice Hall, 1992. ISBN 0-13-131509-9.

Websites and Online Resources
Apple’s developer website (http://www.apple.com/developer/) is a general repository for
developer documentation. Additionally, the following sites provide more domain-specific
information.

Apple’s Public Source projects and Darwin

http://www.publicsource.apple.com

160 © Apple Computer, Inc. 2004

Bibliography

http://developer.apple.com/documentation/DeveloperTools/gdb/gdb/gdb_toc.html
http://www.apple.com/developer/
http://www.publicsource.apple.com

The Berkeley Software Distribution (BSD)
http://www.FreeBSD.org
http://www.NetBSD.org
http://www.OpenBSD.org

BSD Networking
http://www.kohala.com/start/

CVS (Concurrent Versions System)
http://www.publicsource.apple.com/tools/cvs/cederquist

Embedded C++
http://www.caravan.net/ec2plus

GDB, GNUPro Toolkit 99r1 Documentation
http://www.redhat.com/docs/manuals/gnupro/

The Internet Engineering Task Force (IETF)
http://www.ietf.org

jam
http://www.perforce.com/jam/jam.html

The PowerPC CPU
http://www.motorola.com/

The Single UNIX Specification Version 2
http://www.opengroup.org/onlinepubs/007908799

Stackable File Systems
http://www.isi.edu/~johnh/RESEARCH/stacking_faq.html

The USENIX Association; USENIX Proceedings
http://www.usenix.org
http://www.usenix.org/publications/library/

Security and Cryptography
Applied Cryptography: Protocols, Algorithms, and Source Code in C. Bruce Schneier. John Wiley &
Sons, 1994. ISBN 0-471-59756-2.

comp.security newsgroup (news:comp.security).

comp.security.unix newsgroup (news:comp.security.unix).

Computer Security. Dieter Gollmann. John Wiley and Son Ltd, 1999. ISBN 0-471-97844-2.

Foundations of Cryptography. Oded Goldreich. Cambridge University Press, 2001. ISBN
0-521-79172-3.

Secrets and Lies: Digital Security in a Networked World. Bruce Schneier. John Wiley & Sons, 2000.
ISBN 0-471-25311-1.

161
© Apple Computer, Inc. 2004

Bibliography

http://www.FreeBSD.org
http://www.NetBSD.org
http://www.OpenBSD.org
http://www.kohala.com/start/
http://www.publicsource.apple.com/tools/cvs/cederquist
http://www.caravan.net/ec2plus
http://www.redhat.com/docs/manuals/gnupro/
http://www.ietf.org
http://www.perforce.com/jam/jam.html
http://www.motorola.com/
http://www.opengroup.org/onlinepubs/007908799
http://www.isi.edu/~johnh/RESEARCH/stacking_faq.html
http://www.usenix.org
http://www.usenix.org/publications/library/
news:comp.security
news:comp.security.unix

162 © Apple Computer, Inc. 2004

Bibliography

abstraction (v) The process of separating the
interface to some functionality from the underlying
implementation in such a way that the
implementation can be changed without changing
the way that piece of code is used. (n) The API
(interface) for some piece of functionality that has
been separated in this way.

address space The virtual address ranges available
to a given task (note: the task may be the kernel). In
Mac OS X, processes do not share the same address
space. The address spaces of multiple processes can,
however, point to the same physical address ranges.
This is referred to as shared memory.

anonymous memory Virtual memory backed by
the default pager to swap files, rather than by a
persistent object. Anonymous memory is
zero-initialized and exists only for the life of the
task. See also default pager; task.

API (application programming interface) The
interface (calling convention) by which an
application program accesses a service. This service
may be provided by the operating system, by
libraries, or by other parts of the application.

Apple Public Source License Apple’s Open
Source license, available at
http://www.apple.com/publicsource. Darwin is
distributed under this license. See also Open Source.

AppleTalk A suite of network protocols that is
standard on Macintosh computers.

ASCII (American Standard Code for Information
Interchange) A 7-bit character set (commonly
represented using 8 bits) that defines 128 unique
character codes. See also Unicode.

BSD (Berkeley Software Distribution Formerly
known as the Berkeley version of UNIX, BSD is now
simply called the BSD operating system. The BSD
portion of the Mac OS X kernel is based on FreeBSD,
a version of BSD.

bundle A directory that stores executable code
and the software resources related to that code.
Applications, plug-ins, and frameworks represent
types of bundles. Except for frameworks, bundles
are presented by the Finder as if they were a single
file.

Carbon An application environment in Mac OS
X that features a set of programming interfaces
derived from earlier versions of the Mac OS. The
Carbon APIs have been modified to work properly
with Mac OS X. Carbon applications can run in Mac
OS X, Mac OS 9, and all versions of Mac OS 8 later
than Mac OS 8.1 (with appropriate libraries).

Classic An application environment in Mac OS X
that lets users run non-Carbon legacy Mac OS
software. It supports programs built for both Power
PC and 68K processor architectures.

clock An object used to abstract time in Mach.

Cocoa An advanced object-oriented development
platform on Mac OS X. Cocoa is a set of frameworks
with programming interfaces in both Java and
Objective-C. It is based on the integration of
OPENSTEP, Apple technologies, and Java.

condition variable Essentially a wait queue with
additional locking semantics. When a thread sleeps
waiting for some event to occur, it releases a related
lock so that another thread can cause that event to
occur. When the second thread posts the event, the
first thread wakes up, and, depending on the
condition variable semantics used, either takes the
lock immediately or begins waiting for the lock to
become available.

console (1) A text-based login environment that
also displays system log messages, kernel panics,
and other information. (2) A special window in Mac
OS X that displays messages that would be printed
to the text console if the GUI were not in use. This
window also displays output written to the standard

163
© Apple Computer, Inc. 2004

Glossary

http://www.apple.com/publicsource

error and standard output streams by applications
launched from the Finder. (3) An application by the
same name that displays the console window.

control port In Mach, access to the control port
allows an object to be manipulated. Also called the
privileged port. See also port; name port.

cooperative multitasking A multitasking
environment in which a running program can
receive processing time only if other programs allow
it; each application must give up control of the
processor cooperatively in order to allow others to
run. Mac OS 9 is a cooperative multitasking
environment. See also preemptive multitasking.

copy-on-write A delayed copy optimization used
in Mach. The object to be copied is marked
temporarily read-only. When a thread attempts to
write to any page in that object, a trap occurs, and
the kernel copies only the page or pages that are
actually being modified. See also thread.

daemon A long-lived process, usually without a
visible user interface, that performs a system-related
service. Daemons are usually spawned
automatically by the system and may either live
forever or be regenerated at intervals. They may
also be spawned by other daemons.

Darwin The core of Mac OS X, Darwin is an Open
Source project that includes the Darwin kernel, the
BSD commands and C libraries, and several
additional features.The Darwin kernel is
synonymous with the Mac OS X kernel.

default pager In Mach, one of the built-in pagers.
The default pager handles nonpersistent
(anonymous) memory. See also anonymous
memory; vnode pager; pager.

demand paging An operating-system facility that
brings pages of data from disk into physical memory
only as they are needed.

DLIL (Data Link Interface Layer) The part of the
Mac OS X kernel’s networking infrastructure that
provides the interface between protocol handling
and network device drivers in the I/O Kit. A
generalization of the BSD “ifnet” architecture.

DMA (direct memory access) A means of
transferring data between host memory and a
peripheral device without requiring the host
processor to move the data itself. This reduces

processor overhead for I/O operations and may
reduce contention on the processor bus.

driver Software that deals with getting data to
and from a device, as well as control of that device.
In the I/O Kit, an object that manages a piece of
hardware (a device), implementing the appropriate
I/O Kit abstractions for that device. See also object.

