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Introduction

 Rationale for Security Extensions
 TrustedBSD MAC Framework
 FLASK/TE with SEBSD
 Porting TrustedBSD MAC Framework to Darwin
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CBOSS: Community-Based Open 
Source Security
 DARPA CHATS program under Doug Maughan

– Create a partnership between leading open source 
developers and industry security R&D laboratory

– Additional research and development funding for maturity 
of MAC Framework, development of SEBSD, port of both 
to Darwin/Mac OS X

 By improving the security of open source 
systems, DARPA can impact a wide variety of 
COTS and research products

– Rapid technology transfer path of open source
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CBOSS Project Overview

 Many extremes in OS security work:
– Write OS from the ground up

– Don't change the OS at all

– Maintain a local version with extensive modifications

 Avoid pitfalls of these approaches by:
– Leveraging ability to modify open source FreeBSD 

operating system to provide security extensibility services

– Working with open source developers to assure 
knowledge, process, technology transfer
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Benefits to the CBOSS Approach

 Support for secure out-of-the-box COTS 
operating systems

– Rapid time-to-market of open source already showing 
concrete benefits

– Berkeley-licensed open source software rapidly transfers 
to closed source software products

– Better support for future security research through 
extensibility and stronger support infrastructure

– Long-term improvements in architecture, implementation, 
process outside of the research community
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Rationale for Security Extensions

 Common FreeBSD deployment scenarios
– Banks, multi-user ISP environments

– Web-hosting cluster, firewalls

– “High-end embedded”

 Many of these scenarios have requirements 
poorly addressed by traditional UNIX security

– OS hardening

– Mandatory protection

– Flexible, manageable, scalable protection
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Why a MAC Framework?

 Support required in operating system for new 
security services

– Costs of locally maintaining security extensions are high

– Framework offers extensibility so that policies may be 
enhanced without changing base operating system

 There does not appear to be one perfect 
security model or policy

– Sites may have different security/performance trade-offs

– Sites may have special local requirements

– Third party and research products
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MAC Framework Background

 Extensible security framework
– Policies implemented as modules

– Common policy infrastructure like labeling

– Sample policy modules, such as Biba, MLS, TE, hardening 
policies, et al.

– Composes multiple policies if present

– Also provides APIs for label-aware and possibly policy-
agnostic applications

 Shipped in FreeBSD 5.0 to 5.2, 5.2.1
 Integration into Darwin/OS X in planning stages
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Kernel MAC Framework
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Policy Entry Point Invocation
Policy-Agnostic Labeling Abstraction
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Modifications to FreeBSD to Introduce 
MAC Framework
 A variety of architectural cleanups

– Audit and minimize use of privilege

– Centralize inter-process access control

– Centralize discretionary access control for files

– Clean up System V IPC permission functions

– Prefer controlled and explicit export interfaces to kmem

– Combine *cred structures into ucred; adopt td_ucred

– Correct many semantic errors relating to credentials

– Support moves to kernel threading, fine-grained locking, 
SMP
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Modifications to FreeBSD to add the 
MAC Framework (cont)
 Infrastructure components

– Add support for extended attributes in UFS1; build UFS2

 Actual MAC Framework changes
– Instrument kernel objects for labeling, access control

– Instrument kernel objects for misc. life cycle events

– Create MAC Framework components (policy registration, 
composition, label infrastructure, system calls, ...)

– Create sample policy modules

– Provide userspace tools to exercise new system calls

– Modify login mechanisms, user databases, etc.
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List of Labeled Objects

 Processes
– Process credential, process

 File System
– Mountpoint, vnode, devfs directory entries

 IPC
– Pipe IPC, System V IPC (SHM, Sem, Msg) , Posix IPC

 Networking
– Interface, mbuf, socket, Inet PCB, IP fragment queue, 

Ipsec, security association
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Integration of MAC Framework
into FreeBSD
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Where Next for the TrustedBSD MAC 
Framework
 Continue to research and develop TrustedBSD 

MAC Framework on FreeBSD
– Enhanced support for IPsec

– Improve productionability of policy modules

– Continued R&D for SEBSD

– Integrate with Audit functionality
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Sample Policy Modules

 mac_test regression test, stub, null modules
 Traditional labeled MAC policies

– Biba fixed-label integrity, LOMAC floating-label integrity

– Hierarchal and compartmented Multi-Level Security (MLS)

– SELinux FLASK/TE “SEBSD”

 Hardening policies
– File system “firewall”

– Interface silencing

– Port ACLs

– User partitions
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SEBSD: Security-Enhanced BSD

 NSA sponsored port of SELinux functionality to 
the FreeBSD platform

– Port SELinux policy language and access control model

– Implement FLASK/TE in a MAC Framework policy module

– Provide result as open source



McAfee Research

03/13/2004 Page 18

SELinux Background

 FLASK security framework
– FLASK provides an access control framework abstraction

– Initially integrated directly into Linux kernel

– Now plugged in using “LSM” framework

 Implements Type Enforcement (TE) Policy
– Extensive and comprehensive rule language and policy 

configuration

– Mature policy documents privileges for many userspace 
system components and common applications

– Also limited MLS, RBAC
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SELinux FLASK Abstraction

 FLASK plays a similar role to the TrustedBSD 
MAC Framework

– Treats existing system components as “object managers”

– Abstracts notions of subjects, objects, and methods

– Label storage using SIDs (Security Identifiers)

