87-3098

TCB SUBSETS FOR INCREMENTAL EVALUATION

William R. Shockley,

Roger R. Schell

Gemini Computers, Inc.

Abstract

In this paper, the notion of a TCB subset
is defined and applied to the problem of
evaluating a complex trusted system. The
general strategy proposed for a complex
evaluation is one of "divide and conquer":
the TCB is partitioned into disjoint TCB
subsets, each of which resides in its own
protection domain and enforced a security
policy subset upon the subjects and
objects under its control. The following
protection domain structures (as ordered
by privilege) are considered: purely
hierarchical (the "protection ring" case),
purely isolated (the "distributed system
case"), and hybrid cases. The basic
architectural and policy constraints
induced by such structures are presented
and a few illustrative applications of the
ideas described.

1. Introduction

The growing availability of trusted
computing base (TCB) evaluated products
has produced significant interest in how
such products may be incorporated within
more complex application systems for
eventual field deployment. Typical
examples of systems which have been
proposed and designed include trusted
distributed systems, trusted networks,
trusted database management systems, and
trusted systems incorporating within one
system a variety of these approaches. A
crucial subproblem which must be solved if
such complex systems are to be assembled
with a high degree of assurance highly-
assured way is to develop techniques
whereby complex systems can be evaluated
for their conformance to the technical
criteria provided by the Department of
Defense Trusted Computer System Evaluation
Criteria (the TCSEC) [1].

In dealing with any complex system, an

attractive strategy is one of "divide and
conquer". What is wanted is an approach
for dividing the trusted component of the
system into simpler parts, evaluating each
of the parts separately, and then
validating the correctness of the way the
parts are composed to form a single system
enforcing a globally well-defined security
pelicy. It is obviously desirable that
the validation of the correct composition
of evaluated parts be a relatively simple
task. The simplicity of the reference
monitor abstraction, which is the guiding
theoretical abstraction underlying the
TCSEC, lends itself well to a "divide and
conquer" evaluation strategy. In this
paper, two distinct strategies will be
described, compared, and finally combined

131

within one unifying conceptual framework.
This analysis may be considered an
extension of the principles first
described in [2], with the benefit of
several additional years of experience and
thought in how a complex TCB might be
composed from a collection of simpler TCBs
residing in individual protection domains.

The first, a strategy for the "partitioned
evaluation" of a trusted distributed
system or network, depends upon the notion
that a complex system may be decomposed
into independent, loosely-coupled, inter-
communicating processing components. This
strategy is most suitable for trusted
systems which have a complex physical
architecture (e.g., distributed systems or
networks). The partitioned evaluation
strategy, as described in this paper, is a
restatement of the principles presented in
Appendices A and B of the recently-
distributed Trusted Network Interpretation
of the TCSEC, (the TNI) [3], which
provides interpretations for the
application of the TCSEC criteria to
networks.

The second strategy, which is in this
paper is denoted a strategy for the
"incremental evaluation" of a trusted
computer base, depends upon the idea that
a complex TCB may be divided into simpler
TCB subsets, each of which enforces a
subset of the global access control
policy. The ‘effect of such a policy
decomposition, when allocated to the
various TCB subsets, is to allow for a
chain of simpler evaluations (each called
an "incremental evaluation") to be
performed, leading to an overall
conclusion that the composite TCB is
correct. Unlike a partitioned trusted
system, incrementally evaluated TCB
subsets are thought of as residing in the
same, tightly-coupled processing
component. The incremental strategy is
particularly well-suited for trusted
systems which enforce relatively complex
access control policies over virtual
objects which are very different from the
physical storage objects provided by the
processor hardware. For that reason, the
TCB subset abstraction is currently
receiving substantial attention as a key
notion upon which interpretation of the
TCSEC for trusted DBMS implementations
(the Trusted Database Interpretation, or
TDI) [4] might be based.




The partitioned and incremental evaluation
strategies are compatible, and may be
combined in various ways for trusted
systems which are complex both in the
architectural and policy dimensions. Two
distinct ways in which the strategies may
be combined will be presented later in the
paper after the "pure" versions of the
approaches have been characterized.