DVD (Digital Versatile Disc) Originally, Digital
Video Disc. An optical storage medium that
provides greater capacity and bandwidth than
CD-ROM; DVDs are frequently used for multimedia
as well as data storage.

dyld (dynamic link editor) A utility that allows
programs to dynamically load (and link to) needed
functions.

EMMI (External Memory Management Interface)
Mach’s interface to memory objects that allows their
contents to be contributed by user-mode tasks. See
also external pager.

Ethernet A family of high-speed local area
network technologies in common use. Some
common variants include 802.3 and 802.11 (Airport).

exception An interruption to the normal flow of
program control, caused by the program itself or
by executing an illegal instruction.

exception port A Mach port on which a task or
thread receives messages when exceptions occur.

external pager A module that manages the
relationship between virtual memory and a backing
store. External pagers are clients of Mach’s EMMI.
The pager API is currently not exported to user
space. The built-in pagers in Mac OS X are the
default pager, the device pager, and the vnode
pager. See also EMMI (External Memory
Management Interface).

family In the I/O Kit, a family defines a collection
of software abstractions that are common to all
devices of a particular category (for example, PCI,
storage, USB). Families provide functionality and
services to drivers. See also driver.

FAT (file allocation table) A data structure used
in the MS-DOS file system. Also synonymous with
the file system that uses it. The FAT file system is
also used as part of Microsoft Windows and has
been adopted for use inside devices such as digital
cameras.

164 © Apple Computer, Inc. 2004

G L O S S A R Y

fat files Executable files containing object code
for more than one machine architecture.

FIFO (first-in first-out) A data processing scheme
in which data is read in the order in which it was
written, processes are run in the order in which they
were scheduled, and so forth.

file descriptor A per-process unique, nonnegative
integer used to identify an open file (or socket).

firewall Software (or a computer running such
software) that prevents unauthorized access to a
network by users outside of the network.

fixed-priority policy In Mach, a scheduling policy
in which threads execute for a certain quantum of
time, and then are put at the end of the queue of
threads of equal priority.

fork (1) A stream of data that can be opened and
accessed individually under a common filename.
The Macintosh Standard and Extended file systems
store a separate “data” fork and a “resource” fork
as part of every file; data in each fork can be
accessed and manipulated independently of the
other. (2) In BSD, fork is a system call that creates
a new process.

framework A bundle containing a dynamic shared
library and associated resources, including image
files, header files, and documentation. Frameworks
are often used to provide an abstraction for
manipulating device driver families from
applications.

FreeBSD A variant of the BSD operating system.
See http://www.freebsd.org for details.

gdb (GNU debugger) gdb is a powerful,
source-level debugger with a command-line
interface. gdb is a popular Open Source debugger
and is included with the Mac OS X developer tools.

HFS (hierarchical file system) The Mac OS
Standard file system format, used to represent a
collection of files as a hierarchy of directories
(folders), each of which may contain either files or
folders themselves.

HFS+ The Mac OS Extended file system format.
This file system format was introduced as part of
Mac OS 8.1, adding support for filenames longer
than 31 characters, Unicode representation of file
and directory names, and efficient operation on
larger disks.

host (1) The computer that is running (is host to)
a particular program or service. The term is usually
used to refer to a computer on a network. (2) In
debugging, the computer that is running the
debugger itself. In this context, the target is the
machine running the application, kernel, or driver
being debugged.

host processor The microprocessor on which an
application program resides. When an application
is running, the host processor may call other,
peripheral microprocessors, such as a digital signal
processor, to perform specialized operations.

IDE (integrated development environment) An
application or set of tools that allows a programmer
to write, compile, edit, and in some cases test and
debug within an integrated, interactive
environment.

inheritance attribute In Mach, a value indicating
the degree to which a parent process and its child
process share pages in the parent process’s address
space. A memory page can be inherited as
copy-on-write, shared, or not at all.

in-line data Data that’s included directly in a Mach
message, rather than referred to by a pointer. See
also out-of-line data.

info plist See information property list.

information property list A special form of
property list with predefined keys for specifying
basic bundle attributes and information of interest,
such as supported document types and offered
services. See also bundle; property list.

interrupt service thread A thread running in
kernel space for handling I/O that is triggered by
an interrupt, but does not run in an interrupt
context. Also called an I/O service thread.

I/O (input/output) The exchange of data between
two parts of a computer system, usually between
system memory and a peripheral device.

I/O Kit Apple’s object-oriented I/O development
model. The I/O Kit provides a framework for
simplified driver development, supporting many
families of devices. See also family.

I/O service thread See interrupt service thread.

IPC (interprocess communication) The transfer
of information between processes or between the
kernel and a process.

G L O S S A R Y

165
© Apple Computer, Inc. 2004

http://www.freebsd.org

IPL (interrupt priority level) A means of basic
synchronization on uniprocessor systems in
traditional BSD systems, set using the spl macro.
Interrupts with lower priority than the current IPL
will not be acted upon until the IPL is lowered. In
many parts of the kernel, changing the IPL in Mac
OS X is not useful as a means of synchronization.
New use of spl macros is discouraged. See also spl
(set priority level).

KDP The kernel shim used for communication
with a remote debugger (gdb).

Kerberos An authentication system based on
symmetric key cryptography. Used in MIT Project
Athena and adopted by the Open Software
Foundation (OSF).

kernel The complete Mac OS X core
operating-system environment that includes Mach,
BSD, the I/O Kit, file systems, and networking
components.

kernel crash An unrecoverable system failure in
the kernel caused by an illegal instruction, memory
access exception, or other failure rather than
explicitly triggered as in a panic. See also panic.

kernel extension See KEXT (kernel extension).

kernel mode See supervisor mode.

kernel panic See panic.

kernel port A Mach port whose receive right is
held by the kernel. See also task port; thread port.

KEXT (kernel extension) A bundle that extends
the functionality of the kernel. The I/O Kit, File
system, and Networking components are designed
to allow and expect the creation and use of KEXTs.

KEXT binary A file (or files) in Mach-O format,
containing the actual binary code of a KEXT. A
KEXT binary is the minimum unit of code that can
be loaded into the kernel. Also called a kernel
module or KMOD. See also KEXT (kernel
extension); Mach-O.

key signing In public key cryptography, to
(electronically) state your trust that a public key
really belongs to the person who claims to own it,
and potentially that the person who claims to own
it really is who he or she claims to be.

KMOD (kernel module) See KEXT binary.

lock A basic means of synchronizing multiple
threads. Generally only one thread can “hold” a
lock at any given time. While a thread is holding
the lock, any other thread that tries to take it will
wait, either by blocking or by spinning, depending
on the nature of the lock. Some lock variants such
as read-write locks allow multiple threads to hold
a single lock under certain conditions.

Mach The lowest level of the Mac OS X kernel.
Mach provides such basic services and abstractions
as threads, tasks, ports, IPC, scheduling, physical
and virtual address space management, VM, and
timers.

Mach-O Mach object file format. The preferred
object file format for Mac OS X.

Mach server A task that provides services to
clients, using a MIG-generated RPC interface. See
also MIG (Mach interface generator).

main thread By default, a process has one thread,
the main thread. If a process has multiple threads,
the main thread is the first thread in the process. A
user process can use the POSIX thread API to create
other user threads.

makefile A makefile details the files,
dependencies, and rules by which an executable
application is built.

memory-mapped files A facility that maps virtual
memory onto a physical file. Thereafter, any access
to that part of virtual memory causes the
corresponding page of the physical file to be
accessed. The contents of the file can be changed by
changing the contents in memory.

memory object An object managed by a pager
that represents the memory, file, or other storage
that backs a VM object. See also pager.

memory protection A system of memory
management in which programs are prevented from
being able to modify or corrupt the memory
partition of another program, usually through the
use of separate address spaces.

message A unit of data sent by one task or thread
that is guaranteed to be delivered atomically to
another task or thread. In Mach, a message consists
of a header and a variable-length body. Some system
services are invoked by passing a message from a
thread to the Mach port representing the task that
provides the desired service.