– Differences from MAC Framework are substantial

 Access Vector Cache holds cached 
computation results for SID and method tuples

 “Security Server” security policy implementation
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SELinux Type Enforcement

 Type Enforcement represents the set of 
permitted actions as rules in terms of:

– Subjects (processes, generally) assigned domains

– Objects (files, sockets, ...) assigned types

– Object methods that may be performed on objects

– Rules specifying permitted combinations of subject 
domains, object types, and object methods

 Labeling specification assigns initial labels
 New objects have labels computed from rules
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MAC Framework Modifications 
Required for SEBSD
 Framework parallel to LSM in construction

– Similarity between LSM and MAC Framework simplify 
implementation; differences simplify it further

 Provides stronger label manipulation and 
management calls

– Don't need a number of the system call additions required 
to run FLASK on Linux

 Removed notion of SID exposed to userspace 
since mature APIs for labels already existed

– This approach later adopted in SELinux, also.
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Creating SEBSD Module from
Largely OS-Independent FLASK/TE

 At start
– SELinux tightly integrated 

FLASK/TE into Linux 
kernel

– Over course of SEBSD 
work, similar 
transformation was made 
with LSM

 MAC Framework 
plays similar role to 
LSM for SEBSD
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Current Status of SEBSD

 Kernel module “sebsd.ko” functional
– Most non-network objects labeled and enforced for most 

interesting methods

– File descriptor, privilege adaptations of MAC Framework 
complete

 Userspace experimental but usable
– Libsebsd port complete, ports of SELinux userland 

programs completed as needed (checkpolicy, newrole, ...)

– Adapted policy allows many applications to run

• Few changes needed for third party applications, mostly 
change required for base system components
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Strategy: Migrate MAC Framework to 
Darwin, Port SEBSD as SEDarwin
 Exploit common source code and design roots 

of FreeBSD and Darwin
– Migrate MAC Framework to Darwin

• And dependencies, such as extended attributes, etc.

– Migrate SEBSD, MLS, and other policies to Darwin

– Expand MAC Framework and policies to address Darwin-
specific features, such as Mach IPC

• Requires MAC Framework to sit between various layers

– Modify Darwin userspace applications

– Produce adapted SEBSD TE policy
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Strategy: Migrate MAC Framework to 
Darwin, Port SEBSD as SEDarwin
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Architecture of Darwin
(Gross Over-Simplification)

 Mach provides low-
level IPC, memory, 
synchronization 
primitives

 IOKit provides OO 
driver infrastructure

 BSD provides high 
level IPC, networking, 
storage services
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Porting Activities So Far

 Port MAC Framework
– Focus on getting base functionality up and running

– Adapt to Mach memory allocation, synchronization

– Port labeling, access control for devfs

– Port UFS1 extended attributes to HFS+

– Port support libraries (libextattr, libmac)

– Port tools (mac_tools)

– Adapt base Darwin tools (system_cmds, file_cmds)

– Port mac_test module

– Extend MAC Framework to incorporate Mach tasks, IPC
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Porting Activities So Far (cont)

 Port SEBSD module
– Port FLASK, AVC (largely synchronization, allocation 

issues)

– Port “Security Server” for Type Enforcement (TE)

– Port libsebsd

– Port sebsd_cmds

– Create minimal policy to get system up and running

– Create GUI role selection, relabel tools

– Hook up process, file system labeling and access control

– Experiment with controls and policy for Mach primitives
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Integration of MAC Framework into 
Darwin Prototype

BSD
Process/
Thread
Support

Mach/BSD System Call Layer

IOKit Device
Driver Framework

Process Threaded Process
t t t t ...

Interface
Framework

File Interface

Socket IPC

Network
ProtocolsVFS

HFS+,
UFS

... devfs,
specfs

SysV
SHM

Mach: Scheduler, VM, IPC

SysV
msgq,
sem



McAfee Research

03/13/2004 Page 30

Issues and Concerns

 Lack of unified build infrastructure for Darwin
– Challenging to build and maintain extensive modifications

 Serious binary compatibility issues
– Drivers when expanding data structures for labels

– Had to back off initial port of network stack components

 Mach wait_queue primitive much weaker
 Mach IPC

– Mach IPC primitives very weak, semantically

– Requires applications to be much more involved in access 
control than in traditional UNIX system
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Additional Issues and Concerns

 HFS+ lacks generation numbers
– May break NFS, also prevents us from checking 

consistency of attributes with file system objects

– Prefer that HFS+ had a native extended meta-data service

 Source code for loginwindow not available
– Jaguar substantially less mature than Panther

– While there have been improvements to the login process 
and credential management, still much to be done

 Jaguar applications behave poorly on failure
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Additional HFS+ concerns

 TrustedBSD MAC Framework splits ownership 
of label management with file system

– Performs access control checks at cross-file system layer

– Some file systems provide per-label storage

– Other file systems rely on VFS layer labeling

 Darwin offers a number of stronger file system 
system calls

– Permits more direct reading, manipulating of disk catalog

– Requires MAC Framework to become more involved in 
HFS+, not to mention layring issues
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Conclusion

 TrustedBSD  MAC Framework provides flexibl, 
extensible OS access control

 SEBSD is experimental port of SELinux 
FLASK/TE to FreeBSD using MAC Framework

 Experimental port of MAC Framework to Darwin 
reveals opportunities, weaknesses in Darwin


