
03/13/2004

Extensible Kernel Security through
the TrustedBSD MAC Framework
Robert Watson, Research Scientist

HIP Group, McAfee Research

McAfee Research

03/13/2004 Page 2

Introduction

 Rationale for Security Extensions
 TrustedBSD MAC Framework
 FLASK/TE with SEBSD
 Porting TrustedBSD MAC Framework to Darwin

McAfee Research

03/13/2004 Page 3

CBOSS: Community-Based Open
Source Security
 DARPA CHATS program under Doug Maughan

– Create a partnership between leading open source
developers and industry security R&D laboratory

– Additional research and development funding for maturity
of MAC Framework, development of SEBSD, port of both
to Darwin/Mac OS X

 By improving the security of open source
systems, DARPA can impact a wide variety of
COTS and research products

– Rapid technology transfer path of open source

McAfee Research

03/13/2004 Page 4

CBOSS Project Overview

 Many extremes in OS security work:
– Write OS from the ground up

– Don't change the OS at all

– Maintain a local version with extensive modifications

 Avoid pitfalls of these approaches by:
– Leveraging ability to modify open source FreeBSD

operating system to provide security extensibility services

– Working with open source developers to assure
knowledge, process, technology transfer

McAfee Research

03/13/2004 Page 5

Benefits to the CBOSS Approach

 Support for secure out-of-the-box COTS
operating systems

– Rapid time-to-market of open source already showing
concrete benefits

– Berkeley-licensed open source software rapidly transfers
to closed source software products

– Better support for future security research through
extensibility and stronger support infrastructure

– Long-term improvements in architecture, implementation,
process outside of the research community

McAfee Research

03/13/2004 Page 6

Rationale for Security Extensions

 Common FreeBSD deployment scenarios
– Banks, multi-user ISP environments

– Web-hosting cluster, firewalls

– “High-end embedded”

 Many of these scenarios have requirements
poorly addressed by traditional UNIX security

– OS hardening

– Mandatory protection

– Flexible, manageable, scalable protection

McAfee Research

03/13/2004 Page 7

Why a MAC Framework?

 Support required in operating system for new
security services

– Costs of locally maintaining security extensions are high

– Framework offers extensibility so that policies may be
enhanced without changing base operating system

 There does not appear to be one perfect
security model or policy

– Sites may have different security/performance trade-offs

– Sites may have special local requirements

– Third party and research products

McAfee Research

03/13/2004 Page 8

MAC Framework Background

 Extensible security framework
– Policies implemented as modules

– Common policy infrastructure like labeling

– Sample policy modules, such as Biba, MLS, TE, hardening
policies, et al.

– Composes multiple policies if present

– Also provides APIs for label-aware and possibly policy-
agnostic applications

 Shipped in FreeBSD 5.0 to 5.2, 5.2.1
 Integration into Darwin/OS X in planning stages

McAfee Research

03/13/2004 Page 9

Kernel MAC Framework

User Process

User Process

User Process

...

S
ys

te
m

 C
al

l I
nt

e
rf

ac
e

VFS

Socket IPC

Process
Signalling

Pipe IPC

...
M

A
C

 F
ra

m
e

w
o

rk

mac_biba

mac_bsdextended

...

Sebsd

McAfee Research

03/13/2004 Page 10

Policy Entry Point Invocation
Policy-Agnostic Labeling Abstraction

M
A

C
 F

ra
m

e
w

o
rk

mac_biba

check file read?

EACCES

Destroy label

Init label

OK

Internalize
label

check relabelfile?

OK
relabel

Destroy label

1
label-1

2
label-2

3
label-3

jail
biba

jail
biba

jail
biba

biba/low

jail.a

biba/high

jail.b

biba/low

McAfee Research

03/13/2004 Page 11

Modifications to FreeBSD to Introduce
MAC Framework
 A variety of architectural cleanups

– Audit and minimize use of privilege

– Centralize inter-process access control

– Centralize discretionary access control for files

– Clean up System V IPC permission functions

– Prefer controlled and explicit export interfaces to kmem

– Combine *cred structures into ucred; adopt td_ucred

– Correct many semantic errors relating to credentials

– Support moves to kernel threading, fine-grained locking,
SMP

McAfee Research

03/13/2004 Page 12

Modifications to FreeBSD to add the
MAC Framework (cont)
 Infrastructure components

– Add support for extended attributes in UFS1; build UFS2

 Actual MAC Framework changes
– Instrument kernel objects for labeling, access control

– Instrument kernel objects for misc. life cycle events

– Create MAC Framework components (policy registration,
composition, label infrastructure, system calls, ...)