The remainder of this paper is organized
as follows. Section 2 provides an

abstract description of a "TCB subset”
which is responsible, in general, for
enforcing an arbitrary policy for the
access by subjects (active entities) to
objects (passive data repositories) under
its control. A TCB subset is a
generalization of the reference monitor
abstraction, but differs from it in that
one TCB subset may (but need not) include
a simpler TCB subset from which it obtains
services. Section 3 defines the notion of
incrementally evaluated TCB subsets
precisely and characterizes what it means
for a TCB subset in such a group to be
correct. Section 4 recapitulates the
notion of a partitioned TCB evaluation
drawn from the TNI and shows how a
collection of network TCB partitions (as
defined in the TNI) may be interpreted as
a collection of independently evaluatable
TCB subsets (thus unifying the two
approaches under a single idea). Section
5 describes how incremental and
partitioned evaluation techniques may be
combined in a single system. Section 6
recapitulates and summarizes the ideas
presented from the perspective of their
practical application.

As the principles formulated in this paper
are to be generally applicable to systems
targeted for all evaluation classes, it is
convenient to assume that the most
stringent architectural requirements
(i.e., those for Class Al) are to be met.
Relaxations of these which might be
consistent with lower evaluation classes
will not be discussed.

2. TCB Subset Abstraction

A TCB subset, at its interface, is an
abstract mechanism that enforces some
access control policy upon subjects which,
from time to time, attempt to access data
repositories (objects) under its control.
Informally, it must satisfy three
technical conditions if the complete
system (including the untrusted subjects)
is to be regarded as secure, relative to
the stated policy:

e It must mediate every access.
e It must be tamperproof.

® It must be well enough structured
to be evaluated for correctness.

132

The similarity between this and the usual
definition of a reference monitor [1l] is
obvious: indeed, a reference monitor is a
TCB subset. The primary difference
intended is that a TCB subset may have an
internal interface to a smaller included
mechanism, which is also a TCB subset
(enforcing a less restrictive policy).

The term "NTCB partition" (drawn from the
TNI) will be reserved for a TCB subset
which does not include a smaller TCB
subset, and thus is in direct control of a
particular, well-defined subset of storage

objects, devices, and other hardware
components of one processing component of
a particular trusted system. The term
"reference monitor" will be reserved for
the collection of NTCB partitions in a
particular system. (The distinction
between a "reference monitor" and "the
TCB" which is normally drawn, even for
monolithic systems, is not important for
the discussion in this paper and will not
be pursued).

In the degenerate case of a single,
monolithic trusted system, (the sort of
system described by the TCSEC), there is a
single TCB subset which is identical to
the TCB, and may be viewed as the single
NTCB partition of a degenerate distributed
system, as well. The TNI typically views
a distributed system or network as a
collection of NTCB partitions, one for
each of many loosely-coupled processing
components, which together form a single
TCB or reference monitor. Each of these
NTCB partitions is a distinct TCB subset,
as defined above. The TCB architecture
described in this paper consists of a
collection of TCB subsets which are
allocated to hierarchical protection
domains: at least one example of such an
architecture is currently under
developmental evaluation (e.g., GEMSOS
[5]). In the case of a "pure" hierarchy
of TCB subsets, the collection of TCB
subsets comprises a single TCB which is
(degenerately), also a single NTCB
partition. More complex protection
architectures which mix the ideas of NTCB
partitions and hierarchical TCB subsets in
non-degenerate ways will be introduced
toward the end of the paper.

It is adequate for the purposes of this
paper to characterize a system which
contains a TCB subset in terms of the set
of subjects (active entities) to be
controlled, the set of objects (passive
data repositories) to be protected, and
the rules concerning the access of
subjects to objects to be enforced by the
TCB subset of interest. For the sake of
simplicity, this set of rules will be
called the "access control policy"
enforced by the TCB subset, although they
really represent not the policy itself,
(which is framed in terms of users and
information), but an interpretation of a
policy for application to the subjects and
objects of an automated system. Arbitrary
access control policies are admitted in




the discussion below so that arguments can
be made which are valid for any access
control policy.

It is supposed that the basic security-
relevant operation available to subjects
is a request (to the TCB subset) to access
a particular object in a particular access
mode (e.g., read, write, or execute). In
response to such a request, the TCB subset
may either grant or deny access.

In order to decide whether a particular
request for access is to be granted or
denied, the TCB subset must make a
decision as to whether the requested
access is consistent with the access
control policy to be enforced. Abstractly,
this policy may be thought of as a list P
of ordered triples <s, o, m> (where s is a
particular subject, o a particular object,
and m a particular access mode) of
accesses which must be prohibited. For
instance, if the triple < x, myfile, read>
appears in the list, subject "x" may not
be given read access to object "myfile".
The convention of representing the
abstract access control policy as a list
of prohibited accesses has been used,
because failure to grant an allowed access
is not normally considered an insecurity.