166 © Apple Computer, Inc. 2004

G L O S S A R Y

microkernel A kernel implementing a minimal
set of abstractions. Typically, higher-level OS
services such as file systems and device drivers are
implemented in layers above a microkernel, possibly
in trusted user-mode servers. Mac OS X is a hybrid
between microkernel and monolithic kernel
architectures. See also monolithic kernel.

MIG (Mach interface generator) (1) A family of
software that generates and supports the use of a
procedure call interface to Mach’s system of
interprocess communication. (2) The interface
description language supported by MIG.

monolithic kernel A kernel architecture in which
all pieces of the kernel are closely intertwined. A
monolithic kernel provides substantial performance
improvements. It is difficult to evolve the individual
components independently, however. The Mac OS
X kernel is a hybrid of the monolithic and
microkernel models. See also microkernel.

multicast A process in which a single packet can
be addressed to multiple recipients. Multicast is
used, for example, in streaming video, in which
many megabytes of data are sent over the network.

multihoming The ability to have multiple network
addresses in one computer, usually on different
networks. For example, multihoming might be used
to create a system in which one address is used to
talk to hosts outside a firewall and the other to talk
to hosts inside; the computer provides facilities for
passing information between the two.

multitasking The concurrent execution of multiple
programs. Mac OS X uses preemptive multitasking.
Mac OS 9 uses cooperative multitasking.

mutex See mutex lock (mutual exclusion lock).

mutex lock (mutual exclusion lock) A type of lock
characterized by putting waiting threads to sleep
until the lock is available.

named (memory) entry A handle (a port) to a
mappable object backed by a memory manager. The
object can be a region or a memory object.

name port In Mach, access to the name port allows
non-privileged operations against an object (for
example, obtaining information about the object).
In effect, it provides a name for the object without
providing any significant access to the object. See
also port; control port.

named region In Mach, a form of named memory
entry that provides a form of memory sharing.

namespace An agreed-upon context in which
names (identifiers) can be defined. Within a given
namespace, all names must be unique.

NAT (network address translation) A scheme that
transforms network packets at a gateway so network
addresses that are valid on one side of the gateway
are translated into addresses that are valid on the
other side.

network A group of hosts that can communicate
with each other.

NFS (network file system) A commonly used file
server protocol often found in UNIX and
UNIX-based environments.

NKE (network kernel extension) A type of KEXT
that provides a way to extend and modify the
networking infrastructure of Mac OS X dynamically
without recompiling or relinking the kernel.

NMI (nonmaskable interrupt) An interrupt
produced by a particular keyboard sequence or
button that cannot be blocked in software. It can be
used to interrupt a hung system, for example to
drop into a debugger.

nonsimple message In Mach, a message that
contains either a reference to a port or a pointer to
data. See also simple message.

notify port A special Mach port that is part of a
task. A task’s notify port receives messages from
the kernel advising the task of changes in port access
rights and of the status of messages it has sent.

nub An I/O Kit object that represents a point of
connection for a device or logical service. Each nub
provides access to the device or service it represents,
and provides such services as matching, arbitration,
and power management. It is most common that a
driver publishes one nub for each individual device
or service it controls; it is possible for a driver that
vends only a single device or service to act as its
own nub.

NVRAM (nonvolatile RAM) RAM storage that
retains its state even when the power is off. See also
RAM (random-access memory).

object (1) A collection of data. (2) In Mach, a
collection of data, with permissions and ownership.

G L O S S A R Y

167
© Apple Computer, Inc. 2004

(3) In object-oriented programming, an instance of
a class.

OHCI (Open Host Controller Interface) The
register-level standards that are used by most USB
and Firewire controller chips.

Open Source Software that includes freely
available access to source code, redistribution,
modification, and derived works. The full definition
is available at http://www.opensource.org.

Open Transport A communications architecture
for implementing network protocols and other
communication features on computers running
classic Mac OS. Open Transport provides a set of
programming interfaces that supports, among other
things, both the AppleTalk and TCP/IP protocols.

out-of-line data Data that’s passed by reference
in a Mach message, rather than being included in
the message. See also in-line data.

packet An individual piece of information sent
on a network.

page (n) (1) The largest block of virtual address
space for which the underlying physical address
space is guaranteed contiguous—in other words,
the unit of mapping between virtual and physical
addresses. (2) logical page size: The minimum unit
of information that an anonymous pager transfers
between system memory and the backing store. (3)
physical page size: The unit of information treated
as a unit by a hardware MMU. The logical page size
must be at least as large as the physical page size
for hardware-based memory protection to be
possible. (v) To move data between memory and a
backing store.

pager A module responsible for providing the
data for the pages of a memory object. See also
default pager; vnode pager.

panic An unrecoverable system failure explicitly
triggered by the kernel with a call to panic. See also
kernel crash.

PEF (Preferred Executable Format) The format of
executable files used for applications and shared
libraries in Mac OS 9; supported in Mac OS X. The
preferred format for Mac OS X is Mach-O.

physical address An address to which a hardware
device, such as a memory chip, can directly respond.
Programs, including the Mach kernel, use virtual
addresses that are translated to physical addresses

by mapping hardware controlled by the Mach
kernel.

pmap Part of Mach VM that provides an abstract
way to set and fetch virtual to physical mappings
from hardware. The pmap system is the
machine-dependent layer of the VM system.

port In Mach, a secure unidirectional channel for
communication between tasks running on a single
system. In IP transport protocols, an integer
identifier used to select a receiving service for an
incoming packet, or to specify the sender of an
outgoing packet.

port name In Mach, an integer index into a port
namespace; a port right is specified with respect to
its port name. See also port rights.

port rights In Mach, the ability to send to or receive
from a Mach port. Also known as port access rights.

port set In Mach, a set of zero or more Mach ports.
A thread can receive messages sent to any of the
ports contained in a port set by specifying the port
set as a parameter to msg_receive().

POSIX (Portable Operating System Interface) A
standard that defines a set of operating-system
services. It is supported by ISO/IEC, IEEE, and The
Open Group.

preemption The act of interrupting a currently
running program in order to give time to another
task.

preemptive multitasking A type of multitasking
in which the operating system can interrupt a
currently running task in order to run another task,
as needed. See also cooperative multitasking.

priority In scheduling, a number that indicates
how likely a thread is to run. The higher the thread’s
priority, the more likely the thread is to run. See
also scheduling policy.

process A BSD abstraction for a running program.
A process’s resources include an address space,
threads, and file descriptors. In Mac OS X, a process
is based on one Mach task and one or more Mach
threads.

process identifier (PID), A number that uniquely
identifies a process. Also called a process ID.

programmed I/O I/O in which the CPU
accomplishes data transfer with explicit load and

168 © Apple Computer, Inc. 2004

G L O S S A R Y

http://www.opensource.org

store instructions to device registers, rather than
DMA, and without the use of interrupts. This data
transfer is often done in a byte-by-byte, or
word-by-word fashion. Also known as direct or
polled I/O. See also DMA (direct memory access).

property list A textual way to represent data.
Elements of the property list represent data of
certain types, such as arrays, dictionaries, and
strings. System routines allow programs to read
property lists into memory and convert the textual
data representation into “real” data. See also
information property list.

protected memory See memory protection.

protocol handler A network module that extracts
data from input packets (giving the data to
interested programs) and inserts data into output
packets (giving the output packet to the appropriate
network device driver).

pthreads The POSIX threads implementation. See
also POSIX (Portable Operating System Interface);
thread.

quantum The fixed amount of time a thread or
process can run before being preempted.