– Create sample policy modules

– Provide userspace tools to exercise new system calls

– Modify login mechanisms, user databases, etc.

McAfee Research

03/13/2004 Page 13

List of Labeled Objects

 Processes
– Process credential, process

 File System
– Mountpoint, vnode, devfs directory entries

 IPC
– Pipe IPC, System V IPC (SHM, Sem, Msg) , Posix IPC

 Networking
– Interface, mbuf, socket, Inet PCB, IP fragment queue,

Ipsec, security association

McAfee Research

03/13/2004 Page 14

Integration of MAC Framework
into FreeBSD

Process/
Thread
Support

System Call API/ABIs
Native, Linux, SVR4, OSF/1, PECOFF, ...

Scheduler

Process
Threaded Process

t t t t ...

VFS

UFS
...

GEOM Storage
Framework

Interface
Framework

File Interface

Socket IPC

Network
Protocols

Newbus, Device Drivers

devfs,
specfsPipe

IPC
SysV
SHM

Virtual
Memory

SysV
msgq,
sem

McAfee Research

03/13/2004 Page 15

Where Next for the TrustedBSD MAC
Framework
 Continue to research and develop TrustedBSD

MAC Framework on FreeBSD
– Enhanced support for IPsec

– Improve productionability of policy modules

– Continued R&D for SEBSD

– Integrate with Audit functionality

McAfee Research

03/13/2004 Page 16

Sample Policy Modules

 mac_test regression test, stub, null modules
 Traditional labeled MAC policies

– Biba fixed-label integrity, LOMAC floating-label integrity

– Hierarchal and compartmented Multi-Level Security (MLS)

– SELinux FLASK/TE “SEBSD”

 Hardening policies
– File system “firewall”

– Interface silencing

– Port ACLs

– User partitions

McAfee Research

03/13/2004 Page 17

SEBSD: Security-Enhanced BSD

 NSA sponsored port of SELinux functionality to
the FreeBSD platform

– Port SELinux policy language and access control model

– Implement FLASK/TE in a MAC Framework policy module

– Provide result as open source

McAfee Research

03/13/2004 Page 18

SELinux Background

 FLASK security framework
– FLASK provides an access control framework abstraction

– Initially integrated directly into Linux kernel

– Now plugged in using “LSM” framework

 Implements Type Enforcement (TE) Policy
– Extensive and comprehensive rule language and policy

configuration

– Mature policy documents privileges for many userspace
system components and common applications

– Also limited MLS, RBAC

McAfee Research

03/13/2004 Page 19

SELinux FLASK Abstraction

 FLASK plays a similar role to the TrustedBSD
MAC Framework

– Treats existing system components as “object managers”

– Abstracts notions of subjects, objects, and methods

– Label storage using SIDs (Security Identifiers)

– Differences from MAC Framework are substantial

 Access Vector Cache holds cached
computation results for SID and method tuples

 “Security Server” security policy implementation

McAfee Research

03/13/2004 Page 20

SELinux Type Enforcement

 Type Enforcement represents the set of
permitted actions as rules in terms of:

– Subjects (processes, generally) assigned domains

– Objects (files, sockets, ...) assigned types

– Object methods that may be performed on objects

– Rules specifying permitted combinations of subject
domains, object types, and object methods

 Labeling specification assigns initial labels
 New objects have labels computed from rules

McAfee Research

03/13/2004 Page 21

MAC Framework Modifications
Required for SEBSD
 Framework parallel to LSM in construction

– Similarity between LSM and MAC Framework simplify
implementation; differences simplify it further

 Provides stronger label manipulation and
management calls

– Don't need a number of the system call additions required
to run FLASK on Linux

 Removed notion of SID exposed to userspace
since mature APIs for labels already existed

– This approach later adopted in SELinux, also.

McAfee Research

03/13/2004 Page 22

Creating SEBSD Module from
Largely OS-Independent FLASK/TE

 At start
– SELinux tightly integrated

FLASK/TE into Linux
kernel

– Over course of SEBSD
work, similar
transformation was made
with LSM

 MAC Framework
plays similar role to
LSM for SEBSD

FLASK

TE

Linux
Kernel

LSM

FLASK

TE

FreeBSD
Kernel

MAC
Framework

SELinux SEBSD

McAfee Research

03/13/2004 Page 23

Current Status of SEBSD

 Kernel module “sebsd.ko” functional
– Most non-network objects labeled and enforced for most

interesting methods

– File descriptor, privilege adaptations of MAC Framework
complete

 Userspace experimental but usable
– Libsebsd port complete, ports of SELinux userland

programs completed as needed (checkpolicy, newrole, ...)