3. Properties Of Hierarchical TCB Subsets

In the previous section, an abstract
characterization of a TCB subset mechanism
enforcing an abstract access control
policy (represented by a set P of
prohibited accesses) was provided. In
this section, the notion of a TCB subset
which includes other TCB subsets will be
precisely defined and abstractly
characterized.

The central idea is that the set P of
prohibited accesses is to be replaced by a
collection of subset policies P(i), the
union of which includes every element of
the original set P. Corresponding to each
such policy subset a distinct TCB subset
M(i) is postulated to exist. It is
supposed that every request for access to
an object o is submitted to each TCB
subset responsible for enforcing a policy
with respect to o (i.e., a prohibited
access to o occurs somewhere on that TCB
subset's 1list of prohibited accesses).
Access is to be granted only if every such
TCB subset M(i) permits access.

Under the described circumstances the
original policy P is enforced by the
collection of TCB subsets. If a particular
access is prohibited in P, there must
exist at least one subset of P, P(i),
which prohibits the access. (Otherwise,
the constraint that the union of all of
the P(1i) includes P is not met). The
particular TCB subset M(1i) enforcing the
subset policy P(i), when consulted, will
prohibit the access. Thus, every access
prohibited by P will be prohibited by the
collection of TCB subsets collectively.

At worst (in the case where the union of
the subset policies includes P as a proper

133

subset), the collection of TCB subsets
might deny accesses which are not
prohibited by P, but as previously
indicated, this is not normally considered
an insecurity.

It is now appropriate to ask how such a
collection of TCB subsets might be
organized in a real system in such a way

as to ensure that every TCB subset
responsible for protecting a particular
object was consulted on every access to
that object, and in such a way that the
goals of an incremental evaluation can be
properly met. The answer (concisely) is
that the postulated collection of TCB
subsets will be implemented within a
series of hierarchical protection domains
[6], with the objects to be protected by
each TCB subset exported (i.e., provided
as an abstraction) at the domain interface
between that TCB subset and the next (or
the application domain, for the least
privileged TCB subset). The remainder of
this section is devoted to explaining how
such a protection architecture within the
composite TCB can serve as a valid basis
for an incremental evaluation.

An evaluation strategy for the collection
of TCB subsets will be considered to be
"purely incremental"” if there is some
ordered sequence of evaluation increments,
one for each TCB subset, such that the
correctness of each evaluation increment
depends upon, and only upon, a positive
evaluation for the previous increment (if
the current increment is not the first).
(This strategy may be contrasted with that
for a partitioned evaluation, as for a
trusted network, in which the evaluations
of each component individually are
essentially independent of the evaluations
of other components).

Under the assumption introduced by this
definition, there will be exactly one of
the TCB subsets in the collection which is
to be evaluated for correctness first
(with regard to the policy subset it
enforces), and its evaluation must not
depend in any way upon the correctness of
any of the others. It follows that this
particular TCB subset (call it M(1)) must
be privileged to directly access the real
system objects and resources (i.e.,
memory, devices, and so on): M(i) is the
system reference monitor. The correctness
of the reference monitor can be
independently established only if no other
TCB subset can tamper with it. Thus, it
must inhabit a protection domain of its
own which is tamperproof with regard to
all other system or application software:
it is the most privileged of the
collection of TCB subsets.

Once the reference monitor M(1) has been
identified and independently evaluated,
there will be exactly one of the remaining
TCB susbsets, M(2), which is now to be
evaluated. By the definition given above,
M(2) depends for its correctness on the




———————-—————————-——T

correctness of M(1l), but not upon any of
the other TCB subsets. (Systems for which
more than one TCB subset might be
evaluatable after M(1) will be
characterized later). Therefore, the
evaluation of M(2) can proceed by
regarding the hardware, together with
M(1), as a virtual machine upon which M(2)
executes. 1In fact, M(2) may be regarded
in all respects (including the criteria
for its evaluation) as a reference monitor
which controls the virtual resources
(objects, devices, etc.) exported by M(1).