RAM (random-access memory) Memory that a
microprocessor can either read from or write to.

real-time performance Performance characterized
by guaranteed worst-case response times. Real-time
support is important for applications such as
multimedia.

receive rights In Mach, the ability to receive
messages on a Mach port. Only one task at a time
can have receive rights for any one port. See also
send rights.

remote procedure call See RPC (remote procedure
call).

reply port A Mach port associated with a thread
that is used in remote procedure calls.

ROM (read-only memory) Memory that cannot
be written to.

root (1) An administrative account with special
privileges. For example, only the root account can
load kernel extensions.(2) In graph theory, the base
of a tree. (3) root directory: The base of a file system
tree. (4) root file system: The primary file system off

which a computer boots, so named because it
includes the root node of the file system tree.

routine In Mach, a remote procedure call that
returns a value. This can be used for synchronous
or asynchronous operations. See also simpleroutine.

RPC (remote procedure call) An interface to IPC
that appears (to the caller) as an ordinary function
call. In Mach, RPCs are implemented using
MIG-generated interface libraries and Mach
messages.

scheduling The determination of when each
process or task runs, including assignment of start
times.

scheduling policy In Mach, how the thread’s
priority is set and under what circumstances the
thread runs. See also priority.

SCSI (Small Computer Systems Interface) A
standard communications protocol used for
connecting devices such as disk drives to computers.
Also, a family of physical bus designs and
connectors commonly used to carry SCSI
communication.

semaphore Similar to a lock, except that a finite
number of threads can be holding a semaphore at
the same time. See also lock.

send rights In Mach, the ability to send messages
to a Mach port. Many tasks can have send rights for
the same port. See also receive rights.

session key In cryptography, a temporary key
that is only used for one message, one connection
session, or similar. Session keys are generally treated
as shared secrets, and are frequently exchanged over
a channel encrypted using public key cryptography.

shadow object In Mach VM, a memory object that
holds modified pages that originally belonged to
another memory object. This is used when an object
that was duplicated in a copy-on-write fashion is
modified. If a page is not found in this shadow
object, the original object is referenced.

simple message In Mach, a message that contains
neither references to ports nor pointers to data. See
also nonsimple message.

simpleroutine In Mach, a remote procedure call
that does not return a value, and has no out or
inout parameters. This can be used for
asynchronous operations. See also routine.

G L O S S A R Y

169
© Apple Computer, Inc. 2004

SMP (symmetric multiprocessing) A system
architecture in which two or more processors are
managed by one kernel, share the same memory,
have equal access to I/O devices, and in which any
task, including kernel tasks, can run on any
processor.

spinlock Any of a family of lock types
characterized by continuously polling to see if a
lock is available, rather than putting the waiting
thread to sleep.

spin/sleep lock Any of a family of lock types
characterized by some combination of the behaviors
of spinlocks and mutex (sleep) locks.

spl (set priority level) A macro that sets the current
IPL. Interrupts with lower priority than the current
IPL will not be acted upon until the IPL is lowered.
The spl macros have no effect in many parts of Mac
OS X, so their use is discouraged as a means of
synchronization in new programming except when
modifying code that already uses spl macros. See
also IPL (interrupt priority level).

socket (1) In a user process, a file descriptor that
has been allocated using socket(2). (2) In the
kernel, the data structure allocated when the
kernel’s implementation of the socket(2) call is
made. (3) In AppleTalk protocols, a socket serves
the same purpose as a port in IP transport protocols.

stackable file system A file-system layer that has
as its input the standard VFS file-system interfaces
and that may call other file-system layers beneath
it to implement file-system operations. All stackable
file systems support the same interface and can be
layered on top of one another to add unique
functionality.

submap A collection of mappings in the VM
system that is shared among multiple Mach tasks.

supervisor mode Also known as kernel mode, the
processor mode in which certain privileged
instructions can be executed, including those related
to page table management, cache management,
clock setting, and so on.

symmetric multiprocessing See SMP (symmetric
multiprocessing).

task A Mach abstraction, consisting of a virtual
address space and a port namespace. A task itself
performs no computation; rather, it is the framework
in which threads run. See also thread.

task port A kernel port that represents a task and
is used to manipulate that task. See also kernel port;
thread port.

TCP/IP (Transmission Control Protocol/Internet
Protocol) An industry standard protocol used to
deliver messages between computers over the
network. TCP/IP is the primary networking
protocol used in Mac OS X.

thread The unit of program execution. A thread
consists of a program counter, a set of registers, and
a stack pointer. See also task.

thread port A kernel port that represents a thread
and is used to manipulate that thread. See also
kernel port; task port.

thread-safe code Code that can be executed safely
by multiple threads simultaneously.

time-sharing policy In Mach, a scheduling policy
in which a thread’s priority is raised and lowered
to balance its resource consumption against other
timesharing threads.

UDF (Universal Disk Format) The file system
format used in DVD disks.

UFS (UNIX file system) An industry standard
file system format used in UNIX and similar
operating systems such as BSD. UFS in Mac OS X
is a derivative of 4.4BSD UFS.

Unicode A 16-bit character set that defines unique
character codes for characters in a wide range of
languages. Unlike ASCII, which defines 128 distinct
characters typically represented in 8 bits, there are
as many as 65,536 distinct Unicode characters that
represent the unique characters used in most foreign
languages.

UPL (universal page list) A data structure used
when communicating with the virtual memory
system. UPLs can be used to change the behavior
of pages with respect to caching, permissions,
mapping, and so on.

USB (Universal Serial Bus) A multiplatform bus
standard that can support up to 127 peripheral
devices, including printers, digital cameras,
keyboards and mice, and storage devices.

UTF-8 (Unicode Transformation Format 8) A
format used to represent a sequence of 16-bit
Unicode characters with an equivalent sequence of
8-bit characters, none of which are zero. This

170 © Apple Computer, Inc. 2004

G L O S S A R Y

sequence of characters can be represented using an
ordinary C language string.

VFS (virtual file system) A set of standard
internal file-system interfaces and utilities that
facilitate support for additional file systems. VFS
provides an infrastructure for file systems built into
the kernel.

virtual address An address as viewed from the
perspective of an application. Each task has its own
range of virtual addresses, beginning at address
zero. The Mach VM system makes the CPU
hardware map these addresses onto physical
memory. See also physical address.

virtual memory A system in which addresses as
seen by software are not the same as addresses seen
by the hardware. This provides support for memory
protection, reduces the need for code relocatability,
and allows the operating system to provide the
illusion to each application that it has resources
much larger than those that could actually be backed
by RAM.

VM See virtual memory.

vnode An in-memory data structure containing
information about a file.

vnode pager In Mach, one of the built-in pagers.
The vnode pager maps files into memory objects.
See also default pager; pager.

work loop The main loop of an application or
KEXT that waits repeatedly for incoming events
and dispatches them.

XML (Extensible Markup Language) A dialect of
SGML (Standard Generalized Markup Language),
XML provides a metalanguage containing rules for
constructing specialized markup languages. XML
users can create their own tags, making XML very
flexible.