– Adapted policy allows many applications to run

• Few changes needed for third party applications, mostly
change required for base system components

McAfee Research

03/13/2004 Page 24

Strategy: Migrate MAC Framework to
Darwin, Port SEBSD as SEDarwin
 Exploit common source code and design roots

of FreeBSD and Darwin
– Migrate MAC Framework to Darwin

• And dependencies, such as extended attributes, etc.

– Migrate SEBSD, MLS, and other policies to Darwin

– Expand MAC Framework and policies to address Darwin-
specific features, such as Mach IPC

• Requires MAC Framework to sit between various layers

– Modify Darwin userspace applications

– Produce adapted SEBSD TE policy

McAfee Research

03/13/2004 Page 25

Strategy: Migrate MAC Framework to
Darwin, Port SEBSD as SEDarwin

FLASK

TE

Linux
Kernel

LSM

FLASK

TE

FreeBSD
Kernel

MAC
Framework

SELinux SEBSD

FLASK

TE

Darwin
Kernel

MAC
Framework

SEDarwin

McAfee Research

03/13/2004 Page 26

Architecture of Darwin
(Gross Over-Simplification)

 Mach provides low-
level IPC, memory,
synchronization
primitives

 IOKit provides OO
driver infrastructure

 BSD provides high
level IPC, networking,
storage services

Mach

IOKit

BSD

 User Processes
 (tasks + threads)

McAfee Research

03/13/2004 Page 27

Porting Activities So Far

 Port MAC Framework
– Focus on getting base functionality up and running

– Adapt to Mach memory allocation, synchronization

– Port labeling, access control for devfs

– Port UFS1 extended attributes to HFS+

– Port support libraries (libextattr, libmac)

– Port tools (mac_tools)

– Adapt base Darwin tools (system_cmds, file_cmds)

– Port mac_test module

– Extend MAC Framework to incorporate Mach tasks, IPC

McAfee Research

03/13/2004 Page 28

Porting Activities So Far (cont)

 Port SEBSD module
– Port FLASK, AVC (largely synchronization, allocation

issues)

– Port “Security Server” for Type Enforcement (TE)

– Port libsebsd

– Port sebsd_cmds

– Create minimal policy to get system up and running

– Create GUI role selection, relabel tools

– Hook up process, file system labeling and access control

– Experiment with controls and policy for Mach primitives

McAfee Research

03/13/2004 Page 29

Integration of MAC Framework into
Darwin Prototype

BSD
Process/
Thread
Support

Mach/BSD System Call Layer

IOKit Device
Driver Framework

Process Threaded Process
t t t t ...

Interface
Framework

File Interface

Socket IPC

Network
ProtocolsVFS

HFS+,
UFS

... devfs,
specfs

SysV
SHM

Mach: Scheduler, VM, IPC

SysV
msgq,
sem

McAfee Research

03/13/2004 Page 30

Issues and Concerns

 Lack of unified build infrastructure for Darwin
– Challenging to build and maintain extensive modifications

 Serious binary compatibility issues
– Drivers when expanding data structures for labels

– Had to back off initial port of network stack components

 Mach wait_queue primitive much weaker
 Mach IPC

– Mach IPC primitives very weak, semantically

– Requires applications to be much more involved in access
control than in traditional UNIX system

McAfee Research

03/13/2004 Page 31

Additional Issues and Concerns

 HFS+ lacks generation numbers
– May break NFS, also prevents us from checking

consistency of attributes with file system objects

– Prefer that HFS+ had a native extended meta-data service

 Source code for loginwindow not available
– Jaguar substantially less mature than Panther

– While there have been improvements to the login process
and credential management, still much to be done

 Jaguar applications behave poorly on failure

McAfee Research

03/13/2004 Page 32

Additional HFS+ concerns

 TrustedBSD MAC Framework splits ownership
of label management with file system

– Performs access control checks at cross-file system layer

– Some file systems provide per-label storage

– Other file systems rely on VFS layer labeling

 Darwin offers a number of stronger file system
system calls

– Permits more direct reading, manipulating of disk catalog

– Requires MAC Framework to become more involved in
HFS+, not to mention layring issues

McAfee Research

03/13/2004 Page 33

Conclusion

 TrustedBSD MAC Framework provides flexibl,
extensible OS access control

 SEBSD is experimental port of SELinux
FLASK/TE to FreeBSD using MAC Framework

 Experimental port of MAC Framework to Darwin
reveals opportunities, weaknesses in Darwin