This characterization also is the guide
for how to apply the TCSEC Criteria to
M(2): provided a particular Criterion is
relevant to the policy P(2) allocated to
M(2), it may be directly applied to the
evaluation of M(2), just as if M(2) were a
real reference monitor executing upon a
real machine, rather than a TCB subset
executing upon the virtual machine
provided by M(1).

Recall that in order to be able to
establish the correctness of M(1), it had
to be assumed that M(1) could not be
compromised by any other TCB subset,
including M(2). This means that M(2) must
reside in a different (and less-
privileged) protection domain than M(1).
The incremental evaluation of M(2)
requires that M(2) be tamperproof with
respect to subjects external to M(1) and
M(2). Thus, M(2) must reside in a
protection domain that is less privileged
than M(1) but more privileged than all
other TCB subsets and applications.

Applying this argument recursively, a
structure of hierarchical protection
domains emerges. Each TCB subset occupies
its own hierarchical protection domain
which is tamperproof with respect to all
less privileged subsets and any untrusted
applications. An adequate protection
architecture for supporting an incremental
evaluation strategy is provided by. the
well-known "protection ring" structure
implemented, for example, by Multics [7]
or GEMSOS [6]. One may observe that it is
possible to support a valid ring
abstraction which is implemented in
software, provided that a minimum hardware
capability exists for two distinct
protection domains (i.e., privileged and
non-privileged), as was done for early
implementations of Multics [7].

The concept of a "protected object”
requires some interpretation in the

context of such a collection of TCB
subsets organized within hierarchical
protection domains. Each successive TCB
subset may be viewed at its interface as
providing a collection of objects over
which some composite policy (the union of
the policy subsets for the TCB subsets) is
enforced. These objects may be divided
into two general categories: those which
are inherited with no essential changes
from underlying TCB subsets (although

134

additional policy restrictions may be
enforced), and those which are
abstractions built from more primitive
underlying objects by the intervening TCB
subset.

It is the second class of objects, those
which are abstractions built by the
intervening TCB subset, which are often
called "interpretively accessed",
"indirectly accessed", "virtual", or
"abstract" objects. No notion of "direct
access" to such an object (external to the
TCB subset implementing it) can be
supported, because is not, by definition,
a storage object managed by the reference
monitor, M(1l). "Access" to such an object
is represented by the availability, at the
TCB subset interface, to commands which
allow the state of such objects to be
modified, or observed: these commands
result in the execution of programs which
actually modify the internal
representation of the object, or translate
and copy data in this representation into
objects the invoking subject can directly
access.

In order to support such interpretively
accessed objects, the TCB subset must
store the representation of its state into
objects the TCB subset can modify, but
that subjects external to the TCB subset
cannot. The latter requirement stems from
the consequences of permitting such
access: 1if an external subject could
directly modify the state representation
of an abstract object, the abstraction
presented at the interface of the TCB
subset could no longer be shown to be
tamperproof. Moreover, if the stored
states of many such abstract objects are
stored in a single storage object (a
typical case), external subjects cannot be
allowed to directly read the storage
object either, because that might give
them read access to abstract objects which
they are not authorized to read, in
addition to the one they are allowed to
read.

Thus, a particular TCB subset may be
characterized functionally as inheriting a
collection of objects from the next more
privileged TCB subset (or from the
hardware, for M(1)), removing some of them
for its own use and re-exporting the rest,
along with whatever new abstract objects
it may implement. What is meant by saying
that a TCB subset is "tamperproof" is not
only that its software cannot be modified
by external subjects, but that the
representations of the abstract objects it
implements for interpretive access must be
stored in storage objects which cannot be
directly modified (and often, not directly
observed) by external subjects.

It should now be apparent that the
hierarchical structure of protection
domains required in order for a chain of
incremental evaluations to be workable
imposes, as well, a hierachical allocation
of the totality of objects to be protected




by the TCB to those domains. A particular
object, exported at a particular TCB
subset interface, is either inherited from
a more privileged TCB subset, or exported
as a virtual object implemented by the
particular TCB subset in question.
Ultimately, a single TCB subset can be
identified for each object which is the
"source" of that object: those objects
inherited from the hardware and exported
by the reference monitor M(1) are what are
generally called the "storage objects" by
the TCSEC.