G L O S S A R Y

171
© Apple Computer, Inc. 2004

172 © Apple Computer, Inc. 2004

G L O S S A R Y

Symbols

_FREE function 67
_FREE function 67
_MALLOC function 67
_MALLOC function 67

Numerals

3DES cipher (triple-DES) 29, 31

A

AbsoluteTime data type 127, 128
absolutetime_to_nanoseconds function 128
Address Resolution Protocol (ARP) 146
address space

as Mach kernel abstraction 50
and virtual memory 57
kernel space versus user space 103

AES cipher 31
AFS (Andrew FIle System) 97
Andrew file system 97
anonymous memory 53
Apple publications 13
Apple websites 13
ARP (Address Resolution Protocol) 146
assert_wait function 129
atomic operations 119

B

bandwidth 104, 105
binary semaphores 120
blocking 123
blowfish cipher 29, 31

boot option handling 130
bootstrap context

developer impact of 83, 84
user impact of 82

bootstrap contexts 81, 83
bootstrap port 106
bootstrap task 81, 106
bootstrap_cmds package 142
boundary crossing 103, 117, 118

choosing a method 104, 105
security considerations of 104

BSD
overview of 93, 96

buffer cache 96
buffer overflows 25
BufferMemoryDescriptor data type 68
bundles 134

C

C++ 85, 135
call-by-value 107
call-by-value-return 108
cctools package 142
central authority model 30
CFM (Code Fragment Manager) 95
challenge-response. See one-time pad
checksums 25
ciphers

3DES (triple-DES) 29, 31
AES 31
blowfish 29, 31
DES 29
DSA 30
IDEA 29
RSA 30, 31
twofish 29

circular waits. See deadlock
cleartext 23
clocks 50, 56

173
© Apple Computer, Inc. 2004

Index

clock_absolutetime_interval_to_deadline
function 128
clock_delay_for_interval function 128, 129
clock_delay_until function 128
clock_get_calendar_offset function 128
clock_get_calendar_offset function 127
clock_get_calendar_value function 127, 128
clock_get_system_value function 127, 128
clock_get_uptime function 127
coarse-grained locking 37
code profiling 37
collision, namespace 41
commands
gdb 136
kextload 135, 148
kextstat 147, 148
kmodstat 147, 148
kmodsyms 147
nice 73
nvram 144
renice 73
su 135
sudo 142
sysctl 38
uname 141

Computer Systems Research Group (CSRG) 93
condition variables 121
configurations, kernel 143
console 135
console user 26
console_user variable 26
constants
CTLFLAG_ANYBODY 111
CTLFLAG_RD 111
CTLFLAG_RW 111
CTLFLAG_SECURE 111
CTLFLAG_WR 111
CTLTYPE_INT 111
CTLTYPE_NODE 111
CTLTYPE_OPAQUE 111
CTLTYPE_QUAD 111
CTLTYPE_STRING 111
CTLTYPE_STRUCT 111
ETAP_NO_TRACE 122, 123, 125
mutex_t 123
OID_AUTO 111
PCATCH 129
QUERY_OBJECT_TYPE 61
RETURN_ONLY_ABSENT 60
RETURN_ONLY_DIRTY 60
SCHED_FIFO 73
SCHED_OTHER 73
SCHED_RR 73

SET_INTERNAL 61
SYNC_POLICY_FIFO 79, 120
SYNC_POLICY_FIXED_PRIORITY 79, 120
SYNC_POLICY_PREPOST 79, 120
TASK_BACKGROUND_APPLICATION 76
TASK_CONTROL_APPLICATION 76
TASK_FOREGROUND_APPLICATION 76
TASK_GRAPHICS_SERVER 76
TASK_RENICED 76
TASK_UNSPECIFIED 76
THREAD_PRECEDENCE_POLICY 74, 75
THREAD_STANDARD_POLICY 74
THREAD_TIME_CONSTRAINT_POLICY 74
UPL_CLEAN_IN_PLACE 60
UPL_PRECIOUS 61
VM_BEHAVIOR_DEFAULT 59
VM_BEHAVIOR_RANDOM 59
VM_BEHAVIOR_RSEQNTL 59
VM_BEHAVIOR_SEQUENTIAL 59

contention, lock 36
context switch

See also boundary crossing
context switching 81
context, login 81
context, startup 81
contexts, bootstrap. See bootstrap contexts
control ports 52
copy-on-write 53, 116
copyin function 116
copyout function 116
Core Graphics 134
counting semaphores 120
CountInOut parameter type 108
credentials
CTLFLAG_ANYBODY constant 111
CTLFLAG_RD constant 111
CTLFLAG_RW constant 111
CTLFLAG_SECURE constant 111
CTLFLAG_WR constant 111
CTLTYPE_INT constant 111
CTLTYPE_NODE constant 111
CTLTYPE_OPAQUE constant 111
CTLTYPE_QUAD constant 111
CTLTYPE_STRING constant 111
CTLTYPE_STRUCT constant 111
current_task function 120
current_thread function 77

D

Darwin 85
data link NKEs 101

174 © Apple Computer, Inc. 2004

I N D E X

data types
AbsoluteTime 127
BufferMemoryDescriptor 68
etap_event_t 122, 123
hw_lock_t 122
inout 76, 108
IOMemoryDescriptor 68, 117
LIST 131
mach_timespec_t 127
simple_lock_t 122
SLIST 130
STAILQ 130
struct thread_shuttle 78
struct timespec 127
SYSCTL_HANDLER_ARGS 113
sysctl_oid_list 113
TAILQ 131
thread_act_t 78
thread_t 78
timeval 128
usimple_lock_t 122
vm_map_entry 58

ddb debugger 149, 154
setting debug flags 143
adding kernel support for 143
choosing over gdb 145
commands and syntax of 150, 154

deadlock 123, 124
debugging 143, 153, 154

choosing a debugger 145
serial port settings for 150
using ddb debugger
using the ddb debugger 149
using the gdb debugger 145, 148
kernel extensions 135
using the gdb debugger 136

debugging flags, kernel 144
default pager 53, 63
delay function 128
DES ciper 29
descriptors 94
/dev/kmem device file 29, 29
/dev/mem device file 29
/dev/mem device file 29
device drivers 87
device pager 63
devices, memory mapped 95
DMA 24
domain structure 100
downgrading locks 124
drivers 87
DSA cipher 30
dyld (dynamic link editor) 64, 95

dynamic pager 63

E

EMMI 53
encryption schemes. See ciphers
enum, legal values of 25
ETAP. See Event Trace Analysis Package
etap_event_t data type 122, 123
ETAP_NO_TRACE constant 122, 123, 125
Event Trace Analysis Package 122, 123, 125
exec function 58
External Memory Management Interface 53
external pagers 57

F

file systems 97, 98
and Carbon 97
and vnode 98
and VOP 98
Andrew (AFS) 97

fine-grained locking 37
fixed-priority policy 51
fork function 58
FreeBSD

differences from Darwin 96
kernel technology from 93

functions
copyout 116
wait_queue_lock 78
absolutetime_to_nanoseconds 128
assert_wait 129
clock_absolutetime_interval_to_deadline
128
clock_delay_for_interval 128, 129
clock_delay_until 128
clock_get_calendar_offset 127
clock_get_calendar_offset 128
clock_get_calendar_value 127, 128
clock_get_system_value 127, 128
clock_get_uptime 127
copyin 116
current_task 120
current_thread 77
delay 128
exec 58
fork 58
getact_thread 78
getpriority 73

I N D E X

175
© Apple Computer, Inc. 2004

IOCreateThread 77
IODelay 128
IOExitThread 77
IOFree 68
IOFreeAligned 68
IOFreeContiguous 68
IOFreePageable 68
IOMalloc 68
IOMallocAligned 68
IOMallocContiguous 68
IOMallocPageable 68
IOSleep 128
IOThreadSelf 77
kernel_thread 77
kmem_alloc 67, 68
kmem_alloc_aligned 67
kmem_alloc_contig 67, 68
kmem_alloc_pageable 67
kmem_alloc_wired 67, 68
kmem_free 67, 68
load_shared_file 64
lock_alloc 125
lock_done 125
lock_init 125
lock_read 125
lock_read_done 125
lock_read_to_write 125
lock_write 125
lock_write_done 125
lock_write_to_read 125
mach_make_memory_entry_64 59, 60, 69
mutex_alloc 123
mutex_free 123
mutex_lock 123
mutex_pause 123
mutex_try 123
mutex_unlock 123
nanoseconds_to_absolutetime 128
new_system_shared_regions 64
PE_enter_debugger 144, 146, 150
PE_parse_boot_arg 130
pthread_attr_getschedparam 73
pthread_setschedparam 73, 74
registerPrioritySleepWakeInterest 131
reset_shared_file 64
semaphore_create 120, 121
semaphore_destroy 120
semaphore_signal 120, 121
semaphore_signal_all 120
semaphore_signal_thread 120, 121
semaphore_wait 120
setpriority 73
simple_lock 122