The allocation of objects to their
originating TCB subsets induces a
constraint upon the policy subsetting
described at the beginning of this
section: a policy subset P(i) allocated
to a particular TCB subset M(i) may
include prohibitions only upon those
particular objects exported by M(i) to
less privileged protection domains. These
objects may either be inherited from more
privileged TCB subsets, or exported as new
abstract objects implemented by P(i). The
challenge of actually designing a system
incorporating multiple, hierarchical TCB
subsets is two-fold. First, the selected
policy subsets must combine to represent a
composite policy which is at least as
restrictive as the original policy to be
enforced. Second, each policy subset must
be interpretable exclusively in terms of
those objects and abstractions which are
to be made available at the particular TCB
subset interfaces in the selected order of
evaluation. No individual policy subset
must be represented in terms of abstract
objects which will be implemented only by
a less-privileged TCB subset.

As a more concrete example, suppose that a
trusted DBMS is implemented as a TCB
subset in a hierarchical protection domain
less privileged than a conventional TCB
(which provides the virtual environment
for the DBMS software), but more
privileged than the applications which use
the DBMS. It might store relations in
segments available to it from the
conventional TCB and enforce a
discretionary access control policy upon
its application subjects upon attributes
(columns) of a relation. The particular
segments within which relations were
stored could not be made directly
accessible to applications for either read
or write access, since they might then be
able to read or modify attribute values to
which the subject did not have authorized
access. Thus, the segments used to store
relations would not be objects visible at
the DBMS interface: in their place would
appear a collection of system function
calls which provided interpretive access
to relations. A function which provided
indirect "observe" access to an authorized
attribute value would (if closely
examined) involve the copying of data by
the DBMS into an object (such as a
parameter area) which was directly
accessible to the invoking subject.

135

4. NTCB Partitions

In the previous section, the cases where
several TCB subsets were candidates for
the next increment of evaluation was
deferred. The simplest such case (where
all of the TCB subsets can be
independently evaluated immediately) is
treated in the TNI, and will be referred
to here as a "partitioned evaluation
strategy”.

Suppose that there exist two or more TCB
subsets which could be evaluated
immediately and independently (i.e., the
correctness of one evaluation does not
depend upon the other). For this to be
the case, the set of objects exported by
one TCB subset must be disjoint from that
exported by the , other: otherwise, neither
TCB subset could enforce a policy relative
to that object independently, for such a
policy could be bypassed by accessing the
same object via the other TCB subset. It
may well be the case that for a particular
allocation of policy subsets or protected
objects, this possibility might not result
in an insecurity: the point is that this
fact cannot be established by examining
just one of the TCB subsets relative to
its allocated policy. In short, in order
to preserve the desired property that the
TCB subsets can be independently
evaluated, shared objects must be excluded
from their respective interfaces.

An immediate question arises: if shared
objects do not appear at the interfaces of
the two TCB subsets, how may a subject
utilizing the services of one TCB subset
communicate with a subject controlled by
the other? The solution to this problem
advanced by the TNI is to view the
communication between two independent TCB
subsets as taking place via "communication
channels" which are abstracted as
collections of devices local to the
communicating TCB subsets, coupled by a
medium for information transfer.
Implicitly, the policy subsets to be
enforced locally are stated strictly in
terms of local devices and objects: it is
assumed that the communication medium, the
only shared resource, cannot be directly
accessed by subjects, and that no access
control policy must be enforced by any TCB
subset relative to it (more precisely, the

policy to be enforced is implicit in the
policy enforced for access to the local
devices).

This argument may appear implausible,
until it is understood precisely what is
being said: it is certainly possible to
design a distributed system in which an
object is shared between two otherwise
isolated protection domains, but such a
system cannot be evaluated using the
desired evaluation strategy (divide and
conquer): rather, the software in the two
domains must be evaluated as a single,
monolithic TCB subset.




Because the sets of storage objects
managed by one of these TCB subsets (and
thus, any abstract objects which it
exports) are disjoint, the system is
composed of disjoint protection domains,
each of which is isolated with respect to
the others. It follows that any subjects
in the system are confined to just one of
these domains (because a subject is a
<{process, domain> pair) [1].

Thus, the assumption that multiple
independently evaluatable TCB subsets can
be found leads to the conclusion that they
are independently evaluatable precisely
because the objects under their control
can be partitioned into rigorously
disjoint protection domains. This is the
case upon which the interpretations of the
TNI are based, and a system which consists
of multiple TCB subsets, each of which is
tamperproof with respect to the others, is
called (following the TNI terminology) a
Network TCB (NTCB). Each of the TCB
subsets is called an NTCB partition, and
the disjoint set of objects and subjects
comprising the domain managed by a TCB
partition, and its local subjects, is
called a system component.

5. Hybrid Systems Of TCB Subsets

In this section, the more complex cases
where incremental and partitioned
evaluation strategies may be mixed are
investigated. Two modes of composition of
these strategies will be identified.

First, an NTCB partition within a real
component of a network or distributed
system may, itself, be designed and
evaluated as a collection of TCB subsets
within hierarchical protection domains
local to the particular component under
consideration. This strategy may be
viewed as one (relative to that component)
of partitioning, followed by incremental
subsetting within that component.

Secondly, a more privileged TCB subset may
impose a "virtually partitioned"
structure upon the next less privileged
hierarchical protection domain. This
strategy may be viewed as one of
incremental subsetting, followed by
partitioning within a subset.

Subsetting an NTCB Partition

Considering an individual component of a
trusted loosely-coupled network or
distributed system as a trusted component
in its own right (as permitted by the
partitioned evaluation strategy described
in Appendices A and B of the TNI), the
independent evaluation of this component,
based upon the policy allocated to that
component, may itself be conducted
incrementally, provided the component
architecture provides multiple,
hierarchical protection domains. The

136

crucial issue in understanding how such an
evaluation is to proceed is to understand
how the access control policy for the
entire system is to be "allocated" to the
component, and then to the individual TCB
subsets within the component.

As previously described, the system access
control policy (really a policy
interpretation) may be viewed abstractly
as a list of prohibited accesses <{subject,
object, mode>. When allocated to a
particular loosely-coupled component,
there is, associated with that component,
a well-defined set of objects which are
accessible only within that component
(this is the fundamental condition upon
which a partitioned evaluation strategy is
predicated). Thus, the access control
policy as allocated to the component
consists of the overall policy, with any
prohibited access triples containing
objects or subjects within any other
component removed. The removed triples
need not be prohibited locally to the
component under consideration, because no
local subject in that component can access
a non-local object, and no local object
can be accessed by a non-local subject.
Thus, the NTCB partition need enforce no
access control policy relative to non-
local subjects, objects, or both.

The local policy may now be subsetted and
the NTCB partition evaluated incrementally
as a chain of TCB subsets, provided that
the needed hierarchical protection domain
architecture is available. Such a
strategy (partition, then subset) might be
useful, for example, for a distributed
implementation of a trusted DBMS,
allowing, for instance, a trusted front-
end controller to be evaluated
independently of trusted database engine
back-ends. Either the controller or the
back-ends or both might be further
subsetted (e.g., into TCB subsets
enforcing mandatory and discretionary
policies) as part of the partitioned
evaluation of the component.

Partitioning a TCB Subset

Another approach for composing the
partitioned and incremental evaluation
strategies is to have a more privileged
TCB subset create a "virtual partitioning"
of the next less-privileged TCB subset in

a hierarchy of TCB subsets. The basic
technique for doing this is to control
access to objects exported to the
partitioned, less-privileged TCB subset in
such a way that the exported objects are
partitioned into mutually exclusive
classes. A tamperproof attribute for each
external subject executing in the next
less privileged domain indicating which
class of objects it may access. A subject
executing in the next less-privileged
hierarchical domain would then have access
to objects in one, and only one, of these
mutually exclusive classes of objects.
Such a "virtual partition" is, in fact,




just an isolated protection domain. If
this approach is taken, the evaluation

increment for the next privilege level can
be conducted as a series of independent

evaluations, one for each of the TCB
subsets into which the TCB component
residing at the next privilege level has
been partitioned. The requirement to
provide for completely isolated domains is
not so much a requirement for correctness
as a precondition for supporting the
desire to evaluate the next layer of TCB
subsets independently.

Once a hierarchical protection domain has
been divided into mutually exclusive
virtual partitions (isolated domains), the
question arises whether any TCB subsets in
less privileged hierarchical domains need
to be similarly partitioned.

Surprisingly, this does not need to be
done. Both abstract and concrete
arguments lead to this result.

Abstractly, a subject which can access
objects in different virtual partitions of
an underlying hierarchical domains can do
so only if both accesses are permitted by
the respective partitions, in accordance
with their allocated policy subsets.