simple_lock_init 122
simple_lock_try 122
simple_unlock 122
sleep 128, 129
spl 78
splbio 78
splhigh 78
splx 78
sysctlbyname 114
SYSCTL_DECL 113
sysctl_handle_int 113
SYSCTL_IN 112, 113
SYSCTL_INT 114
SYSCTL_LONG 114
SYSCTL_NODE 113
SYSCTL_OPAQUE 114
SYSCTL_OUT 112, 113
SYSCTL_PROC 111, 112
sysctl_register_oid 112, 113
SYSCTL_STRING 114
SYSCTL_STRUCT 114
sysctl_unregister_oid 112, 113
task_policy_get 76
task_policy_set 75, 76
thread_policy_get 74, 76
thread_policy_set 73, 74, 75, 76
thread_terminate 77
thread_wakeup 129
tsleep 121, 128, 129
tsleep0 129
ubc_upl_abort 60
ubc_upl_commit 60
upl_abort_range 61
upl_commit_range 61
usimple_lock 122
usimple_lock_held 122
usimple_lock_init 122
usimple_lock_none_held 122
usimple_lock_try 122
usimple_unlock 122
valloc 68
vm_allocate 57, 59, 68
vm_map 57, 60
vm_map_copyin 62
vm_map_copyout 62, 67
vm_map_copy_discard 62
vm_map_copy_overwrite 62
vm_map_get_upl 60
vm_map_unwire 62
vm_map_wire 62
vm_object_upl_request 60
vm_region_object_create 60
vm_wire 62, 117

176 © Apple Computer, Inc. 2004

I N D E X

wait_queue 129
wait_queue_alloc 78, 79
wait_queue_assert_wait 78, 80
wait_queue_assert_wait_locked 79
wait_queue_free 78, 79
wait_queue_init 78, 79
wait_queue_link 78, 79, 80
wait_queue_lock_try 78
wait_queue_member 78, 79
wait_queue_member_locked 78, 79
wait_queue_peek_locked 79, 80
wait_queue_pull_thread_locked 79, 80
wait_queue_remove 79, 80
wait_queue_unlink 78, 79, 80
wait_queue_unlink_one 78, 79, 80
wait_queue_unlock 78
wait_queue_wakeup_all 79, 80
wait_queue_wakeup_all_locked 79
wait_queue_wakeup_identity_locked 79, 80
wait_queue_wakeup_one 79, 80
wait_queue_wakeup_one_locked 79
wait_queue_wakeup_thread 79, 80
wait_queue_wakeup_thread_locked 79
wakeup 121, 129, 130
wakeup_one 121, 129, 130
_FREE 67
_MALLOC 67

G

gdb debugger 136, 145, 148
and KEXTs 136
choosing over ddb 145
setting debug flags 143

getact_thread function 78
getpriority function 73
granularity, locking 37

H

HFS 97
HFS+ 96, 97
hw_lock_t data type 122

I

I/O Kit 85, 91
architecture 87, 89, 90
drivers 87

families 87
nubs 88
support for imaging devices 86

IDEA cipher 29
ifnet structure 100
initial key exchange 30
inout data type 76, 108
internet services 93
interrupt handler 35, 123
interrupt latency 35
interrupt priority level (IPL) 122
interrupt service threads 35
IOCreateThread function 77
ioctl API 109
IODelay function 128
IOExitThread function 77
IOFree function 68
IOFreeAligned function 68
IOFreeContiguous function 68
IOFreePageable function 68
IOMalloc function 68
IOMallocAligned function 68
IOMallocContiguous function 68
IOMallocPageable function 68
IOMemoryDescriptor data type 68, 117
IOMemoryDescriptor prepare method method
117
IONofitier::release method 131
IOSleep function 128
IOThreadSelf function 77
IPC

and Mach messaging 104, 106, 107, 108
and port rights 52
in transition 54
types 50

IPL (interrupt priority level) 122
ISO 9660 97

J

Java-style reverse DNS naming 41, 43

K

kernel credentials. See credentials
Kernel Extension Manager 135
kernel modules 134
kernel See also kernel threads
kernel space 103
kernel threads

I N D E X

177
© Apple Computer, Inc. 2004

and Mach threads
creating 77
destroying 77

kernel
abstractions in 49
configurations of 143
debugging flags for 144
finding version of 141
microkernel 49
monolithic 49
source code 141
wired resources 133

kernel_thread function 77
kextload command 135, 148
KEXTs

and kernel panic 133
as bundles 134
debugging 135
description of 133
in supervisor mode 133
tutorials 139

kextstat command 147, 148
key exchange 30
key signing 30
key-based authentication 29, 30
key-based encryption 29, 30
Keychain Manager 23
kmem_alloc function 67, 68
kmem_alloc_aligned function 67
kmem_alloc_contig function 67, 68
kmem_alloc_pageable function 67
kmem_alloc_wired function 67, 68
kmem_free function 67, 68
KMODs 134
kmodstat command 147, 148
kmodsyms command 147

L

latency 104, 105
Libstreams package 142
LIST data type 131
load_shared_file function 64
lock contention 36
locking granularity 37
locks 55, 119

spinlock. See spinlocks
See also mutexes
functions 122, 123, 125
granularity of 37
profiling 38
read-write 36, 121, 124

sets of 54
spin/sleep 125
sync 123
working with 36

lock_alloc function 125
lock_done function 125
lock_init function 125
lock_read function 125
lock_read_done function 125
lock_read_to_write function 125
lock_write function 125
lock_write_done function 125
lock_write_to_read function 125
login context 81

M

Mac OS Extended Format. See HFS+
Mac OS Standard Format. See HFS
Mach 3 scheduler 71
Mach 3.0 49
Mach Interface Generator. See MIG
Mach interprocess communication (IPC) 104, 106,
107, 108
Mach messaging

and boundary crossings 104
and Mach IPC 106, 107, 108
feature of Mach 49
security of 55

Mach remote procedure calls. See Mach RPC
suppport
Mach RPC support

and IPC 54, 107
API of 104
calling 109
creating a definition for 107
objects 56

Mach RPC
objects 54

Mach threads 93
Mach-O 95, 134
Mach

overview of 49
port rights 52, 106

mach_init 106
mach_make_memory_entry_64 function 59, 60, 69
mach_timespec_t data type 127
main thread 93
man-in-the-middle attack 30
management information base (MIB) 115
memory management 52, 53, 94
memory mapping 116

178 © Apple Computer, Inc. 2004

I N D E X

memory objects 50, 57
memory protection 93
memory-mapped devices 95
memory

block copying 116
anonymous 53
virtual (VM) 57, 69, 70, 86, 93

Mesa semantics 120
message queues

as communications channel 52
as IPC method 54
description 55

messaging
APIs for 53

methods
IOMemoryDescriptor prepare method 117
IONofitier::release 131

MIB (management information base) 115
microkernel 49
MIG (Mach Inferface Generator)

introduced 50
definitions in 107
types in 108

modem port 149
modules, adding 139, 141
multiuser access 93
mutexes 122, 125

as type of lock 121
functions for 123

mutex_alloc function 123
mutex_free function 123
mutex_lock function 123
mutex_pause function 123
mutex_t constant 123
mutex_try function 123
mutex_unlock function 123

N

name ports 52
name server 106
named entries 53, 59
named regions 53
namespace

as creator 101
as type 101
collisions of 41
of NKE handlers 101

naming conventions 41
nanoseconds_to_absolutetime function 128
network file system (NFS) 93, 97
network kernel extensions. See NKEs

new_system_shared_regions function 64
NFS (network file system) 93, 97
nice command 73
NKEs

and protocol stacks 99
NMIs (nonmaskable interrupts) 146, 150
nonmaskable interrupts (NMIs) 146, 150
notifications 49, 54, 55
NTFS (Windows NT file system) 97
nubs 88
null pointers 25
nvram command 144