Since the enforcement of these policies by
the virtual partitions has been evaluated
to be correct and cannot be invalidated by
the activity of external subjects, the
accesses are, by definition, allowed by
the global policy. One might observe that
if the virtual partitions are viewed as
independent virtual machines, subjects
external to them which can communicate
with multiple virtual machines are, in
effect, secure connections between the
virtual machines.

More concretely, the transfer of data
from one virtual partition to another is
always mediated (in fact) by the most
privileged TCB subset, because it must
take place ultimately using either storage
objects or devices. Thus, the transfer
of information does not actually bypass
the more privileged TCB subsets, as the
more abstract view might (mistakenly)
suggest.

The use of virtual partitioning finds an
immediate application in the trusted DBMS
environment as a way to implement a
trusted DBMS which operates in a "stand-
alongside" mode with a trusted operating
system. The most privileged TCB subset
might, in addition to a basic access
control policy (such as a mandatory
policy) provide for two isolated
protection domains in the next less
privileged hierarchical domain. Within
one of these domains would reside a
general-purpose TCB subset enforcing a
discretionary access control policy upon
the objects it controls (e.g., files or
segments). In the other domain would
reside a more specialized trusted DBMS
enforcing discretionary access controls
upon the objects it exports (e.g.,
relations, tuples, attributes, or views).
A subject in the application domain (1less

137

privileged than either the DBMS or
general-purpose TCB) could freely access
(consistent with the enforced policies)
either DBMS or TCB objects, and,
consistent with the enforced access modes
transfer data between them freely. ’

The two basic methods for combining the
incremental and partitioned evaluation
approaches may be applied recursively to
analyze systems which are even more
complex. For instance, in the example
above, the DBMS wvirtual partition might
be subsetted into TCB subsets which
enforce discretionary controls upon basic
DBMS objects (such as real relations)
and, in a less-privileged hierarchical
subdomain, additional discretionary
controls upon more complex objects (such
as views). The subsetting of the DBMS
virtual partition need not be paralleled
within the general TCB partition, as they
are independently evaluatable virtual
partitions. The complete evaluation of
the resulting system would proceed as
follows:

-- evaluate the underling Basic TCB
for enforcement of mandatory access
controls, as well as provision of the
required domain structure.

evaluate the general-purpose TCB
incrementally for the correct
enforcement of discretionary controls
in the environment provided for it by
the Basic TCB. (As this is an
incremental step, the Basic TCB
evaluation must be completed before
the general-purpose TCB virtual
partition can be evaluated).

evaluate the more privileged DBMS
domain for the correct enforcement of
discretionary controls upon its
exported objects (real relations).
This is an incremental step and
logically cannot be performed before
the Basic TCB evaluation is complete.

evaluate the less privileged DBMS
domain incrementally for the
correctness of its enforcement of
discretionary controls on views.

6. Summary And Conclusions

In this section, the ideas presented in
the body of the paper will be briefly
summarized from the perspective of their
practical application.

We have argued that a complex TCB can be
divided into a set of simpler TCBs which
can be independently or incrementally
evaluated. Each TCB subset is allocated
to one of a set of protection domains
which are partially ordered by

"privilege if a domain A is more
privileged that B, then a subject in A may
access any object allocated to B. If, of
two domains A and B, neither is more

",
.




privileged than the other, they are non-
comparable. Requiring that the domains be
partially ordered excludes certain valid
domain architectures allowing otherwise
non-comparable domains to share objects.
Corresponding to the allocation of TCB
subsets to domains is an allocation of
policy subsets to the TCB subsets. Each
TCB subset can be evaluated either
incrementally (i.e., as a reference
monitor executing upon a virtual machine),
or independently (i.e., as a reference
monitor executing upon hardware) for
enforcement of its allocated policy
subset: the resulting system enforces a
global policy representing the composition
of the policy subsets. A characterization
of how policy subsets are to be allocated
in both the independent and incremental
cases has been given.

As for any "divide and conquer"” strategy,
several motivations might exist for the
adoption of a purely hierarchical, a
purely partitioned, or a hybrid approach
for the evaluation of a complex trusted
system.

The first motivation is technical: as one
of the fundamental requirements for the
evaluation of a TCB at the higher
evaluation classes (i.e., Class B3 or
above) is the systematic reduction of
complexity so that a high degree of
assurance can be attained that the TCB is
correct, any technique for decomposing a
complex TCB into simpler parts which might
be independently or incrementally
evaluatable is valuable. This is
particularly important where the composite
TCB might be too complex to evaluate as a
monolith. In order to support this
motivation, substantial care has been
taken in the formulation of the concepts
presented here to retain a fundamentally
sound method for composing individual TCB
subsets, and the policies they enforce,
into a composite TCB enforcing a composite
global policy. )

The second motivation is economic: in
many cases, it may be that the cost of the
individual TCB subset evaluations, plus
the cost of validating their composition,
may be less that for evaluating an
equivalent monolith. This effect might
occur where non-linear costs, relative to
the complexity of the system (e.g., for
verification of an FTLS) might exist.

The third motivation is market-oriented:
the capability to consider independently
evaluate partitioned NTCB components
provides a means for vendors to provide
specialized, trusted network or
distributed system components without
having to bear the entire cost or risk
involved in developing and having
evaluated a complete network system.
Similarly, the ability to consider
incrementally evaluated hierarchical TCB
subsets provides a means for vendors to

add value by extending the security
perimeter of an appropriately designed,
pre-existing TCB subset without having to
bear the entire cost or risk involved in
developing and sponsoring for evaluation
the entire TCB. This would seem a
prerequisite for the existence of
evaluated, third-party trusted software.

In this paper, the notion of a TCB subset
has been presented: a strategy for
identifying individual modules of a TCB,
each of which has the essential
characteristics of a reference monitor,
but enforces only a subset of the global
access control policy to be enforced, and
executing either in a loosely-coupled
system component or on the virtual machine
provided by a more privileged TCB subset.
The actual architecture chosen by a system
designer depends strongly upon the
protection domain architectures available
and the specific policy requirements which
must be enforced for each component. The
underlying "glue" which allows the
resulting collection of TCB subsets to be
viewed as a single TCB is the careful
subsetting of the overall policy into
policy subsets, and their allocation to
individual TCB subsets.

Acknowledgements

The research reported in this paper was
funded under subcontract agreement no. 87-
007-1 to Infosystems Technology, Inc. in
support of the National Computer Security
Center's efforts to produce draft TNI and
TDI documents.

The ideas presented in this paper have
been continually tested and refined by the
members of both the TNI and TDI working
groups, whose contributions and critical
review the authors gratefully acknowledge.
This paper represents neither an official
position of the National Computer Security
Paper nor an approved consensus position
by either working group: the authors bear
full responsibility forrany errors in
interpretation of approved criteria or
guidelines which may be found herein.
Acknowledgement is also due to our
colleagues at Gemini, whose many day-to-
day contributions to the ideas presented
represent much of the actual substance of
the paper.

References
[1] Department of Defense Trusted
Computer System Evaluation Criteria.
Dept. of Defense, National Computer

Security Center, Dec. 1985. DOD 5200.28-
STD. ’

[2] M. Schaefer and R.R. Schell.
an Understanding of Extensible
Architectures for Evaluated Trusted
Computer System Products. In Proc.
Symp. on Security and Privacy, IEEE
Computer Society, pages 41-49, 1984.

Toward

1984

138




[3] Trusted Network Interpretation of the
Trusted Computer System Evaluation
Criteria. National Computer Security
Center, Jul. 1987. NCSC-TG-005 Version-1.

(4] M. Hale. Status of Trusted Database
Management System Interpretations. In
Proc. 10th National Computer Security
Conf., pages 340-342, 1987.

[5] R.R. Schell, T.F. Tao, and M.
Heckman. Designing the GEMSOS Security
Kernel for Security and Performance. In
Proc. 8th National Computer Security
Conf., pages 108-119, 1985.

[6] L.J. Shirley and R.R. Schell.
Mechanism Sufficiency Validation by
Assignment. In Proc. of the 1981 Symp. on
Privacy and Security, IEEE Computer
Society, pages 26-32, 1981.

[7] E.I. Organick, The Multics System:
An Examination of Its Structure, The MIT
Press, Cambridge, Mass. and London,
England, 1972.

Released to AIAA to publish in all forms.

This paper Is declared a work of the U.S. Government and is
not subject to copyright protection in the United States.

Copyright ‘< 1989 American Institute of Aeronautics and
Astronautics, Inc. No copyright is asserted in the United States
under Title 17, U.S. Code. The U.S. Government has a
royalty-free license to exercise all rights under the copyright
claimed herein for Governmental purposes. All other rights are
reserved by the copyright owner.

139