O

object identifiers (OIDs) 112, 114, 115
object types

memory 57
shadow 58
VM 57, 58

OIDs (object identifiers) 112, 114, 115
OID_AUTO constant 111
one-time pad 27
Open Firmware 144
OSFMK scheduler 71

P

packets 100
pagers 53, 57, 63
paging, security implications of 24
pattern sensitivity 30, 31
PCATCH constant 129
PEF (preferred executable format) 95
performance tips 45
PE_enter_debugger function 144, 146, 150
PE_parse_boot_arg function 130
pipes 103
PK cryptography. See public key cryptography
plaintext. See cleartext
plug-in architectures

Core Graphics 134
QuickTime 134

pmap system 58, 59, 64
point-to-point protocol (PPP) 93
port rights 52, 106
port sets 52
ports

bootstrap 106
control 52

I N D E X

179
© Apple Computer, Inc. 2004

definition of 50, 51, 106
modem 149
name 52
namespace 50, 52
privileged 52
receive rights and 51
settings of (serial) 150
task 106

POSIX 50, 93
POSIX threads (pthreads) 50
POSIX threads (pthreads) 73
PPP (point-to-point protocol) 93
preemptive multitasking 93
preferred executable format (PEF) 95
priority bands 71
privileged ports 52
profiling

of kernel code 37
of locks 38

Project Builder 135
protection, VM 57, 59
protocol stacks 99
protosw structure 100
pthreads (POSIX threads) 50, 73
pthread_attr_getschedparam function 73
pthread_setschedparam function 73, 74
public key cryptography 30, 31

Q

quanta. See time quanta
QUERY_OBJECT_TYPE constant 61
queues

message. See message queues
kernel implementation of 130
wait 78, 80

QuickTime 134

R

read sharing 124
read-write locks 36, 121, 124
read-write sharing 124
real-time priority 72
real-time scheduling 49, 72, 75
receive rights 106
registerPrioritySleepWakeInterest function
131
renice command 73
reset_shared_file function 64

RETURN_ONLY_ABSENT constant 60
RETURN_ONLY_DIRTY constant 60
reverse DNS naming 41, 43
routines

defined by RPC 107
RSA cipher 30, 31

S

SCHED_FIFO constant 73
SCHED_OTHER constant 73
SCHED_RR constant 73
Security Server 23
security

kernel credentials. See credentials
See also ciphers
See also Mach port rights
user credentials. See credentials
/dev/kmem device file 29
/dev/mem 29
/dev/mem device file 29
authentication 27, 28
debug ARP 145
key-based authentication 29, 30
key-based encryption 29, 30
Mach messaging 55
of boundary crossing 104
of kernel extensions 133
of memory objects 59
paging implications 24
shared secrets 29
TCP/IP 93

semaphores
and Mach 54, 55
binary 120
counting 120
described 119
functions 120, 121

semaphore_create function 120, 121
semaphore_destroy function 120, 121
semaphore_signal function 120, 121
semaphore_signal_all function 120
semaphore_signal_thread function 120, 121
semaphore_wait function 120
send rights 106
serial debugger. See ddb debugger
serial line IP (SLIP) 93
serial port settings 150
service server 106
session keys 31
set priority level call (spl) 122
setpriority function 73

180 © Apple Computer, Inc. 2004

I N D E X

setuid 26
SET_INTERNAL constant 61
shadow chains 58
shadow objects 58
shared libraries

and Mach named regions 53
and Mach submaps 59
and VM shared memory server 64

shared memory 64, 103, 116
shared memory regions 49
shared secret authentication 27
shared secret encryption 29
short data weakness 30, 31
shutdown hooks 131, 132
signals 94
signing 32
simpleroutine 108
simple_lock function 122
simple_lock_init function 122
simple_lock_t data type 122
simple_lock_try function 122
simple_unlock function 122
sleep function 128, 129
SLIP (serial line IP) 93
SLIST data type 130
SMP (symmetric multiprocessing) 49, 93
socket structure 100
sockets 103
source code, kernel 141
spin/sleep locks 125
spinlocks 121, 122
spl call (set priority level) 78, 122
spl function 78
splbio function 78
splhigh function 78
splx function 78
stability tips 46
STAILQ data type 130
startup context 81
starvation 124
struct thread_shuttle data type 78
struct timespec data type 127
su command 135
submaps 59
subsystems, MIG 108
sudo command 142
supervisor mode 35
symmetric multiprocessing (SMP) 49, 93
sync locks 123
synchronization 49
SYNC_POLICY_FIFO constant 79, 120
SYNC_POLICY_FIXED_PRIORITY constant 79, 120
SYNC_POLICY_PREPOST constant 79, 120

syscall API 104, 109
sysctl command 38
sysctl

See also sysctlbyname function
adding 110, 114
API 110, 114, 115
calling from user space 114
function 115

sysctlbyname function 114
sysctlbyname system call 115
SYSCTL_DECL function 113
SYSCTL_HANDLER_ARGS data type 113
sysctl_handle_int function 113
SYSCTL_IN function 112, 113
SYSCTL_INT function 114
SYSCTL_LONG function 114
SYSCTL_NODE function 113
sysctl_oid_list data type 113
SYSCTL_OPAQUE function 114
SYSCTL_OUT function 112, 113
SYSCTL_PROC function 111, 112
sysctl_register_oid function 112, 113
SYSCTL_STRING function 114
SYSCTL_STRUCT function 114
sysctl_unregister_oid function 112, 113

T

TAILQ data type 131
task ports 106
task roles 76
tasks 50, 51
TASK_BACKGROUND_APPLICATION constant 76
TASK_CONTROL_APPLICATION constant 76
TASK_FOREGROUND_APPLICATION constant 76
TASK_GRAPHICS_SERVER constant 76
task_policy_get function 76
task_policy_set function 75, 76
TASK_RENICED constant 76
TASK_UNSPECIFIED constant 76
TCP/IP 93
temporary files 28
Terminal application 135
threads

definition of 51
Mach 49, 93
main 93
migration of 56
POSIX (pthreads) 50, 73
priority bands 71
scheduling of 51

thread_act_t data type 78

I N D E X

181
© Apple Computer, Inc. 2004

thread_policy_get function 74, 76
thread_policy_set function 73, 74, 75, 76
THREAD_PRECEDENCE_POLICY constant 74, 75
THREAD_STANDARD_POLICY constant 74
thread_t data type 78
thread_terminate function 77
THREAD_TIME_CONSTRAINT_POLICY constant 74
thread_wakeup function 129
time abstractions 50, 127, 128, 129
time quanta 51, 72, 121, 122
time-based authentication 27, 28
time-sharing policy 51
timers 50
timeval data type 128
triple-DES cipher 29, 31
trust model 30
tsleep function 121, 128, 129
tsleep0 function 129
twofish cipher 29
types. See data types

U

ubc_upl_abort function 60
ubc_upl_commit function 60
UFS 97
uname command 141
unified buffer cache 96
universal page list (UPL) 57, 60, 61
University of California at Berkeley 93
upgrading locks 124
UPL (universal page list) 57, 60, 61
upl_abort_range function 61
UPL_CLEAN_IN_PLACE constant 60
upl_commit_range function 61
UPL_PRECIOUS constant 61
user credentials. See credentials
user space 103
user threads 133
user-kernel boundary 103
usimple_lock function 122
usimple_lock_held function 122
usimple_lock_init function 122
usimple_lock_none_held function 122
usimple_lock_t data type 122
usimple_lock_try function 122
usimple_unlock function 122

V

valloc function 68
VFS (virtual file system) 97
virtual address space 49, 50
virtual machines 94
virtual memory (VM) 57, 69, 70, 86, 93
virtual memory objects. See VM objects
VM map API 61
VM objects 57, 58
VM protections 57
VM Shared Memory Server Subsystem 64
VM. See virtual memory
vm_allocate function 57, 59, 68
VM_BEHAVIOR_DEFAULT constant 59
VM_BEHAVIOR_RANDOM constant 59
VM_BEHAVIOR_RSEQNTL constant 59
VM_BEHAVIOR_SEQUENTIAL constant 59
vm_map function 57, 60
vm_map_copyin function 62
vm_map_copyout function 62, 67
vm_map_copy_discard function 62
vm_map_copy_overwrite function 62
vm_map_entry data type 58
vm_map_get_upl function 60
vm_map_unwire function 62
vm_map_wire function 62
vm_object_upl_request function 60
vm_region_object_create function 60
vm_wire function 62, 117
vnode pager 53, 63

W

wait queues 78, 80
wait_queue function 129
wait_queue_alloc function 78, 79
wait_queue_assert_wait function 78, 80
wait_queue_assert_wait_locked function 79
wait_queue_free function 78, 79
wait_queue_init function 78, 79
wait_queue_link function 78, 79, 80
wait_queue_lock function 78
wait_queue_lock_try function 78
wait_queue_member function 78, 79
wait_queue_member_locked function 78, 79
wait_queue_peek_locked function 79, 80
wait_queue_pull_thread_locked function 79, 80
wait_queue_remove function 79, 80
wait_queue_unlink function 78, 79, 80
wait_queue_unlink_one function 78, 79, 80
wait_queue_unlock function 78

182 © Apple Computer, Inc. 2004

I N D E X

wait_queue_wakeup_all function 79, 80
wait_queue_wakeup_all_locked function 79
wait_queue_wakeup_identity_locked function
79, 80
wait_queue_wakeup_one function 79, 80
wait_queue_wakeup_one_locked function 79
wait_queue_wakeup_thread function 79, 80
wait_queue_wakeup_thread_locked function 79
wakeup function 121, 129, 130
wakeup_one function 121, 129, 130
web of trust model 30
WIMG memory protection bits 63
Windows NT file system (NTFS) 97
wired memory 24
wiring 117
work loops 52
working set detection subsystem 63
write sharing 124

Z

zero-knowledge proof 29

I N D E X

183
© Apple Computer, Inc. 2004

	Contents
	Tables and Figures
	About This Document
	Who Should Read This Document
	Road Map
	Other Apple Publications
	Mach API Reference
	Information on the Web

	Keep Out
	Why You Should Avoid Programming in the Kernel

	Kernel Architecture Overview
	Darwin
	Architecture
	Mach
	BSD
	Networking
	File Systems

	I/O Kit

	Kernel Extensions

	Security Considerations
	Security Implications of Paging
	Buffer Overflows and Invalid Input
	User Credentials
	Remote Authentication
	One-Time Pads
	Time-based authentication

	Temporary Files
	/dev/mem and /dev/kmem
	Key-based Authentication and Encryption
	Public Key Weaknesses
	Trust Models
	Sensitivity to Patterns and Short Messages

	Using Public Keys for Message Exchange
	Using Public Keys for Identity Verification
	Using Public Keys for Data Integrity Checking
	Encryption Summary

	Console Debugging
	Code Passing

	Performance Considerations
	Interrupt Latency
	Locking Bottlenecks
	Working With Highly Contended Locks
	Reducing Contention by Decreasing Granularity

	Code Profiling
	Using Counters for Code Profiling
	Lock Profiling

	Kernel Programming Style
	C++ Naming Conventions
	Basic Conventions
	Additional Guidelines

	Standard C Naming Conventions
	Commonly Used Functions
	Performance and Stability Tips
	Performance and Stability Tips
	Stability Tips

	Style Summary

	Mach Overview
	Mach Kernel Abstractions
	Tasks and Threads
	Ports, Port Rights, Port Sets, and Port Namespaces
	Memory Management
	Interprocess Communication (IPC)
	IPC Transactions and Event Dispatching
	Message Queues
	Semaphores
	Notifications
	Locks
	Remote Procedure Call (RPC) Objects

	Time Management

	Memory and Virtual Memory
	Mac OS X VM Overview
	Memory Maps Explained
	Named Entries
	Universal Page Lists (UPLs)
	Using Mach Memory Maps
	Other VM and VM-Related Subsystems
	Pagers
	Working Set Detection Subsystem
	VM Shared Memory Server Subsystem

	Address Spaces
	Background Info on PCI Address Translation
	IOMemoryDescriptor Changes
	VM System and pmap Changes:
	Kernel Dependency Changes
	Summary

	Allocating Memory in the Kernel
	Allocating Memory Using Mach Routines
	Allocating Memory From the I/O Kit

	Mach Scheduling and Thread Interfaces
	Overview of Scheduling
	Why Did My Thread Priority Change?
	Using Mach Scheduling From User Applications
	Using the pthreads API to Influence Scheduling
	Using the Mach Thread API to Influence Scheduling
	Using the Mach Task API to Influence Scheduling

	Kernel Thread APIs
	Creating and Destroying Kernel Threads
	SPL and Friends
	Wait Queues and Wait Primitives

	Bootstrap Contexts
	How Contexts Affect Users
	How Contexts Affect Developers

	I/O Kit Overview
	Redesigning the I/O Model
	I/O Kit Architecture
	Families
	Drivers
	Nubs
	Connection Example

	For More Information

	BSD Overview
	BSD Facilities
	Differences between Mac OS X and BSD
	For Further Reading

	File Systems Overview
	Working With the File System
	VFS Transition

	Network Architecture
	Review of 4.4BSD Network Architecture
	NKE Types
	Modifications to 4.4BSD Networking Architecture

	Boundary Crossings
	Security Considerations
	Choosing a Boundary Crossing Method
	Kernel Subsystems
	Bandwidth and Latency

	Mach Messaging and Mach Interprocess Communication (IPC)
	Using Well-Defined Ports
	Remote Procedure Calls (RPC)
	Calling RPC From User Applications

	BSD syscall API
	BSD ioctl API
	BSD sysctl API
	General Information on Adding a sysctl
	Adding a sysctl Procedure Call
	Registering a New Top Level sysctl
	Adding a Simple sysctl
	Calling a sysctl From User Space
	The sysctlbyname System Call
	The sysctl System Call

	Memory Mapping and Block Copying
	Summary

	Synchronization Primitives
	Semaphores
	Condition Variables
	Locks
	Spinlocks
	Mutexes
	Read-Write Locks
	Spin/Sleep Locks

	Miscellaneous Kernel Services
	Using Kernel Time Abstractions
	Obtaining Time Information
	Event and Timer Waits
	Using IODelay and IOSleep
	Using Mach Absolute Time Functions
	Using tsleep

	Boot Option Handling
	Queues
	Installing Shutdown Hooks

	Kernel Extension Overview
	Implementation of a Kernel Extension (KEXT)
	Kernel Extension Dependencies
	Building and Testing Your Extension
	Debugging Your KEXT
	Installed KEXTs

	Building and Debugging Kernels
	Adding New Files or Modules
	Modifying the Configuration Files
	Adding the Files or Modules
	Enabling Module Options

	Modifying the Source Code Files

	Building Your First Kernel
	Building an Alternate Kernel Configuration
	When Things Go Wrong: Debugging the Kernel
	Setting Debug Flags in Open Firmware
	Choosing a Debugger
	Using gdb for Kernel Debugging
	Special gdb I/O Addressing Issues

	Using ddb for Kernel Debugging
	Commands and Syntax of ddb

	Document Revision History
	Bibliography
	Glossary
	Index

